000017870 001__ 17870
000017870 005__ 20180208225137.0
000017870 0247_ $$2pmid$$apmid:21705831
000017870 0247_ $$2DOI$$a10.1088/0953-8984/23/29/296001
000017870 0247_ $$2WOS$$aWOS:000292545200011
000017870 037__ $$aPreJuSER-17870
000017870 041__ $$aeng
000017870 082__ $$a530
000017870 084__ $$2WoS$$aPhysics, Condensed Matter
000017870 1001_ $$0P:(DE-HGF)0$$aLaref, A.$$b0
000017870 245__ $$aExchange interactions, spin waves, and Curie temperature in zincblende half-metallic sp-electron ferromagnets: the case of CaZ (Z = N, P, As, Sb)
000017870 260__ $$aBristol$$bIOP Publ.$$c2011
000017870 300__ $$a296001
000017870 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000017870 3367_ $$2DataCite$$aOutput Types/Journal article
000017870 3367_ $$00$$2EndNote$$aJournal Article
000017870 3367_ $$2BibTeX$$aARTICLE
000017870 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000017870 3367_ $$2DRIVER$$aarticle
000017870 440_0 $$03703$$aJournal of Physics: Condensed Matter$$v23$$x0953-8984$$y29
000017870 500__ $$3POF3_Assignment on 2016-02-29
000017870 500__ $$aRecord converted from VDB: 12.11.2012
000017870 520__ $$aUsing first-principle calculations in conjunction with the frozen-magnon technique we have calculated the exchange interactions and spin-wave dispersions in the series of the zincblende half-metallic II-V (CaZ, Z = N, P, As, Sb) ferromagnets. The calculated exchange constants are used to estimate the Curie temperature within the random phase approximation. The large Stoner gap in these alloys gives rise to well-defined undamped spin waves throughout the Brillouin zone. Moreover we show that the spin-wave stiffness constants for the considered systems are among the largest available for local moment ferromagnets. The predicted Curie temperature of half-metallic CaN is noticeably higher than the room temperature with respect to the other compounds, and thus we propose CaN as a promising candidate for future applications in spintronic devices.
000017870 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000017870 588__ $$aDataset connected to Web of Science, Pubmed
000017870 650_7 $$2WoSType$$aJ
000017870 7001_ $$0P:(DE-Juel1)VDB63896$$aSasioglu, E.$$b1$$uFZJ
000017870 7001_ $$0P:(DE-HGF)0$$aGalanakis, I.$$b2
000017870 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/0953-8984/23/29/296001$$gVol. 23, p. 296001$$p296001$$q23<296001$$tJournal of physics / Condensed matter$$v23$$x0953-8984$$y2011
000017870 8567_ $$uhttp://dx.doi.org/10.1088/0953-8984/23/29/296001
000017870 909CO $$ooai:juser.fz-juelich.de:17870$$pVDB
000017870 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000017870 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000017870 9141_ $$y2011
000017870 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000017870 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$gIAS$$kIAS-1$$lQuanten-Theorie der Materialien$$x1$$zIFF-1
000017870 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$gPGI$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000017870 970__ $$aVDB:(DE-Juel1)132446
000017870 980__ $$aVDB
000017870 980__ $$aConvertedRecord
000017870 980__ $$ajournal
000017870 980__ $$aI:(DE-Juel1)IAS-1-20090406
000017870 980__ $$aI:(DE-Juel1)PGI-1-20110106
000017870 980__ $$aUNRESTRICTED
000017870 981__ $$aI:(DE-Juel1)PGI-1-20110106