000017919 001__ 17919
000017919 005__ 20210129210704.0
000017919 0247_ $$2DOI$$a10.1016/j.cpc.2011.12.013
000017919 0247_ $$2WOS$$aWOS:000301028700004
000017919 037__ $$aPreJuSER-17919
000017919 041__ $$aeng
000017919 082__ $$a004
000017919 084__ $$2WoS$$aComputer Science, Interdisciplinary Applications
000017919 084__ $$2WoS$$aPhysics, Mathematical
000017919 1001_ $$0P:(DE-Juel1)140128$$aWinkel, M.$$b0$$uFZJ
000017919 245__ $$aA massively parallel, multi-disciplinary Barnes-Hut tree code for extreme-scale N-body simulations
000017919 260__ $$aAmsterdam$$bNorth Holland Publ. Co.$$c2012
000017919 300__ $$a880 - 889
000017919 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000017919 3367_ $$2DataCite$$aOutput Types/Journal article
000017919 3367_ $$00$$2EndNote$$aJournal Article
000017919 3367_ $$2BibTeX$$aARTICLE
000017919 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000017919 3367_ $$2DRIVER$$aarticle
000017919 440_0 $$01439$$aComputer Physics Communications$$v183$$x0010-4655$$y4
000017919 500__ $$aThe authors gratefully acknowledge the helpful support by Julich Supercomputing Centre and the JSC staff, especially M. Stephan and J. Docter. This work was supported in part by the Alliance Program of the Helmholtz Association (HA216/EMMI), the BMBF project ScaFaCoS and the EU TEXT project, as well as additional computing time via the VSR project JZAM04. R.S. and R.K. would like to thank the Swiss Platform for High-Performance and High-Productivity Computing (HP2C) for funding and support.
000017919 520__ $$aThe efficient parallelization of fast multipole-based algorithms for the N-body problem is one of the most challenging topics in high performance scientific computing. The emergence of non-local, irregular communication patterns generated by these algorithms can easily create an insurmountable bottleneck on supercomputers with hundreds of thousands of cores. To overcome this obstacle we have developed an innovative parallelization strategy for Barnes-Hut tree codes on present and upcoming HPC multicore architectures. This scheme, based on a combined MPI-Pthreads approach, permits an efficient overlap of computation and data exchange. We highlight the capabilities of this method on the full IBM Blue Gene/P system JUGENE at inch Supercomputing Centre and demonstrate scaling across 299,912 cores with up to 2,048,000,000 particles. Applying our implementation PEPC to laser-plasma interaction and vortex particle methods close to the continuum limit, we demonstrate its potential for ground-breaking advances in large-scale particle simulations. (C) 2011 Elsevier B.V. All rights reserved.
000017919 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing (FUEK411)$$cFUEK411$$x0
000017919 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x1
000017919 588__ $$aDataset connected to Web of Science
000017919 65320 $$2Author$$aParallel Barnes-Hut tree code
000017919 65320 $$2Author$$aBlue Gene/P
000017919 65320 $$2Author$$aHybrid
000017919 65320 $$2Author$$aLoad balancing
000017919 65320 $$2Author$$aVortex methods
000017919 65320 $$2Author$$aPthreads
000017919 650_7 $$2WoSType$$aJ
000017919 7001_ $$0P:(DE-HGF)0$$aSpeck, R.$$b1
000017919 7001_ $$0P:(DE-Juel1)VDB99128$$aHübner, H.$$b2$$uFZJ
000017919 7001_ $$0P:(DE-Juel1)132044$$aArnold, L.$$b3$$uFZJ
000017919 7001_ $$0P:(DE-HGF)0$$aKrause, R.$$b4
000017919 7001_ $$0P:(DE-Juel1)132115$$aGibbon, P.$$b5$$uFZJ
000017919 773__ $$0PERI:(DE-600)1466511-6$$a10.1016/j.cpc.2011.12.013$$gVol. 183, p. 880 - 889$$p880 - 889$$q183<880 - 889$$tComputer physics communications$$v183$$x0010-4655$$y2012
000017919 8567_ $$uhttp://dx.doi.org/10.1016/j.cpc.2011.12.013
000017919 909CO $$ooai:juser.fz-juelich.de:17919$$pVDB
000017919 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000017919 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000017919 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000017919 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000017919 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000017919 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000017919 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000017919 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000017919 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000017919 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000017919 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000017919 9141_ $$y2012
000017919 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000017919 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x1
000017919 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000017919 970__ $$aVDB:(DE-Juel1)132495
000017919 980__ $$aVDB
000017919 980__ $$aConvertedRecord
000017919 980__ $$ajournal
000017919 980__ $$aI:(DE-Juel1)JSC-20090406
000017919 980__ $$aUNRESTRICTED