000001794 001__ 1794
000001794 005__ 20240712101045.0
000001794 0247_ $$2WOS$$aWOS:000255511300001
000001794 0247_ $$2Handle$$a2128/10185
000001794 037__ $$aPreJuSER-1794
000001794 041__ $$aeng
000001794 082__ $$a550
000001794 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000001794 1001_ $$0P:(DE-HGF)0$$aTressol, M.$$b0
000001794 245__ $$aAir pollution during the 2003 European heat wave as seen by MOZAIC airliners
000001794 260__ $$aKatlenburg-Lindau$$bEGU$$c2008
000001794 300__ $$a2133 - 2150
000001794 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000001794 3367_ $$2DataCite$$aOutput Types/Journal article
000001794 3367_ $$00$$2EndNote$$aJournal Article
000001794 3367_ $$2BibTeX$$aARTICLE
000001794 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000001794 3367_ $$2DRIVER$$aarticle
000001794 440_0 $$09601$$aAtmospheric Chemistry and Physics$$v8$$x1680-7316
000001794 500__ $$aRecord converted from VDB: 12.11.2012
000001794 520__ $$aThis study presents an analysis of both MOZAIC profiles above Frankfurt and Lagrangian dispersion model simulations for the 2003 European heat wave. The comparison of MOZAIC measurements in summer 2003 with the 11-year MOZAIC climatology reflects strong temperature anomalies (exceeding 4 degrees C) throughout the lower troposphere. Higher positive anomalies of temperature and negative anomalies of both wind speed and relative humidity are found for the period defined here as the heat wave (2-14 August 2003), compared to the periods before (16-31 July 2003) and after (16-31 August 2003) the heat wave. In addition, Lagrangian model simulations in backward mode indicate the suppressed long- range transport in the mid- to lower troposphere and the enhanced southern origin of air masses for all tropospheric levels during the heat wave. Ozone and carbon monoxide also present strong anomalies (both similar to+ 40 ppbv) during the heat wave, with a maximum vertical extension reaching 6 km altitude around 11 August 2003. Pollution in the planetary boundary layer (PBL) is enhanced during the day, with ozone mixing ratios two times higher than climatological values. This is due to a combination of factors, such as high temperature and radiation, stagnation of air masses and weak dry deposition, which favour the accumulation of ozone precursors and the build-up of ozone. A negligible role of a stratospheric- origin ozone tracer has been found for the lower troposphere in this study. From 29 July to 15 August 2003 forest fires burnt around 0.3 x 10(6) ha in Portugal and added to atmospheric pollution in Europe. Layers with enhanced CO and NOy mixing ratios, advected from Portugal, were crossed by the MOZAIC aircraft in the free troposphere over Frankfurt. A series of forward and backward Lagrangian model simulations have been performed to investigate the origin of anomalies during the whole heat wave. European anthropogenic emissions present the strongest contribution to the measured CO levels in the lower troposphere (near 30%). This source is followed by Portuguese forest fires which affect the lower troposphere after 6 August 2003 and even the PBL around 10 August 2003. The averaged biomass burning contribution reaches 35% during the affected period. Anthropogenic CO of North American origin only marginally influences CO levels over Europe during that period.
000001794 536__ $$0G:(DE-Juel1)FUEK406$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP22$$x0
000001794 588__ $$aDataset connected to Web of Science
000001794 650_7 $$2WoSType$$aJ
000001794 7001_ $$0P:(DE-HGF)0$$aOrdonez, C.$$b1
000001794 7001_ $$0P:(DE-HGF)0$$aZbinden, R.$$b2
000001794 7001_ $$0P:(DE-Juel1)VDB66065$$aBrioude, J.$$b3$$uFZJ
000001794 7001_ $$0P:(DE-HGF)0$$aThouret, V.$$b4
000001794 7001_ $$0P:(DE-HGF)0$$aMari, C.$$b5
000001794 7001_ $$0P:(DE-HGF)0$$aNedelec, P.$$b6
000001794 7001_ $$0P:(DE-HGF)0$$aCammas, J.-P.$$b7
000001794 7001_ $$0P:(DE-Juel1)16203$$aSmit, H.$$b8$$uFZJ
000001794 7001_ $$0P:(DE-Juel1)16214$$aPätz, H.-W.$$b9$$uFZJ
000001794 7001_ $$0P:(DE-Juel1)6742$$aVolz-Thomas, A.$$b10$$uFZJ
000001794 773__ $$0PERI:(DE-600)2069847-1$$gVol. 8, p. 2133 - 2150$$p2133 - 2150$$q8<2133 - 2150$$tAtmospheric chemistry and physics$$v8$$x1680-7316$$y2008
000001794 8564_ $$uhttps://juser.fz-juelich.de/record/1794/files/acp-8-2133-2008.pdf$$yOpenAccess
000001794 8564_ $$uhttps://juser.fz-juelich.de/record/1794/files/acp-8-2133-2008.gif?subformat=icon$$xicon$$yOpenAccess
000001794 8564_ $$uhttps://juser.fz-juelich.de/record/1794/files/acp-8-2133-2008.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000001794 8564_ $$uhttps://juser.fz-juelich.de/record/1794/files/acp-8-2133-2008.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000001794 8564_ $$uhttps://juser.fz-juelich.de/record/1794/files/acp-8-2133-2008.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000001794 909CO $$ooai:juser.fz-juelich.de:1794$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000001794 9131_ $$0G:(DE-Juel1)FUEK406$$bUmwelt$$kP22$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zfortgesetzt als P23
000001794 9141_ $$y2008
000001794 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000001794 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000001794 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000001794 9201_ $$0I:(DE-Juel1)VDB791$$d30.09.2010$$gICG$$kICG-2$$lTroposphäre$$x1
000001794 970__ $$aVDB:(DE-Juel1)103606
000001794 9801_ $$aUNRESTRICTED
000001794 9801_ $$aFullTexts
000001794 980__ $$aVDB
000001794 980__ $$aConvertedRecord
000001794 980__ $$ajournal
000001794 980__ $$aI:(DE-Juel1)IEK-8-20101013
000001794 980__ $$aUNRESTRICTED
000001794 981__ $$aI:(DE-Juel1)ICE-3-20101013
000001794 981__ $$aI:(DE-Juel1)IEK-8-20101013