001     1797
005     20180208201653.0
024 7 _ |2 pmid
|a pmid:20634558
024 7 _ |2 DOI
|a 10.1109/TPAMI.2009.162
024 7 _ |2 WOS
|a WOS:000279969000008
037 _ _ |a PreJuSER-1797
041 _ _ |a eng
082 _ _ |a 620
084 _ _ |2 WoS
|a Computer Science, Artificial Intelligence
084 _ _ |2 WoS
|a Engineering, Electrical & Electronic
100 1 _ |a Schuchert, T.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB61695
245 _ _ |a Range Flow in Varying Illumination: Algorithms and Comparisons
260 _ _ |a New York, NY
|b IEEE
|c 2010
300 _ _ |a 1646 - 1658
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a IEEE Transactions on Pattern Analysis and Machine Intelligence
|x 0162-8828
|0 14841
|y 9
|v 32
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We extend estimation of range flow to handle brightness changes in image data caused by inhomogeneous illumination. Standard range flow computes 3D velocity fields using both range and intensity image sequences. Toward this end, range flow estimation combines a depth change model with a brightness constancy model. However, local brightness is generally not preserved when object surfaces rotate relative to the camera or the light sources, or when surfaces move in inhomogeneous illumination. We describe and investigate different approaches to handle such brightness changes. A straightforward approach is to prefilter the intensity data such that brightness changes are suppressed, for instance, by a highpass or a homomorphic filter. Such prefiltering may, though, reduce the signal-to-noise ratio. An alternative novel approach is to replace the brightness constancy model by 1) a gradient constancy model, or 2) by a combination of gradient and brightness constancy constraints used earlier successfully for optical flow, or 3) by a physics-based brightness change model. In performance tests, the standard version and the novel versions of range flow estimation are investigated using prefiltered or nonprefiltered synthetic data with available ground truth. Furthermore, the influences of additive Gaussian noise and simulated shot noise are investigated. Finally, we compare all range flow estimators on real data.
536 _ _ |a Terrestrische Umwelt
|c P24
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK407
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Algorithms
650 _ 2 |2 MeSH
|a Artifacts
650 _ 2 |2 MeSH
|a Artificial Intelligence
650 _ 2 |2 MeSH
|a Image Enhancement: methods
650 _ 2 |2 MeSH
|a Image Interpretation, Computer-Assisted: methods
650 _ 2 |2 MeSH
|a Imaging, Three-Dimensional: methods
650 _ 2 |2 MeSH
|a Lighting: methods
650 _ 2 |2 MeSH
|a Pattern Recognition, Automated: methods
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Range flow
653 2 0 |2 Author
|a illumination changes
653 2 0 |2 Author
|a brightness constancy constraint
653 2 0 |2 Author
|a prefiltering
653 2 0 |2 Author
|a homomorphic filter
653 2 0 |2 Author
|a gradient constancy
653 2 0 |2 Author
|a structure tensor
653 2 0 |2 Author
|a 3D motion estimation
700 1 _ |a Aach, T.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB87595
700 1 _ |a Scharr, H.
|b 2
|u FZJ
|0 P:(DE-Juel1)129394
773 _ _ |a 10.1109/TPAMI.2009.162
|g Vol. 32, p. 1646 - 1658
|p 1646 - 1658
|q 32<1646 - 1658
|0 PERI:(DE-600)2027336-8
|t IEEE transactions on pattern analysis and machine intelligence
|v 32
|y 2010
|x 0162-8828
856 7 _ |u http://dx.doi.org/10.1109/TPAMI.2009.162
909 C O |o oai:juser.fz-juelich.de:1797
|p VDB
913 1 _ |k P24
|v Terrestrische Umwelt
|l Terrestrische Umwelt
|b Erde und Umwelt
|0 G:(DE-Juel1)FUEK407
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.10.2010
|g ICG
|k ICG-3
|l Phytosphäre
|0 I:(DE-Juel1)ICG-3-20090406
|x 1
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l Jülich-Aachen Research Alliance - Translational Brain Medicine
|g JARA
|x 2
970 _ _ |a VDB:(DE-Juel1)103622
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-2-20101118
981 _ _ |a I:(DE-Juel1)ICG-3-20090406
981 _ _ |a I:(DE-Juel1)VDB1046


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21