000017994 001__ 17994
000017994 005__ 20240619090959.0
000017994 0247_ $$2pmid$$apmid:22040747
000017994 0247_ $$2DOI$$a10.1016/j.bios.2011.10.010
000017994 0247_ $$2WOS$$aWOS:000300468400025
000017994 037__ $$aPreJuSER-17994
000017994 041__ $$aeng
000017994 082__ $$a570
000017994 1001_ $$0P:(DE-Juel1)VDB88034$$aKisner, A.$$b0$$uFZJ
000017994 245__ $$aSensing small neurotransmitter enzyme interaction with nanoporous gated ion-sensitive field effect transistors
000017994 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2012
000017994 300__ $$a157–163
000017994 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000017994 3367_ $$2DataCite$$aOutput Types/Journal article
000017994 3367_ $$00$$2EndNote$$aJournal Article
000017994 3367_ $$2BibTeX$$aARTICLE
000017994 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000017994 3367_ $$2DRIVER$$aarticle
000017994 440_0 $$024721$$aBiosensors & Bioelectronics$$v31$$y157-163
000017994 500__ $$3POF3_Assignment on 2016-02-29
000017994 500__ $$aRecord converted from VDB: 12.11.2012
000017994 520__ $$aIon-sensitive field effect transistors with gates having a high density of nanopores were fabricated and employed to sense the neurotransmitter dopamine with high selectivity and detectability at micromolar range. The nanoporous structure of the gates was produced by applying a relatively simple anodizing process, which yielded a porous alumina layer with pores exhibiting a mean diameter ranging from 20 to 35 nm. Gate-source voltages of the transistors demonstrated a pH-dependence that was linear over a wide range and could be understood as changes in surface charges during protonation and deprotonation. The large surface area provided by the pores allowed the physical immobilization of tyrosinase, which is an enzyme that oxidizes dopamine, on the gates of the transistors, and thus, changes the acid-base behavior on their surfaces. Concentration-dependent dopamine interacting with immobilized tyrosinase showed a linear dependence into a physiological range of interest for dopamine concentration in the changes of gate-source voltages. In comparison with previous approaches, a response time relatively fast for detecting dopamine was obtained. Additionally, selectivity assays for other neurotransmitters that are abundantly found in the brain were examined. These results demonstrate that the nanoporous structure of ion-sensitive field effect transistors can easily be used to immobilize specific enzyme that can readily and selectively detect small neurotransmitter molecule based on its acid-base interaction with the receptor. Therefore, it could serve as a technology platform for molecular studies of neurotransmitter-enzyme binding and drugs screening.
000017994 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000017994 536__ $$0G:(DE-Juel1)FUEK505$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x1
000017994 588__ $$aDataset connected to Pubmed
000017994 650_2 $$2MeSH$$aBiosensing Techniques: instrumentation
000017994 650_2 $$2MeSH$$aConductometry: instrumentation
000017994 650_2 $$2MeSH$$aElectrodes
000017994 650_2 $$2MeSH$$aEnzymes, Immobilized: chemistry
000017994 650_2 $$2MeSH$$aEquipment Design
000017994 650_2 $$2MeSH$$aEquipment Failure Analysis
000017994 650_2 $$2MeSH$$aIons
000017994 650_2 $$2MeSH$$aMonophenol Monooxygenase: chemistry
000017994 650_2 $$2MeSH$$aNanostructures: chemistry
000017994 650_2 $$2MeSH$$aNanostructures: ultrastructure
000017994 650_2 $$2MeSH$$aNanotechnology: instrumentation
000017994 650_2 $$2MeSH$$aNeurotransmitter Agents: chemistry
000017994 650_2 $$2MeSH$$aPorosity
000017994 650_2 $$2MeSH$$aProtein Binding
000017994 650_2 $$2MeSH$$aProtein Interaction Mapping: instrumentation
000017994 650_2 $$2MeSH$$aReproducibility of Results
000017994 650_2 $$2MeSH$$aSensitivity and Specificity
000017994 650_2 $$2MeSH$$aTransistors, Electronic
000017994 650_7 $$00$$2NLM Chemicals$$aEnzymes, Immobilized
000017994 650_7 $$00$$2NLM Chemicals$$aIons
000017994 650_7 $$00$$2NLM Chemicals$$aNeurotransmitter Agents
000017994 650_7 $$0EC 1.14.18.1$$2NLM Chemicals$$aMonophenol Monooxygenase
000017994 7001_ $$0P:(DE-Juel1)VDB26525$$aStockmann, R.$$b1$$uFZJ
000017994 7001_ $$0P:(DE-Juel1)VDB75326$$aJansen, M.$$b2$$uFZJ
000017994 7001_ $$0P:(DE-Juel1)VDB75222$$aYegin, U.$$b3$$uFZJ
000017994 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, A.$$b4$$uFZJ
000017994 7001_ $$0P:(DE-HGF)0$$aKubota, L. T.$$b5
000017994 7001_ $$0P:(DE-Juel1)VDB5576$$aMourzina, Y.$$b6$$uFZJ
000017994 773__ $$0PERI:(DE-600)1496379-6$$a10.1016/j.bios.2011.10.010$$gVol. 31$$n1$$p157–163$$q31$$tBiosensors and bioelectronics$$v31$$x0956-5663$$y2012
000017994 8567_ $$uhttp://dx.doi.org/10.1016/j.bios.2011.10.010
000017994 909CO $$ooai:juser.fz-juelich.de:17994$$pVDB
000017994 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000017994 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000017994 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000017994 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000017994 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000017994 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000017994 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000017994 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000017994 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000017994 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000017994 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000017994 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000017994 9141_ $$y2012
000017994 9131_ $$0G:(DE-Juel1)FUEK412$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000017994 9131_ $$0G:(DE-Juel1)FUEK505$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x1
000017994 9132_ $$0G:(DE-HGF)POF3-559H$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vAddenda$$x0
000017994 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x1
000017994 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$gICS$$kICS-8$$lBioelektronik$$x0
000017994 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1
000017994 9201_ $$0I:(DE-Juel1)PGI-8-20110106$$gPGI$$kPGI-8$$lBioelektronik$$x2
000017994 970__ $$aVDB:(DE-Juel1)132606
000017994 980__ $$aVDB
000017994 980__ $$aConvertedRecord
000017994 980__ $$ajournal
000017994 980__ $$aI:(DE-Juel1)ICS-8-20110106
000017994 980__ $$aI:(DE-82)080009_20140620
000017994 980__ $$aI:(DE-Juel1)PGI-8-20110106
000017994 980__ $$aUNRESTRICTED
000017994 981__ $$aI:(DE-Juel1)IBI-3-20200312
000017994 981__ $$aI:(DE-Juel1)PGI-8-20110106
000017994 981__ $$aI:(DE-Juel1)VDB881