001     17994
005     20240619090959.0
024 7 _ |2 pmid
|a pmid:22040747
024 7 _ |2 DOI
|a 10.1016/j.bios.2011.10.010
024 7 _ |2 WOS
|a WOS:000300468400025
037 _ _ |a PreJuSER-17994
041 _ _ |a eng
082 _ _ |a 570
100 1 _ |0 P:(DE-Juel1)VDB88034
|a Kisner, A.
|b 0
|u FZJ
245 _ _ |a Sensing small neurotransmitter enzyme interaction with nanoporous gated ion-sensitive field effect transistors
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2012
300 _ _ |a 157–163
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 24721
|a Biosensors & Bioelectronics
|v 31
|y 157-163
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Ion-sensitive field effect transistors with gates having a high density of nanopores were fabricated and employed to sense the neurotransmitter dopamine with high selectivity and detectability at micromolar range. The nanoporous structure of the gates was produced by applying a relatively simple anodizing process, which yielded a porous alumina layer with pores exhibiting a mean diameter ranging from 20 to 35 nm. Gate-source voltages of the transistors demonstrated a pH-dependence that was linear over a wide range and could be understood as changes in surface charges during protonation and deprotonation. The large surface area provided by the pores allowed the physical immobilization of tyrosinase, which is an enzyme that oxidizes dopamine, on the gates of the transistors, and thus, changes the acid-base behavior on their surfaces. Concentration-dependent dopamine interacting with immobilized tyrosinase showed a linear dependence into a physiological range of interest for dopamine concentration in the changes of gate-source voltages. In comparison with previous approaches, a response time relatively fast for detecting dopamine was obtained. Additionally, selectivity assays for other neurotransmitters that are abundantly found in the brain were examined. These results demonstrate that the nanoporous structure of ion-sensitive field effect transistors can easily be used to immobilize specific enzyme that can readily and selectively detect small neurotransmitter molecule based on its acid-base interaction with the receptor. Therefore, it could serve as a technology platform for molecular studies of neurotransmitter-enzyme binding and drugs screening.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
536 _ _ |0 G:(DE-Juel1)FUEK505
|a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|x 1
588 _ _ |a Dataset connected to Pubmed
650 _ 2 |2 MeSH
|a Biosensing Techniques: instrumentation
650 _ 2 |2 MeSH
|a Conductometry: instrumentation
650 _ 2 |2 MeSH
|a Electrodes
650 _ 2 |2 MeSH
|a Enzymes, Immobilized: chemistry
650 _ 2 |2 MeSH
|a Equipment Design
650 _ 2 |2 MeSH
|a Equipment Failure Analysis
650 _ 2 |2 MeSH
|a Ions
650 _ 2 |2 MeSH
|a Monophenol Monooxygenase: chemistry
650 _ 2 |2 MeSH
|a Nanostructures: chemistry
650 _ 2 |2 MeSH
|a Nanostructures: ultrastructure
650 _ 2 |2 MeSH
|a Nanotechnology: instrumentation
650 _ 2 |2 MeSH
|a Neurotransmitter Agents: chemistry
650 _ 2 |2 MeSH
|a Porosity
650 _ 2 |2 MeSH
|a Protein Binding
650 _ 2 |2 MeSH
|a Protein Interaction Mapping: instrumentation
650 _ 2 |2 MeSH
|a Reproducibility of Results
650 _ 2 |2 MeSH
|a Sensitivity and Specificity
650 _ 2 |2 MeSH
|a Transistors, Electronic
650 _ 7 |0 0
|2 NLM Chemicals
|a Enzymes, Immobilized
650 _ 7 |0 0
|2 NLM Chemicals
|a Ions
650 _ 7 |0 0
|2 NLM Chemicals
|a Neurotransmitter Agents
650 _ 7 |0 EC 1.14.18.1
|2 NLM Chemicals
|a Monophenol Monooxygenase
700 1 _ |0 P:(DE-Juel1)VDB26525
|a Stockmann, R.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB75326
|a Jansen, M.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB75222
|a Yegin, U.
|b 3
|u FZJ
700 1 _ |0 P:(DE-Juel1)128713
|a Offenhäusser, A.
|b 4
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Kubota, L. T.
|b 5
700 1 _ |0 P:(DE-Juel1)VDB5576
|a Mourzina, Y.
|b 6
|u FZJ
773 _ _ |0 PERI:(DE-600)1496379-6
|a 10.1016/j.bios.2011.10.010
|g Vol. 31
|n 1
|p 157–163
|q 31
|t Biosensors and bioelectronics
|v 31
|x 0956-5663
|y 2012
856 7 _ |u http://dx.doi.org/10.1016/j.bios.2011.10.010
909 C O |o oai:juser.fz-juelich.de:17994
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK412
|1 G:(DE-HGF)POF2-420
|2 G:(DE-HGF)POF2-400
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 1 _ |0 G:(DE-Juel1)FUEK505
|1 G:(DE-HGF)POF2-450
|2 G:(DE-HGF)POF2-400
|b Schlüsseltechnologien
|k P45
|l Biologische Informationsverarbeitung
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|x 1
913 2 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-559H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 1
914 1 _ |y 2012
915 _ _ |0 StatID:(DE-HGF)0040
|2 StatID
|a Peer review unknown
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|g ICS
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-8-20110106
|k PGI-8
|l Bioelektronik
|g PGI
|x 2
970 _ _ |a VDB:(DE-Juel1)132606
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)PGI-8-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-3-20200312
981 _ _ |a I:(DE-Juel1)PGI-8-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21