Home > Publications database > Sensing small neurotransmitter enzyme interaction with nanoporous gated ion-sensitive field effect transistors > print |
001 | 17994 | ||
005 | 20240619090959.0 | ||
024 | 7 | _ | |2 pmid |a pmid:22040747 |
024 | 7 | _ | |2 DOI |a 10.1016/j.bios.2011.10.010 |
024 | 7 | _ | |2 WOS |a WOS:000300468400025 |
037 | _ | _ | |a PreJuSER-17994 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 570 |
100 | 1 | _ | |0 P:(DE-Juel1)VDB88034 |a Kisner, A. |b 0 |u FZJ |
245 | _ | _ | |a Sensing small neurotransmitter enzyme interaction with nanoporous gated ion-sensitive field effect transistors |
260 | _ | _ | |a Amsterdam [u.a.] |b Elsevier Science |c 2012 |
300 | _ | _ | |a 157–163 |
336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
440 | _ | 0 | |0 24721 |a Biosensors & Bioelectronics |v 31 |y 157-163 |
500 | _ | _ | |3 POF3_Assignment on 2016-02-29 |
500 | _ | _ | |a Record converted from VDB: 12.11.2012 |
520 | _ | _ | |a Ion-sensitive field effect transistors with gates having a high density of nanopores were fabricated and employed to sense the neurotransmitter dopamine with high selectivity and detectability at micromolar range. The nanoporous structure of the gates was produced by applying a relatively simple anodizing process, which yielded a porous alumina layer with pores exhibiting a mean diameter ranging from 20 to 35 nm. Gate-source voltages of the transistors demonstrated a pH-dependence that was linear over a wide range and could be understood as changes in surface charges during protonation and deprotonation. The large surface area provided by the pores allowed the physical immobilization of tyrosinase, which is an enzyme that oxidizes dopamine, on the gates of the transistors, and thus, changes the acid-base behavior on their surfaces. Concentration-dependent dopamine interacting with immobilized tyrosinase showed a linear dependence into a physiological range of interest for dopamine concentration in the changes of gate-source voltages. In comparison with previous approaches, a response time relatively fast for detecting dopamine was obtained. Additionally, selectivity assays for other neurotransmitters that are abundantly found in the brain were examined. These results demonstrate that the nanoporous structure of ion-sensitive field effect transistors can easily be used to immobilize specific enzyme that can readily and selectively detect small neurotransmitter molecule based on its acid-base interaction with the receptor. Therefore, it could serve as a technology platform for molecular studies of neurotransmitter-enzyme binding and drugs screening. |
536 | _ | _ | |0 G:(DE-Juel1)FUEK412 |2 G:(DE-HGF) |a Grundlagen für zukünftige Informationstechnologien |c P42 |x 0 |
536 | _ | _ | |0 G:(DE-Juel1)FUEK505 |a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung |c P45 |x 1 |
588 | _ | _ | |a Dataset connected to Pubmed |
650 | _ | 2 | |2 MeSH |a Biosensing Techniques: instrumentation |
650 | _ | 2 | |2 MeSH |a Conductometry: instrumentation |
650 | _ | 2 | |2 MeSH |a Electrodes |
650 | _ | 2 | |2 MeSH |a Enzymes, Immobilized: chemistry |
650 | _ | 2 | |2 MeSH |a Equipment Design |
650 | _ | 2 | |2 MeSH |a Equipment Failure Analysis |
650 | _ | 2 | |2 MeSH |a Ions |
650 | _ | 2 | |2 MeSH |a Monophenol Monooxygenase: chemistry |
650 | _ | 2 | |2 MeSH |a Nanostructures: chemistry |
650 | _ | 2 | |2 MeSH |a Nanostructures: ultrastructure |
650 | _ | 2 | |2 MeSH |a Nanotechnology: instrumentation |
650 | _ | 2 | |2 MeSH |a Neurotransmitter Agents: chemistry |
650 | _ | 2 | |2 MeSH |a Porosity |
650 | _ | 2 | |2 MeSH |a Protein Binding |
650 | _ | 2 | |2 MeSH |a Protein Interaction Mapping: instrumentation |
650 | _ | 2 | |2 MeSH |a Reproducibility of Results |
650 | _ | 2 | |2 MeSH |a Sensitivity and Specificity |
650 | _ | 2 | |2 MeSH |a Transistors, Electronic |
650 | _ | 7 | |0 0 |2 NLM Chemicals |a Enzymes, Immobilized |
650 | _ | 7 | |0 0 |2 NLM Chemicals |a Ions |
650 | _ | 7 | |0 0 |2 NLM Chemicals |a Neurotransmitter Agents |
650 | _ | 7 | |0 EC 1.14.18.1 |2 NLM Chemicals |a Monophenol Monooxygenase |
700 | 1 | _ | |0 P:(DE-Juel1)VDB26525 |a Stockmann, R. |b 1 |u FZJ |
700 | 1 | _ | |0 P:(DE-Juel1)VDB75326 |a Jansen, M. |b 2 |u FZJ |
700 | 1 | _ | |0 P:(DE-Juel1)VDB75222 |a Yegin, U. |b 3 |u FZJ |
700 | 1 | _ | |0 P:(DE-Juel1)128713 |a Offenhäusser, A. |b 4 |u FZJ |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Kubota, L. T. |b 5 |
700 | 1 | _ | |0 P:(DE-Juel1)VDB5576 |a Mourzina, Y. |b 6 |u FZJ |
773 | _ | _ | |0 PERI:(DE-600)1496379-6 |a 10.1016/j.bios.2011.10.010 |g Vol. 31 |n 1 |p 157–163 |q 31 |t Biosensors and bioelectronics |v 31 |x 0956-5663 |y 2012 |
856 | 7 | _ | |u http://dx.doi.org/10.1016/j.bios.2011.10.010 |
909 | C | O | |o oai:juser.fz-juelich.de:17994 |p VDB |
913 | 1 | _ | |0 G:(DE-Juel1)FUEK412 |1 G:(DE-HGF)POF2-420 |2 G:(DE-HGF)POF2-400 |b Schlüsseltechnologien |k P42 |l Grundlagen für zukünftige Informationstechnologien (FIT) |v Grundlagen für zukünftige Informationstechnologien |x 0 |
913 | 1 | _ | |0 G:(DE-Juel1)FUEK505 |1 G:(DE-HGF)POF2-450 |2 G:(DE-HGF)POF2-400 |b Schlüsseltechnologien |k P45 |l Biologische Informationsverarbeitung |v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung |x 1 |
913 | 2 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-559H |2 G:(DE-HGF)POF3-500 |v Addenda |x 0 |
913 | 2 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-529H |2 G:(DE-HGF)POF3-500 |v Addenda |x 1 |
914 | 1 | _ | |y 2012 |
915 | _ | _ | |0 StatID:(DE-HGF)0040 |2 StatID |a Peer review unknown |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |
915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |
915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Thomson Reuters Master Journal List |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |
915 | _ | _ | |0 StatID:(DE-HGF)0310 |2 StatID |a DBCoverage |b NCBI Molecular Biology Database |
915 | _ | _ | |0 StatID:(DE-HGF)0420 |2 StatID |a Nationallizenz |
915 | _ | _ | |0 StatID:(DE-HGF)1050 |2 StatID |a DBCoverage |b BIOSIS Previews |
915 | _ | _ | |0 StatID:(DE-HGF)1060 |2 StatID |a DBCoverage |b Current Contents - Agriculture, Biology and Environmental Sciences |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-8-20110106 |k ICS-8 |l Bioelektronik |g ICS |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology |g JARA |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-8-20110106 |k PGI-8 |l Bioelektronik |g PGI |x 2 |
970 | _ | _ | |a VDB:(DE-Juel1)132606 |
980 | _ | _ | |a VDB |
980 | _ | _ | |a ConvertedRecord |
980 | _ | _ | |a journal |
980 | _ | _ | |a I:(DE-Juel1)ICS-8-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a I:(DE-Juel1)PGI-8-20110106 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IBI-3-20200312 |
981 | _ | _ | |a I:(DE-Juel1)PGI-8-20110106 |
981 | _ | _ | |a I:(DE-Juel1)VDB881 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|