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We determine the quark mass ratio mc=ms on the lattice, using Wilson-type fermions. Configurations

with Nf ¼ 2 dynamical clover-improved fermions by the QCDSF Collaboration are used, which were

made available through the ILDG. In the valence sector we use a sophisticated, mass-independently

OðaÞ-improved Wilson-type action with small cutoff effects even in the charm mass region. After an

extrapolation to the physical pion mass, to zero lattice spacing and to infinite box volume, we find

mc=ms ¼ 11:27ð30Þð26Þ.
DOI: 10.1103/PhysRevLett.108.122003 PACS numbers: 12.38.Gc, 14.65.�q

Introduction.—Quark masses are among the fundamen-
tal parameters of the standard model of particle physics. As
they cannot be measured directly, their determination in-
volves a substantial amount of theory—for decades uncer-
tainties have been hard to estimate and error bars were
large [1]. In recent years lattice QCD has made enormous
progress at pinning quark masses down with a few-percent
accuracy; see, e.g., [2] for a summary. For ratios of quark
masses the situation is even better, since in this case no
lattice-to-continuum matching factor (whose accurate de-
termination represents one of the most demanding steps in
such a computation) is needed.

The charm-to-strange quark mass ratio mc=ms (which is
scheme and scale independent) is of direct phenomeno-
logical relevance [3]. It has been determined by the
HPQCD [4] and ETM Collaborations [5]. Both
Collaborations use lattice formulations with small cutoff
effects even in the charm quark mass region, albeit with
isospin (or taste) symmetry breaking, i.e., the pions are
nondegenerate, in spite of a singlemq being used, an effect

which disappears / a2 with a the lattice spacing. By con-
trast unimproved orOðaÞ-improvedWilson fermions avoid
such effects, at the price of having comparatively larger
cutoff effects (see Appendix A of [2] for a discussion).

In [6] we constructed a Brillouin-improved Wilson ac-
tion which was claimed to show small cutoff effects with-
out isospin breaking, thus allowing for a one-to-one
identification between lattice and continuum flavor. The
latter feature is important, as isospin breaking effects re-
quire a more involved analysis, rendering it less transpar-
ent. Here we test the smallness of the cutoff effects by
calculating the ratio mc=ms in this formulation (with tree-
level clover improvement and one step of link smearing) in
the valence sector (for s and c). The lattices with 2 degen-
erate dynamical flavors (for u and d) are provided by the
QCDSF Collaboration. The remainder of this article de-
scribes how we calculate the ratio on each ensemble, and
how we remove the lattice artifacts to find the physical

value of mc=ms. We end with an illustration of how this
ratio may be used, together with a precisemc input, to yield
a robust estimate of ms.
Strategy to compute mc=ms on each ensemble.—Our

goal is to compute the quark mass ratio mc=ms with
controlled systematics. We follow a two-step procedure.
In the first step we tune, for each ensemble, the bare mass
parameter � of our action (see [6]) to the physical strange
or charm quark mass and evaluate mc=ms on that en-
semble. In the second step we eliminate the lattice artifacts
by means of a global fit.
Our strategy to computemc=ms on a given ensemble can

be summarized as follows. (1) Tune �s and �c at the same
time such that M2

�s
=ðM2

D�
s
�M2

Ds
Þ and ð2M2

Ds
�M2

�s
Þ=

ðM2
D�

s
�M2

Ds
Þ take their physical values of 0.801 38 and

12.402, respectively [1]. These numbers build on M�s
¼

0:6858ð8Þ GeV for the quarkline connected state, which

follows via ð2M2
K �M2

�Þ1=2 with SU(2)-symmetric values
of MK, M� from [2], or from a direct computation [4].
(2) Determine for either tuned � the PCAC quark mass, and
form the ratio r ¼ mPCAC

c =mPCAC
s . In this step mPCAC

s is
determined from the connected �ss correlator, while mPCAC

c

follows from the �cs correlator together with the strange
mass determined before (see below). As a theoretical ca-
veat let us remark that in general with Wilson-type fermi-
ons the sea quarks affect the renormalization properties of
the valence flavors. For a bare PCAC quark mass [7]

mAWI
j ¼ ZA

ZP

mPCAC
j ½1þ ðbA � bPÞamW

j

þ ð �bA � �bPÞaTrðMÞ þOða2Þ�; (1)

where mW
j is the Wilson mass of flavor j, and M the quark

mass matrix. The ZJ with J 2 fA; Pg are lattice-to-
continuum matching factors, while bJ ¼ 1þOð�sÞ, �bJ ¼
Oð�2

sÞ denote improvement coefficients. As we follow a
tree-level improvement strategy (with cSW ¼ 1, see [6])
the ratio
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mAWI
j

mAWI
k

¼ mPCAC
j

mPCAC
k

½1þOð�saÞ þOða2Þ� (2)

is found to carry two types of cutoff effects. As we shall
see, the lack of knowledge of which type would numeri-
cally dominate creates a major source of systematic error
on the final result.

Once r ¼ mPCAC
c =mPCAC

s is in hand for each ensemble,
the final answer follows through three more steps (which,
in practice, will be combined into a single global fit).
(3) Correct, for each ensemble, the value of r for the effect
of the finite spatial volume L3. (4) Extrapolate, for each �,

the result of step 3 to M
phys
� ¼ 134:8 MeV [2] in the sea.

(5) Extrapolate the result of step 4 to the continuum, using
an Oð�saÞ or Oða2Þ Ansatz. To test how reliably the
systematic uncertainties are assessed, we will repeat steps
3–5 for the control quantity M2

�=ðM2
D�

s
�M2

Ds
Þ, whose

physical value is known.
Analysis details and final result for mc=ms.—We now

give details of how we determine the ratio mc=ms on each
ensemble, and how we eliminate the lattice artifacts by
means of a global fit.

We use the Nf ¼ 2 configurations by QCDSF [8–11]

made available through the ILDG [12]. Since we measure
dimensionless ratios, one might naively think that no scale
determination is needed. However, in the extrapolation to
the physical point a scale is required. We will use [11]

a½fm�¼0:076;0:072;0:060 at�¼5:25;5:29;5:40 (3)

for this purpose, but apart from the extrapolation this scale
is not used. Given the resources available to us, we select
the 13 ensembles marked with a bullet or circle in Table I
for analysis. They cover a wide range of pion masses and
box volumes (both in fm and in M�L units), so that a
controlled extrapolation to the physical pion mass and
infinite volume should be possible.
On a given ensemble, for a few mass parameters 1=�s,

1=�c, we determine the correlators of four mesons (the
pseudoscalar and vector with �cs and �ss flavor content).
From these we form the observables O1 ¼ M2

P �ss=ðM2
V �cs �

M2
P �csÞ, O2 ¼ ð2M2

P �cs �M2
P�ssÞ=ðM2

V �cs �M2
P �csÞ, and O3 ¼

ð2mcs �mssÞ=mss, where mij denotes the average of the

PCAC masses with flavor i and j, based on the improved
symmetric derivative �@�ðtÞ ¼ ½�ðt� 2Þ � 8�ðt� 1Þ þ
8�ðtþ 1Þ ��ðtþ 2Þ�=12. For each observable a spline
interpolation in 1=�s and 1=�c is constructed. The target
value O1 � 0:801 38 defines a line in the (1=�s, 1=�c)
plane, and the same holds true for O2 � 12:402. The point
where these two lines intersect defines the tuned set (1=��

s ,
1=��

c), and the value ofO3 at this point is the desired ratio r
on that ensemble. The spacing in 1=�s and 1=�c is chosen
sufficiently narrow so that the uncertainty due to the inter-
polation is completely negligible. Since all of this is done
inside a jackknife, the jitter of the crossing point is fully
propagated into the statistical error of the tuned r, as listed
in Table II. For an illustration, see [13].
Finally, we wish to correct for the systematic effect that

the finite lattice spacing (a > 0), the larger-than-physical

TABLE I. Details of the QCDSF Nf ¼ 2 lattices made available through the ILDG, with aM� from [10] (in one case inferred from
[11]). The values of M�, L in the same block are based on the scales (3). For comparison we add information on M�, a, L from [9].

� �sea Box size aM� [8,10] M�½MeV� L½fm� M�L M�½MeV� [9] a½fm� [9] L½fm� [9] Use

5.25 0.134 60 163 � 32 0.4932(10) 1281 1.22 7.9 987(2) 0.099 1.6 �
0.135 75 243 � 48 0.2556(06) 664 1.82 6.1 597(1) 0.084 2.0 �
0.136 00 243 � 48 0.1849(—) 480 1.82 4.4 �

5.29 0.135 00 163 � 32 0.4206(09) 1153 1.15 6.7 929(2) 0.097 1.4

0.135 50 163 � 32 0.3325(13) 911 1.15 5.3

0.135 50 243 � 48 0.3270(06) 896 1.73 7.8 769(2) 0.089 2.0 �
0.135 90 163 � 32 0.2518(15) 690 1.15 4.0

0.135 90 243 � 48 0.2395(05) 656 1.73 5.7 591(2) 0.084 1.9 �
0.136 20 243 � 48 0.1552(06) 425 1.73 3.7 395(3) 0.080 1.9 �
0.136 32 243 � 48 0.1106(12) 303 1.73 2.7 �
0.136 32 323 � 64 0.1075(09) 295 2.30 3.4 337(3) 0.077 2.5 �
0.136 32 403 � 64 0.1034(08) 283 2.88 4.1

0.136 40 403 � 64 0.0660(10) 181 2.88 2.6

5.40 0.135 00 243 � 48 0.4030(04) 1325 1.44 9.7 1037(1) 0.077 1.8

0.135 60 243 � 48 0.3123(07) 1027 1.44 7.5 842(2) 0.073 1.8 �
0.136 10 243 � 48 0.2208(07) 726 1.44 5.3 626(2) 0.070 1.7 �
0.136 25 243 � 48 0.1902(06) 626 1.44 4.6

0.136 40 243 � 48 0.1538(10) 506 1.44 3.7 432(3) 0.068 1.6 �
0.136 40 323 � 64 0.1504(04) 495 1.92 4.8 �
0.136 60 323 � 64 0.0867(11) 285 1.92 2.8 �
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pion mass (M� >Mphys
� ), and the finite spatial volume

(L3 <1) have on the measured mc=ms, by means of a
global fit to our data set. For each artifact, we invoke an
extrapolation formula which is consistent with both theo-
retical expectations and the data. We shall consider several
(reasonable) options for each effect, and treat the spread of
these as the systematic error of the final result. The domi-
nant cutoff effects may be proportional to�sa (what theory
suggests) or proportional to a2 (what empirical evidence
seems to prefer [6]). In the range of interest the dependence
on msea

u;d may be a quadratic or cubic function ofM�. Finite

volume effects may be proportional toK1ðM�LÞ=ðM�LÞ �
expð�M�LÞ=ðM�LÞ3=2 times M2

�=ð4�F�Þ2 [as in the case
of M�ðLÞ=M� � 1], or just proportional to 1=L3 (as fre-
quently used in the old lattice literature). By combining
these forms we arrive at the 8 Ansätze

rði;j;kÞða;M�; LÞ ¼ b½1þ cðiÞfðiÞðaÞ þ dðjÞgðjÞðM�Þ
þ eðkÞhðkÞðM�;LÞ� (4)

with i; j; k 2 f1; 2g, where fð1Þ ¼ �sa, f
ð2Þ ¼ a2, gð1Þ ¼

M2
�, gð2Þ ¼ M3

�, hð1Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M�=L
3

p

expð�M�LÞ, hð2Þ ¼
1=L3. Note that this is the first time that we make use of
the auxiliary scales (3); here we need to invoke them, since

the coefficients cðiÞ, dðjÞ, eðkÞ are dimensionful quantities.
The last point to be discussed is which ensembles are

included in the fit. It turns out that the ensemble
5:290:13 632

3
24 � 48 cannot be described by any of the

Ansätze; once we drop it all versions of (4) yield

consistently �2=d:o:f ’ 1. For rði;j;kÞð0;Mphys
� ;1Þ one finds

11.01(36), 11.02(32), 11.24(33), 11.05(35), 11.39(26),
11.41(24), 11.60(25), 11.43(26), respectively, where the
errors are purely statistical. To avoid underestimating the
effect of the extrapolation, we need to include the spread
among these 8 results as a source of systematic uncertainty.
This yields mc=ms ¼ 11:27ð30Þð22Þ, where the standard

deviation of the distribution is used as the systematic error.
Since some of the ensembles feature large pion masses and
small volumes we use the cutsM� < 670; 900 MeV and/or
L > 1:4, 1.7 fm to check for any additional systematic
uncertainties. This yields six independent options for our
data set. The center of this enlarged distribution (from the
8� 6 ¼ 48 analyses) is lower than the central value men-
tioned above, amounting to an additional systematic un-
certainty of 0.14 which we add in quadrature to the
previous one. This yields our final result

mc=ms ¼ 11:27ð30Þð26Þ (5)

in the continuum, at the physical mass point, and in infinite
volume.
To illustrate the procedure we present one of the 8 global

fits—the ði; j; kÞ ¼ ð2; 1; 2Þ variety with Oða2Þ, OðM2
�Þ,

and Oð1=L3Þ terms—in Fig. 1. The data have been shifted
by the effect of those terms which are not on display. For
instance, in the continuum extrapolation panel

plotdata ðaÞ ¼ dataða;M�; LÞ � fitða;M�; LÞ
þ fitða;Mphys

� ;1Þ (6)

is shown as a function of a2, while in the pion mass
extrapolation panel the last term reads ‘‘fitð0;M�;1Þ,’’
and in the infinite volume extrapolation panel it is

‘‘fitð0;Mphys
� ; LÞ.’’ Note that this affects only the presenta-

tion, not the final result (5).
To test whether our assessment of systematic uncertain-

ties is true and fair, we apply the same analysis procedure
to the observableO4 ¼ M2

�=ðM2
D�

s
�M2

Ds
Þ. This gives 1.79

(08)(12), which agrees perfectly with the physical value
1.7707 [1]. This supports the view that our analysis proce-
dure yields reliable estimates of the uncertainties in (5).
From quark mass ratios to individual masses.—To give

the reader an idea of what can be done with our result (5),
we combine it with an aggregate value of mc to obtain

TABLE II. Tuned kappas of the Brillouin operator and finalO3;4 for each ensemble. Usually 500 configurations were downloaded; in
most cases inversions were performed on more than one time slice.

� �sea Box size Configurations 1=�s 1=�c O3 O4

5.25 0.134 60 163 � 32 2� 500 7.8310(18) 8.793(19) 13.48(22) 2.220(54)

0.135 75 243 � 48 2� 500 7.8504(12) 8.612(15) 12.87(11) 2.081(38)

0.136 00 243 � 48 2� 500 7.8520(11) 8.548(11) 12.89(12) 2.114(36)

5.29 0.135 50 243 � 48 2� 400 7.8601(13) 8.641(13) 12.69(16) 2.123(39)

0.135 90 243 � 48 2� 500 7.8632(15) 8.574(16) 12.68(16) 2.089(42)

0.136 20 243 � 48 2� 500 7.8635(09) 8.502(09) 12.85(14) 2.056(34)

0.136 32 243 � 48 386 7.8615(17) 8.477(17) 13.41(25) 2.031(57)

0.136 32 323 � 64 2� 500 7.8648(08) 8.478(09) 12.57(08) 1.977(27)

5.40 0.135 60 243 � 48 2� 500 7.8823(10) 8.503(10) 13.01(15) 2.163(46)

0.136 10 243 � 48 2� 500 7.8859(10) 8.463(09) 12.55(17) 2.073(37)

0.136 40 243 � 48 2� 500 7.8842(11) 8.403(12) 12.66(19) 2.041(51)

0.136 40 323 � 64 2� 500 7.8864(08) 8.417(08) 12.25(11) 1.962(28)

0.136 60 323 � 64 2� 500 7.8862(08) 8.397(08) 12.42(11) 1.955(29)
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an estimate of ms. For mc several precise results are
available, which use either sum rule techniques or pertur-
bative estimates of moments of current correlators. By
contrast, computing ms directly on the lattice involves
renormalization factors like the factor ZA=ZP in (1) whose

nonperturbative determination is technically quite
demanding. Therefore, computing ms via (5) from mc

offers the possibility to check the current best calculations
of ms (see [2] for an overview) without recurrence to
Z factors [4].
We now collect the current best estimates for the charm

mass, which have a 1%–2% error. The first result
mcð3 GeVÞ ¼ 0:986ð6Þ GeV [14] is based on the current
correlator method on the lattice. The remaining ones are
based on sum rules and experimental electron-positron
annihilation cross section data, namely mcð3 GeVÞ ¼
0:986ð13Þ GeV [15], mcðmcÞ ¼ 1:277ð26Þ GeV [16], and
mcð3 GeVÞ ¼ 0:987ð09Þ GeV [17], respectively (for an
examination of the uncertainties involved, see, in particu-

lar, [16]). Through standard 4-loop MS running, these
results can be evolved to the common scale � ¼ 2 GeV,
where they read mcð2 GeVÞ ¼ 1:092ð7Þ, 1.092(14), 1.096
(22), 1.093(10) GeV, respectively. A straight mean of
the central values and of the systematic uncertainties

yields the conservative average mcðMS; 2 GeVÞ ¼
1:093ð13Þ GeV [14–17].
Upon combining this input value with our result (5) we

arrive at the estimate

msðMS; 2 GeVÞ ¼ 97:0ð2:6Þð2:5Þ MeV; (7)

which does not build on a renormalization factor. At this
point we may continue by using the ratios ms=mud ¼
27:53ð20Þð08Þ and ðmd�muÞ=ðmdþmuÞ¼0:381ð05Þð27Þ
by the Budapest-Marseille-Wuppertal Collaboration
[18,19], where mud � ðmu þmdÞ=2, to end up with

mud ¼ 3:52ð10Þð09Þ MeV;

mu ¼ 2:18ð06Þð11Þ MeV;

md ¼ 4:87ð14Þð16Þ MeV:

(8)

Still, the precision reached is competitive in view of the
global averages given in [2].
This concludes our illustration how the light quark

masses can be obtained without recurrence to renormal-
ization factors, at the price of including perturbative
information.
Summary.—The goal of this note has been to calculate

the ratiomc=ms, using our relativistic fermion action [6] in
the valence sector, with a controlled extrapolation to zero
lattice spacing, to physical sea pion mass and infinite box
volume. The only systematic effect which is not controlled
is the quenching of the strange and/or charm quark, but this
is the case in other state-of-the-art calculations [4,5], too,
and there are good reasons to believe that the effect is
negligible on the scale of the error in (5) (cf. the discussion
in [2]).
Our result (5) is consistent with the values mc=ms ¼

11:85ð16Þ by the HPQCD Collaboration [4] and 12.0(3) by
the ETM Collaboration [5] (note that the spread among the
entries in their Table 7 has not been propagated into their
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FIG. 1 (color online). One of the 8 global fits, namely, rð2;1;2Þ
with Oða2Þ, OðM2

�Þ, Oð1=L3Þ correction terms, for the joint
extrapolation to zero lattice spacing, physical pion mass, and
infinite volume.
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final error), with a slight tension at the level of 1:36	 and
1:47	, respectively. Though nominally less precise, our
result serves as an important benchmark, since our formu-
lation bears the unique feature that it is free of any lattice-
induced isospin (or taste) breaking. The relatively mild
slope in �sa or a2 as determined by our global fits and
the small overall spread among the entries in the O3 ¼
mc=ms column of Table II support the view that the for-
mulation [6] entails small cutoff effects up to the region of
the physical charm quark mass.

For illustration, we combine our ratio (5) with an aver-
age ofmc from [14–17] to obtain the value (7) ofms. While
there are results on ms with a higher claimed precision
(see, e.g., [2] for a review), our computation is the only one
which avoids both Z factors and unphysical isospin break-
ing effects, and this renders the result particularly robust
and reliable.

We thank the QCDSF Collaboration for allowing us to
use their Nf ¼ 2 configurations [8–11] and the ILDG for

making them available [12]. We thank Thomas Lippert for
support, and Zoltán Fodor and Stefan Sint for discussion.
We acknowledge partial support in SFB/TR-55. CPU re-
sources on JUROPAwere provided by Forschungszentrum
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[8] M. Göckeler et al. (QCDSF Collaboration), Phys. Rev. D

73, 054508 (2006).
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