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By using lattice QCD computations we determine the sigma terms and strangeness content of all octet

baryons by means of an application of the Hellmann-Feynman theorem. In addition to polynomial and

rational expressions for the quark-mass dependence of octet members, we use SUð3Þ covariant baryon

chiral perturbation theory to perform the extrapolation to the physical up and down quark masses. Our

Nf ¼ 2þ 1 lattice ensembles include pion masses down to about 190 MeV in large volumes (M�L * 4),

and three values of the lattice spacing. Our main results are the nucleon sigma term ��N ¼ 39ð4Þðþ18
�7 Þ and

the strangeness content yN ¼ 0:20ð7Þðþ13
�17Þ. Under the assumption of validity of covariant baryon �PT in

our range of masses one finds yN ¼ 0:276ð77Þðþ90
�62Þ.
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I. INTRODUCTION

The nucleon sigma term and the nucleon strangeness

content are phenomenologically important quantities that

are not directly accessible to experiment. They are related

to �� N and K � N scattering lengths, to the quark-mass

ratio ms=mud (where mud ¼ ðmu þmdÞ=2), to the hadron

spectrum and even to counting rates in Higgs boson

searches. They also play a key role in the direct detection

of dark matter (DM): sigma terms relate the effective

DM-nucleon coupling to the fundamental Lagrangian

parameters that couple the DM particle to the quarks. A

precise first principle determination of these quantities is

thus very interesting. The sigma terms are defined as

��N ¼ hNðpÞjmudð �uuþ �ddÞð0ÞjNðpÞi; (1a)

��ssN ¼ 2hNðpÞjms �ssð0ÞjNðpÞi: (1b)

The usual way of computing ��N is by using �� N
scattering data. ��N cannot be directly obtained in this

way, but available data can be extrapolated to the Cheng-

Dashen point, although the machinery involved in this

determination is complicated. �PT can then be used to

reliably extrapolate from the Cheng-Dashen point to the

chiral limit [1,2].

Such an analysis was carried out in the 1980s [1,2],

resulting in a value of ��N ¼ 45� 8 MeV. A later study

claims to obtain a higher value [3], ��N ¼ 64� 7 MeV
which is almost 2 standard deviations away. Also it has

been pointed that the uncertainties associated with these

determinations are already affecting the interpretation of

(direct) dark matter search experiments [4], although

lattice simulations are already helping to change this

situation [5].

Sigma terms of other octet members are also of phe-

nomenological interest. Recently they have been used in

the context of the hadron resonance gas model for estimat-

ing quark-mass effects in QCD thermodynamics calcula-

tions [6]. Moreover, as we will see, an analysis of all octet

members can be further used to constrain the strangeness

content of the nucleon.

In this paper we compute the sigma terms of the octet

baryons ��X, � �ssX for X ¼ N, �, �, �. The Feynman-

Hellman theorem applied to QFT relates the sigma terms to

the dependence of baryon masses with respect to quark

masses through:

��X ¼ mud

@MX

@mud

; (2a)

� �ssX ¼ 2ms

@MX

@ms

: (2b)

This opens the possibility of computing the octet sigma

terms via the variation of octet masses with respect to

quark masses in a lattice simulation, which is the approach

that we use here. A preliminary account of this work has

been given in [7]. There are other interesting quantities

directly related to the previously mentioned sigma terms

that are also useful for phenomenology

yX ¼
2hXðpÞj�ssð0ÞjXðpÞi

hXðpÞjð �uuþ �ddÞð0ÞjXðpÞi
; (3a)

fudX ¼
mudhXðpÞjð �uuþ �ddÞð0ÞjXðpÞi

MX

; (3b)

fsX ¼
mshXðpÞj�ssð0ÞjXðpÞi

MX

: (3c)*CPT is research unit UMR 6207 of the CNRS and of Aix-
Marseille University and University Sud Toulon-Var.
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The first is called the strangeness content, and the other two

are sometimes referred to as ‘‘dimensionless sigma terms.’’

The latter two are directly related to the conversion of

the fundamental DM-quark coupling to the effective

DM-nucleon coupling.

II. SIMULATION DETAILS AND ENSEMBLES

The gauge and fermionic actions, as well as the algo-

rithms used are described in [8,9]. Here it suffices to

mention that we simulate QCD with two degenerate light

quarks and a heavier strange quark, and that we use tree

level improved Wilson fermions.

To set the lattice spacing corresponding to each value of

the coupling � and fix the quark masses to their physical

values, we useM�,MK, andM�. We extrapolate the values

of aM�, aMK, and aM� to the point where the ratios

aM�=aM� and aMK=aM� agree with the experimental

values.1

As shown in Table I at � ¼ 3:3 and � ¼ 3:7 the strange
quark mass is held fixed, whereas for � ¼ 3:57 we simu-

late at three different values of ms to have some lever arm

to perform the small extrapolation to m
phys
s (see also

Fig. 1). Our data sets cover a wide range of pion masses

from M� � 190 MeV up to M� � 680 MeV, although in

this analysis we only use ensembles withM� < 550 MeV.
On every ensemble we measure the octet masses MN ,

M�, M�, and M� with valence quark masses equal to sea

quark masses (only the unitary theory is considered). It is

worth mentioning that these ensembles have previously

been used to accurately predict the light hadron spectrum

[9], including the masses of the octet baryons.

III. CHIRAL EXTRAPOLATION

As already stated, we simulate QCD for values of the

light quark masses larger than the physical values, whereas

the strange quark is close to its physical value with some

lever arm to perform a small extrapolation. Thus our data

requires an extrapolation in the light quark masses and an

interpolation in ms.

For this, we need to describe the quark-mass dependence

of octet baryons. We will always use the tree level SUð3Þ
chiral relation to express the quark-mass dependence

through the meson mass dependence via

mud / M2
�; ms / M2

�ss ¼ 2M2
K �M2

�: (4)

TABLE I. Parameters of our simulations. The errors quoted here are purely statistical. These results correspond to one of the 18 two-

point function time fit intervals that we use in our estimate of systematic uncertainties. In this particular analysis, the scales at � ¼ 3:3,
3.57, 3.7 are a�1 ¼ 1616ð20Þ MeV, 2425(27) MeV, 3142(37) MeV, respectively.

� amud ams L3 � T Trajectories aM� aMK

3.3 �0:0960 �0:057 163 � 32 10 000 0.4115(6) 0.4749(6)

�0:1100 �0:057 163 � 32 1450 0.322(1) 0.422(1)

�0:1200 �0:057 163 � 64 4500 0.2448(9) 0.3826(6)

�0:1233 �0:057 243 � 64 2000 0.2105(8) 0.3668(6)

�0:1233 �0:057 323 � 64 1300 0.211(1) 0.3663(8)

�0:1265 �0:057 243 � 64 2100 0.169(1) 0.3500(7)

3.57 �0:0318 0, �0:010 243 � 64 1650, 1650 0.2214(7), 0.2178(5) 0.2883(7), 0.2657(5)

�0:0380 0, �0:010 243 � 64 1350, 1550 0.1837(7), 0.1778(7) 0.2720(6), 0.2469(6)

�0:0440 0, �0:007 323 � 64 1000, 1000 0.1348(7), 0.1320(7) 0.2531(6), 0.2362(7)

�0:0483 0, �0:007 483 � 64 500, 1000 0.0865(8), 0.0811(5) 0.2401(8), 0.2210(5)

3.7 �0:007 0.0 323 � 96 1100 0.2130(4) 0.2275(4)

�0:013 0.0 323 � 96 1450 0.1830(4) 0.2123(3)

�0:020 0.0 323 � 96 2050 0.1399(3) 0.1920(3)

�0:022 0.0 323 � 96 1350 0.1273(5) 0.1882(4)

�0:025 0.0 403 � 96 1450 0.1021(4) 0.1788(4)
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FIG. 1 (color online). Overview of our simulation points in

terms of M� and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M2
K �M2

�

q

. The former gives a measure of

the isospin averaged up and down quark mass while the latter

determines the strange quark mass. The symbols refer to the

three lattice spacings, and the physical point is marked with a

cross. Error bars are statistical only.

1Experimental inputs are corrected for isospin breaking and
electromagnetic effects according to [9].
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To study this mass dependence and the associated model

uncertainty, we consider two very different approaches

[9,10]. First, we consider a regular expansion in quark

masses around a non singular point where none of the

quark masses vanish. For this purpose we define the ex-

pansion variables

�� ¼
M2

� � ðMcen
� Þ2

M2
�

; ��ss ¼
M2

�ss � ðM
phys
�ss Þ2

M2
�

; (5)

where ðMcen
� Þ2 ¼ 1

2 ½ðM
phys
� Þ2 þ ðMcut

� Þ2�, and Mcut
� denotes

the mass of the heaviest pion included in the fit.

Note that changing the expansion point in polynomial-

like formulas is simply a reshuffling of the coefficients.

When interested in checking the SUð3Þ symmetric line

mud ¼ ms it is far more convenient to define our expansion

variables as

�� ¼

�

M�

M�

�

2
; ��ss ¼

�

M�ss

M�

�

2
; (6)

where the SUð3Þ symmetric line is characterized by �� ¼
��ss. Because the extrapolation in ms is small, a linear term

in ��ss suffices.

Second, we consider a singular expansion around the

SUð3Þ chiral point mud ¼ ms ¼ 0, which allows for a

much more constrained expansion. Low-energy processes

in QCD have been extensively studied in the framework of

chiral perturbation theory. The seminal work [11] and its

success in explaining meson observables have pushed the

study of baryons within the same framework. However,

baryon �PT is far more involved. The main difficulty is

that baryon masses MB are not small in comparison with

the scale of chiral symmetry breaking (�� � 1 GeV), and
Weinberg’s power counting theorem [12] fails: higher-

order loop corrections contribute with powers of MB=��

and are no longer small. This results in a very slow (prac-

tical) convergence of the series [13]. This convergence is

partially improved by treating the baryons as heavy de-

grees of freedom, in what is known as the heavy baryon

chiral perturbation theory [14]. Although it is reasonable

for dealing with the mass dependence of baryons with light

quarks, experience seems to show that observables that

depend on the strange quark are not well described in

this framework (see for example [15–17]). A number of

possibilities have been proposed to improve the conver-

gence and include the strange quark in the analysis. The

various flavors of cutoff B�PT (see [18] and references

therein), or covariant B�PT [19] are some examples. In

this work we explore this last possibility. The interested

reader can consult the review [20] and references therein.

A. Regular expansions

We have several possibilities if we decide to expand

around a regular point. We can treat any octet member X ¼
N, �, �, � as independent and use a Taylor expansion.

Using the variables defined in Eq. (5) our results are well

described by the ansatz

MX ¼ MX
0 þ �X

1�� þ �X
2�

2
� þ �X��ss: (7)

One can also use a Padé-like functional form

MX ¼
MX

0

1� �X
1�� � �X

2�
2
� � �X��ss

: (8)

In these expansions, MX
0 , �

X
1;2, and �X are the 16 fitting

parameters.

In principle, all octet masses should be degenerate along

the SUð3Þ symmetric line mud ¼ ms. We can choose to

impose this constraint in our functional form. In fact our

data are well fitted by the following SUð3Þ symmetric

regular expansion

MX ¼ M0 þ �X
1�� þ �X

2�
2
� þ ðC1 � �X

1 Þ��ss

þ ðC2 � �X
2 Þ����ss; (9)

or the corresponding Padé-like ansatz

MX¼
M0

1��X
1����X

2�
2
��ðC1��X

1 Þ��ss�ðC2��X
2 Þ����ss

:

(10)

Now the fitting parameters have been reduced to 11:M0,

�X
1;2, and the coefficients C1 and C2 that give the depen-

dence of octet masses along the SUð3Þ symmetric line

mud ¼ ms.

Note that Taylor-like and Padé-like ansatze differ in

higher-order terms in �� and ��ss. Thus the difference in

physical results obtained by using these two functional

forms measures higher-order contributions to the mass

expansion.

B. Covariant B�PT

Details of the quark-mass dependence of the octet

members in SUð3Þ baryon �PT can be found in the

Appendix. Here we run the index X ¼ N, �, �, � over

octet members, and index � ¼ �, K, � over the mesons.

Octet masses to next to leading order involve the non-

linear function

hðxÞ ¼ �
x3

4�2

8

<

:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�

�

x

2

�

2
s

arccos
x

2
þ

x

2
logx

9

=

;

: (11)

The masses of the octet baryons are given by

MX ¼ M0 � 4c�XM
2
� � 4c�ssXM

2
�ss

þ
X

�¼�;K;�

g�X
F2
�

M3
0h

�

M�

M0

�

þ 4d�M
4
� þ 4d�ssM

4
�ss; (12)

where c�X, c�ssX are functions of the three low-energy

constants (LEC), b0, bd, bf, and the g�X can be written

in terms of the axial coupling gA and the ratio of couplings

� (as shown in Tables II and III). Finally d�, d �ss parame-

trize higher-order corrections.
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To the order at which we are working only two pseudo

Goldstone boson masses are linearly independent, being

related through the Gell-Mann-Oakes-Rennes (GMOR)

relation 3M2
� ¼ 4M2

K �M2
�.

When fitting lattice data to the chiral formula, it is

important not to break the SUð3Þ symmetry built into

this expression. In that sense it is important that all octet

masses become degenerate when M�ss ¼ M�. This rules

out the possibility of fixing the meson decay constants

F�;K;� to their physical values. Here we choose to fix all

of them to the common value F
phys
� ¼ 92:2 MeV. This is

correct to the order at which we are working. Note that

we have repeated the fits including the next to leading

order terms for the decay constants and obtained results

compatible within statistical errors. We have also con-

firmed that the quality of fits decreases if a non-SUð3Þ
symmetric ansatz is imposed by fixing each meson decay

constant to its physical value.

The axial coupling gA is well known in phenomeno-

logy. The most precise value at the physical point is

gA ¼ 1:2695ð29Þ [21], and is expected to be close to the

value in the chiral limit Dþ F. The ratio of couplings � is

not well determined experimentally, but there are two

preferred phenomenological scenarios: � ¼ 2=3 and

�� 0:5 [22].

It makes sense to try our �PT fits both fixing ðgA; �Þ ¼
ð1:2695; 2=3Þ or allowing them to be free. Regarding

the higher-order contributions given by d�, d�ss, we can

also choose to either include them in the fit, or not. In

terms of how well our data are described (i.e. fit quality)

the four possibilities are equally reasonable options. In Fig. 2,

we show one possible�PT fit, wherewe have fitted gA; � and
we have not included the higher-order terms in the fit.

IV. CUTOFF, FINITE VOLUME EFFECTS, AND

EXCITED-STATE CONTRIBUTIONS

We combine our chiral extrapolation with the continuum

extrapolation. It has been demonstrated in different con-

texts [8,9,23,24] that a smeared clover action is very close

to be nonperturbatively OðaÞ-improved with cutoff effects

TABLE III. Leading order octet quark-mass dependence, c�X and c�ssX, as a function of the

LEC b0, bD, bF (see the Appendix for more details).

X N � � �

c�X �2ð2b0 þ bD þ bFÞ �4ðb0 þ bD=3Þ �4ðb0 þ bDÞ �2ð2b0 þ bD � bFÞ

c�ssX �2ðb0 þ bD � bFÞ �2ðb0 þ 4bD=3Þ �2b0 �2ðb0 þ bD þ bFÞ

TABLE II. Meson-loop couplings as a function of the �N coupling gA and the quantity �. In
the chiral limit gA ¼ Dþ F and � ¼ F=D, as described in the Appendix.

� g�N g�� g�� g��

� 3
4 g

2
A

1
ð1þ�Þ2

g2A
ð1þ6�2Þ
3ð1þ�Þ2

g2A
3ð1��Þ2

4ð1þ�Þ2
g2A

K ð5�6�þ9�2Þ
6ð1þ�Þ2

g2A
ð1þ9�2Þ
3ð1þ�Þ2

g2A
ð1þ�2Þ
ð1þ�Þ2

g2A
ð5þ6�þ9�2Þ
6ð1þ�Þ2

g2A

� ð1�3�Þ2

12ð1þ�Þ2
g2A

1
3ð1þ�Þ2

g2A
1

3ð1þ�Þ2
g2A

ð1þ3�Þ2

12ð1þ�Þ2
g2A
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(a) (b)

FIG. 2 (color online). Example of a �PT fit corresponding to a particular choice of fitting interval for the correlators. In this

particular case we choose to fit gA and �, and not to include higher-order terms. We have only used data with M� < 410 MeV. The
correlated �2 ¼ 38:5 for 34 degrees of freedom yields a fit quality of �0:27. (a) Fit in the M2

�,M
2
X plane. Data have been corrected to

the physical value of Mss for a better visualization. (b) Fit in the M
2
ss,M

2
X plane. Data have been corrected to the physical value ofM�

for a better visualization.
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being Oða2Þ. Nevertheless we cannot rule out the possibil-
ity that our results have linear discretization effects.

Guided by our experience [9] in determining light

hadron masses we parametrize cutoff effects with the

substitution

MX ! MXð1þ cXa
pÞ (13)

with p ¼ 1, 2. The cutoff effects are small enough in our

data that they make it difficult to distinguish a and a2. In
fact their coefficients are, for the most part, compatible

with zero within statistical errors. Thus we will also in-

clude fits without any cutoff corrections altogether.

Stable hadron masses have leading finite-volume effects

/ e�M�L [25]. In all of our ensembles the boundM�L * 4
is maintained, implying negligible finite-volume effects.

The detailed analysis of [9], with additional ensembles in

smaller volumes, shows that finite-volume corrections are

below the statistical accuracy of our data. Thus we do not

add finite-volume corrections to our analysis here.

To estimate the possible contamination by excited states

in the extraction of the masses from the correlators we use

18 fitting time intervals: tmin=a ¼ 5 or 6 for � ¼ 3:3;
tmin=a ¼ 7, 8, or 9 for � ¼ 3:57; and tmin=a ¼ 10, 11, or
12 for � ¼ 3:7 [9].

V. DETERMINATION OF THE UNCERTAINTIES

Our complete analysis includes a total of 8 formulas to

extrapolate to the physical mass point: Four of them are

regular expansions either imposing or not the SUð3Þ flavor
constraint, and either in the Taylor-like form or Padé-like

form. The other four functional forms are derived from

SUð3Þ covariant baryon �PT, where we can choose to

parametrize or not higher-order contributions, and to fit

gA and � or fix gA to its physical value gA ¼ 1:2695ð29Þ
[21] and � to a reasonable phenomenological value2 � ¼
2=3 [22].

To have more control over the uncertainties associated

with higher-order terms in the mass extrapolation, we

impose two different pion mass cuts: M� < 410 MeV
and M� < 550 MeV.
As explained in Sec. IV we consider three possibilities to

parametrize cutoff effects which are compatible with our

data: either assume that they are absent, or parametrize

them as OðaÞ or Oða2Þ. Finite-volume corrections are not

considered because they are below our statistical accuracy.

Finally we repeat the full analysis with 18 different time-

fitting intervals for the correlators to estimate excited state

contributions.

This strategy leads to 8� 2� 3� 18 ¼ 864 different

procedures to estimate the physical value of each of the

sigma terms of the octet members. The data are fitted

(taking correlations into account) using all of the previ-

ously explained procedures. Each of the 864 results is

weighted with the fit quality3 (p-value or Q-value) to

produce a distribution of values. The median (typical result

of our analysis) is taken as our final value. The 16th=84th

percentiles (i.e. the values which, in a Gaussian distribu-

tion, correspond to�1� deviations from the median) yield

the systematic uncertainty of our computation (see Fig. 3).

This systematic uncertainty measures how different

parametrizations for mass extrapolation, cutoff effects,

and excited-state contributions affect the final result. The

statistical uncertainty is determined by bootstrapping the

whole procedure 2000 times, and computing the variance

of the medians.

It is important to note here three points:

(i) Most of the previously mentioned fits are ‘‘good.’’

Our average fit quality is 0:34, and this does not vary
significantly over our different procedures. For ex-

ample fits with M� < 410 MeV have an average fit

quality of 0:38whereas forM� < 550 MeV it is 0.29

 0
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 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

-20  0  20  40  60  80  100  120

N

M < 410.0 MeV
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 0.06

 0.08

 0.1

 0.12

 0.14

-10  0  10  20  30  40  50  60  70  80  90

N

PT

Taylor

Pade

FIG. 3 (color online). Distribution of values for ��N in background, and how different pion mass cuts (left panel) and functional

forms (right panel) shape it.

2We have checked that using � ¼ 0:5 (the other common
phenomenological scenario) leads to very similar results.

3The confidence of fit is defined as Q ¼
R

1
�2 dzPðz; dÞ where

Pðz; dÞ ¼ zd=2�1e�z=2=½2d=2�ðd=2Þ� is the probability distribu-
tion function to obtain �2 ¼ z in a fit with d degrees of freedom.
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[see Fig. 3(a)]. For covariant B�PT, Taylor and Padé
functional forms the p-values are, respectively, 0.30,
0.47, and 0.29 [see Fig. 3(b)]. The fit quality is

almost insensitive to how we choose to parametrize

the cutoff effects, or what time intervals we use to fit

correlators. Although there is some variation, we

cannot rule out any of our fits based on how well

our data are described.

(ii) Adding more variations does not increase the sys-

tematic uncertainty. For example adding a pion

mass cut of M� < 680 MeV (i.e. including all our

ensembles in the fit), the covariant B�PT functional

form gives fit qualities of 2� 10�6. Even if they are

included in our analysis, these fits do not contribute

to our distribution of values or to our final results

and estimates of systematic uncertainties.

(iii) On the other hand, eliminating some of the analysis

typically results in a compatible final value but with

a smaller systematic uncertainty. For example had

we chosen to perform our analysis only withM� <
550 MeV the systematic uncertainty of ��N would

have dropped by almost 50%. [see Fig. 3(a)].

VI. RESULTS

Following the method described in the previous section,

we arrive at the results quoted in Table IV.

For the nucleon sigma term our result agrees with the

‘‘canonical’’ determination coming from �� N scattering

data [2] of ��N ¼ 45� 8 MeV, but with a larger uncer-

tainty, and disfavors the larger value ��N ¼ 64� 7 MeV
from [3]. It also agrees with recent estimates that use lattice

data [15,26–32] though these assume a particular func-

tional form for the light-quark-mass dependence while

we consider a whole range of forms. Another study con-

siders a variety of chiral forms, but with pion masses only

down to 300 MeV [33], yielding values in the range 42 to

84 MeV, with a statistical accuracy of about 15 MeV. Our

value is less consistent with the determinations of [34,35]

that are close to the higher value (of [3]) for the sigma term.

We believe that the agreement within error of our results

obtained from extrapolations using very different func-

tional forms enhances the credibility of our final results.

In Table V we give the contribution of each source of

systematic uncertainty to the final error. Although we show

the results for ��N , the conclusion that the chiral extrapo-

lation dominates the systematic uncertainty of our compu-

tation is generally true.

To reduce this source of systematic uncertainty we

would need to add ensembles at lower pion masses. From

the value of the uncertainties of ��N at M� ¼ 200 MeV,
we can roughly guess the gain that would be obtained by

having equally precise data at the physical point. Such data

would imply a reduction of around 50% in the systematic

error. On the other hand the situation for both ��ssN and yN
is less clear. Our data set has a much smaller range of

strange quark masses than light quark masses. If we add the

fact that the contribution of the strange quark to the nu-

cleon mass seems to be small ‘‘per se’’, it is natural that the

final results for both ��ssN and yN to show large statistical

and systematic uncertainties. Only by adding simulation

points for a wider range of strange quark masses one can

increase the chances of getting a precise determination of

these quantities without making an additional assumption

which relates ms to mud dependence as in SUð3Þ baryon
�PT.
Regarding the other octet members, the values of

the sigma terms agrees with other determinations based

on lattice data and a low-energy effective field theory

approach [30,31].

�PT consistency check

Our objective in this paper is to determine the sigma-

terms and strangeness contents of the octet baryons at the

physical point. To this end, we generated ensembles close

to the physical value of the strange quark mass and as close

as possible to the physical light quark mass, with a large

enough lever arm in the light sector to perform a credible

extrapolation to the physical point.

TABLE IV. Final results for all octet members. The first two columns give the baryon octet sigma terms [Eq. (1)], the third one the

strangeness content of the octet member [Eq. (3a)], and the last two the dimensionless sigma terms [Eqs. (3b) and (3c)]. The first error

is statistical and the second one is systematic.

��X (MeV) � �ssX (MeV) yX fudX f�ssX

N 39ð4Þðþ18
�7 Þ 67ð27Þðþ55

�47Þ 0:20ð7Þðþ13
�17Þ 0:042ð5Þðþ21

�4 Þ 0:036ð14Þðþ30
�25Þ

� 29ð3Þðþ11
�5 Þ 180ð26Þðþ48

�77Þ 0:51ð15Þðþ48
�27Þ 0:027ð3Þðþ5

�10Þ 0:083ð12Þðþ23
�31Þ

� 23ð3Þðþ19
�3 Þ 245ð29Þðþ50

�72Þ 0:82ð21Þðþ87
�39Þ 0:019ð3Þðþ17

�3 Þ 0:104ð12Þðþ23
�31Þ

� 16ð2Þðþ8
�3Þ 312ð32Þðþ72

�77Þ 1:7ð5Þðþ1:9
�0:7Þ 0:0116ð18Þðþ59

�22Þ 0:120ð13Þðþ30
�30Þ

TABLE V. Contribution to the total uncertainty of the different

sources of systematic error.

Source of systematic error Error on ��N (MeV)

Chiral extrapolation:

Pion mass range 9.0

Functional form 5.5

Continuum extrapolation 1.9
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Such a set of ensembles, however, is not ideally suited to

determine the SUð3Þ �PT LECs, which are defined in the

chiral limit. That would require simulations with a strange

quark mass approaching the chiral limit. This means that

the LECs extracted from our fits have uncertainties which

we cannot properly control. Nevertheless, it is worth noting

that the values obtained are roughly consistent with general

expectations from phenomenology [21] and other lattice

studies [30,31] (see Table VI). This further enhances the

credibility of the results obtained at the physical point.

VII. CONCLUSIONS

We computed the sigma terms of light octet baryons by

studying their mass dependence on quark masses through

the Feynman-Hellman theorem. We also obtained the

strangeness content and dimensionless sigma terms for

all octet members. We estimated the systematic uncertain-

ties associated with the choice of parametrization for this

mass dependence by considering two very different expan-

sion schemes. We considered regular expansions of octet

masses, and a singular three-flavor, low-energy effective

field theory approach. Within each of the approaches

we estimated the impact of higher-order contributions.

Moreover we varied the range of fitted quark masses, cutoff

parametrizations and excited-state contributions.

The most interesting quantities are the ones associated

with the nucleon. Our final value for ��N ¼ 39ð4Þðþ18
�7 Þ

favors the ‘‘low scenario’’ with ��N ¼ 45� 8 MeV of

[1,2], but the size of our uncertainties does not allow us

to exclude the higher value of [3]. Regarding the strange-

ness content we obtained a value with large statistical and

systematic uncertainties yN ¼ 0:20ð7Þðþ13
�17Þ. The situation

is a bit better (thanks to correlations between sigma terms

and the extrapolated value of the mass) for the case of the

dimensionless sigma terms fudN ¼ 0:021ð3Þðþ11
�4 Þ and

f �ssN ¼ 0:072ð29Þðþ60
�50Þ, that are the quantities of interest

for direct DM searches.

This work shows the difficulties associated with obtain-

ing precise values for these form factors in a model inde-

pendent way. Even with pion masses as low as 190 MeV

the mass extrapolation dominates the systematic uncertain-

ties of our final results. This explicitly shows the risks of

using lattice data and only one approach to perform the

mass extrapolation. A proper estimation of systematic un-

certainties should include the uncertainty associated with

the model that is used, and, at least in our case, this is one

of the main sources of systematic uncertainty.

For ��N the only way to increase the precision of our

computation without assuming a model would be to gen-

erate data at lower quark masses. Replacing the extrapola-

tion by an interpolation drastically reduces the uncertainty

in the final result, as we have explicitly seen by considering

the values of the sigma terms at M� ¼ 200 MeV.
For the case of the strangeness content of the nucleon

and ��ssN , the situation is even more delicate. First, Nf ¼

2þ 1 lattice ensembles usually bracket the physical value

ofms with a small lever arm. This is more than sufficient to

determine physical observables, but it is not the ideal setup

to estimate how physical quantities change with ms.

Second, the contribution of the strange quark to the nu-

cleon mass seem to be small per se. In principle, the first

problem can be solved by measuring the nucleon mass for a

larger range of strange quark masses. The second problem

is solved if we restrict our analysis to three-flavor B�PT.
This low-energy effective field theory approach relates the

mud dependence of octet members to its ms dependence,

and thus constrains yN . The value of the nucleon strange-

ness content obtained from the covariant B�PT analysis

alone has a small relative error yN ¼ 0:276ð77Þðþ90
�62Þ, illus-

trating the success of the idea. However, since we do not

have a large enough range of strange quark masses to

establish the validity of SUð3Þ, B�PT, this result must be

considered model dependent. Note also that a direct cal-

culation of the corresponding disconnected contribution

suggests a very small yN value, barely compatible with

the B�PT result [36].
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APPENDIX: SKETCH OF THREE-FLAVOR

COVARIANT BARYON �PT

In this appendix, we give a brief outline of the derivation

of our chiral fit form (12). Working to Oðp3Þ, we use the

standard octet baryon Lagrangians [37,38]

TABLE VI. Values of the LECs obtained from our �PT fits. Total errors (statistics and systematics included) are computed in the

same way as for the sigma terms. For the reasons noted in the text, we do not consider these errors to be reliable.

M0 (GeV) b0 [GeV�1] bD [GeV�1] bF [GeV�1] gA �

0.75(15) �0:71ð24Þ 0.103(60) �0:359ð72Þ 0.92(13) 0.402(90)
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L
ð1Þ
MB ¼ Tr

�

i �B�	D	B�M0
�BBþ

D

2
�B�	�5fu	; Bg

þ
F

2
�B�	�5½u	; B�

�

; (A1)

L
ð2Þ
MB ¼ TrðbD �Bf�þ; Bg þ bF �B½�þ; B� þ . . .Þ

þ b0 Trð �BBÞTrð�þÞ þ . . . ; (A2)

with the chiral tensors

D	B ¼ @	Bþ ½�	; B�; (A3)

�	 ¼
1

2
ðuyð@	 þ . . .Þuþ uð@	 þ . . .ÞuyÞ; (A4)

u	 ¼ iðuyð@	 þ . . .Þu� uð@	 þ . . .ÞuyÞ; (A5)

�� ¼ uy�uy � u�yu; (A6)

� ¼ 2B0ðMþ . . .Þ; (A7)

whereM denotes the (diagonal) quark-mass matrix. To the

order we are working, there is no contribution from the

Oðp3Þ Lagrangian,Lð3Þ
MB, to the quark-mass dependence of

the octet baryon masses. The coupling constants D, F of

Eq. (A1) are related to the actual couplings of the nucleon

in the chiral limit through Dþ F ¼ limu;d;s!0gA and

F=D ¼ limu;d;s!0�, whereas M0 corresponds to the chiral

limit value of the mass of the baryon octet. The field

uðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi

UðxÞ
p

describes a nonlinear matrix representation

of the (quasi-) Goldstone boson fields and B is the matrix-

valued interpolating field for a spin 1=2 octet baryon. The

next-to-leading order low-energy constants bD, bF, b0
govern the leading quark-mass contributions to the mass

of a spin 1=2 octet baryon, with M denoting the quark-

mass matrix for three light flavors u, d, ands. Furthermore,

we note that the parameter B0 is a measure of the size of the

chiral condensate h0j �qqj0i (in the chiral limit) [39]

B0 � �
h0j �qqj0imq!0

F2
0

; (A8)

where the low-energy constant F0 is identified with the

value of the octet Goldstone boson decay constant in the

chiral limit. Finally, for the calculation at hand one needs to

know the chiral meson Lagrangian up to Oðp2Þ [39]

L
ð2Þ
M ¼

F2
0

4
Trfð@	 þ . . .ÞUyð@	 þ . . .ÞU

þ �yUþ �Uyg: (A9)

Generalizing the SU(2) calculation of [27] along the

lines of [31], we obtain the leading one-loop result for

the mass of a nucleon to Oðp3Þ

MN ¼ M0 � 4ðb0 þ ðbD þ bFÞ=2Þ �M
2
�

� 2ðb0 þ bD � bFÞ �M
2
�ss �

X

�¼�;K;�

g�N �M3
�

4�2F2
�

�

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
�M2
�

4M2
0

s

arccos
�M�

2M0

þ
�M�

4M0

log
�M2
�

M2
0

�

þOðp4Þ:

(A10)

To the chiral order we are working here, the meson-loop

couplings g�N , gKN , g�N can be expressed in terms of the

two SU(3) parameters F and D, as given in Table VII. For

generality, we have expressed the Goldstone boson decay

constant F0 entering the loop contributions via three differ-

ent symbols F� to account for the individual contribution

of the pion, kaon, and eta-cloud of the nucleon.

For a fit to lattice QCD data, it is convenient to slightly

rewrite (A9) without changing the expression at the order

at which we are working:

(1) We express the GMOR-masses for �MK, �M� in (A10)

as a function of the GMOR mass of the pion and of

the mass-parameter M�ss introduced in (4):

�M 2
K ! 1

2ð
�M2
� þM2

�ssÞ; (A11)

�M 2
� ! 1

3ð
�M2
� þ 2M2

�ssÞ; (A12)

which amounts to a change of variables.

(2) We identify the GMOR-mass �M� of (4) with the

corresponding lowest-lying 0�-boson mass M� in

each simulation. Possible deviations in the quark-

mass dependence from the linear GMOR behavior

predicted in (4) can only affect Oðp4Þ corrections
(A10).

(3) The Goldstone boson decay constants F� in (A10)

are identified with the decay constant F
phys
� . Other

assignments compatible with SU(3) symmetry

might be chosen as discussed in Sec. III B.

TABLE VII. Summary of meson-loop couplings g�B in terms of the low-energy constants D, F.

g�B N � � �

� 3
4 ðDþ FÞ2 D2 1

3 ðD
2 þ 6F2Þ 3

4 ðD� FÞ2

K 1
6 ð5D

2 � 6DFþ 9F2Þ 1
3 ðD

2 þ 9F2Þ ðD2 þ F2Þ 1
6 ð5D

2 þ 6DFþ 9F2Þ

� 1
12 ðD� 3FÞ2 1

3D
2 1

3D
2 1

12 ðDþ 3FÞ2
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(4) With the same reasoning as in the previous item, at

chiral order Oðp3Þ we can identify the chiral limit

couplings ~g�N , ~gKN , ~g�N with the physical cou-

plings g�N , gKN , g�N , resulting in Table II. The

unknown ratio � of couplings is either treated as

an external input to our fits or is left as a free fit

parameter.

With a very similar derivation for the case of the octet

hyperons, we finally arrive at our fit function (12).
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