000018070 001__ 18070
000018070 005__ 20240708132718.0
000018070 0247_ $$2DOI$$a10.1002/adem.201000358
000018070 0247_ $$2WOS$$aWOS:000291447200009
000018070 037__ $$aPreJuSER-18070
000018070 041__ $$aeng
000018070 082__ $$a540
000018070 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000018070 1001_ $$0P:(DE-Juel1)VDB7971$$aZotov, N.$$b0$$uFZJ
000018070 245__ $$aInterdiffusion in Fe/Pt Multilayers: In situ high temperature synchrotron radiation reflectivity study
000018070 260__ $$aWeinheim$$bWiley-VCH Verl.$$c2011
000018070 300__ $$a475 - 479
000018070 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000018070 3367_ $$2DataCite$$aOutput Types/Journal article
000018070 3367_ $$00$$2EndNote$$aJournal Article
000018070 3367_ $$2BibTeX$$aARTICLE
000018070 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000018070 3367_ $$2DRIVER$$aarticle
000018070 440_0 $$0133$$aAdvanced Engineering Materials$$v13$$x1438-1656$$y6
000018070 500__ $$aThe authors acknowledge the financial support from ESRF for proposal SI-1616 as well as Caesar (Bonn) for experimental support.
000018070 520__ $$aThermal annealing of Fe/Pt multilayers (ML) is reported to reduce significantly the formation temperature of FePt hard magnetic thin films. The transformation mechanisms of [Fe 1.38 nm/Pt 2.24 nm](50) ML, prepared by magnetron sputtering, is investigated in the present communication by high temperature X-ray reflectivity using synchrotron radiation. Complete degradation of the ML periodic structure is observed at about 610 K. The variation with annealing temperature of the intensity of the first Bragg peak, the correlated vertical roughness, and the lateral correlation length of the ML show that the ML transform in two stages with a cross-over temperature of about 515 +/- 15 K. This behavior cannot be simply explained by the change in the measured interdiffusion coefficient below and above the cross-over temperature, suggesting the formation of FePt nanograins along the interfaces.
000018070 536__ $$0G:(DE-Juel1)FUEK402$$2G:(DE-HGF)$$aRationelle Energieumwandlung$$cP12$$x0
000018070 588__ $$aDataset connected to Web of Science
000018070 650_7 $$2WoSType$$aJ
000018070 7001_ $$0P:(DE-Juel1)VDB102949$$aFeydt, J.$$b1$$uFZJ
000018070 7001_ $$0P:(DE-Juel1)VDB102950$$aSavan, A.$$b2$$uFZJ
000018070 7001_ $$0P:(DE-Juel1)VDB102951$$aLudwig, A.$$b3$$uFZJ
000018070 7001_ $$0P:(DE-Juel1)VDB102952$$avon Borany, J.$$b4$$uFZJ
000018070 773__ $$0PERI:(DE-600)2016980-2$$a10.1002/adem.201000358$$gVol. 13, p. 475 - 479$$p475 - 479$$q13<475 - 479$$tAdvanced engineering materials$$v13$$x1438-1656$$y2011
000018070 8567_ $$uhttp://dx.doi.org/10.1002/adem.201000358
000018070 909CO $$ooai:juser.fz-juelich.de:18070$$pVDB
000018070 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000018070 9141_ $$y2011
000018070 9131_ $$0G:(DE-Juel1)FUEK402$$aDE-HGF$$bEnergie$$kP12$$lRationelle Energieumwandlung$$vRationelle Energieumwandlung$$x0
000018070 9132_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000018070 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$gIEK$$kIEK-1$$lWerkstoffsynthese und Herstellverfahren$$x0
000018070 970__ $$aVDB:(DE-Juel1)132690
000018070 980__ $$aVDB
000018070 980__ $$aConvertedRecord
000018070 980__ $$ajournal
000018070 980__ $$aI:(DE-Juel1)IEK-1-20101013
000018070 980__ $$aUNRESTRICTED
000018070 981__ $$aI:(DE-Juel1)IMD-2-20101013