001     18070
005     20240708132718.0
024 7 _ |2 DOI
|a 10.1002/adem.201000358
024 7 _ |2 WOS
|a WOS:000291447200009
037 _ _ |a PreJuSER-18070
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
100 1 _ |0 P:(DE-Juel1)VDB7971
|a Zotov, N.
|b 0
|u FZJ
245 _ _ |a Interdiffusion in Fe/Pt Multilayers: In situ high temperature synchrotron radiation reflectivity study
260 _ _ |a Weinheim
|b Wiley-VCH Verl.
|c 2011
300 _ _ |a 475 - 479
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 133
|a Advanced Engineering Materials
|v 13
|x 1438-1656
|y 6
500 _ _ |a The authors acknowledge the financial support from ESRF for proposal SI-1616 as well as Caesar (Bonn) for experimental support.
520 _ _ |a Thermal annealing of Fe/Pt multilayers (ML) is reported to reduce significantly the formation temperature of FePt hard magnetic thin films. The transformation mechanisms of [Fe 1.38 nm/Pt 2.24 nm](50) ML, prepared by magnetron sputtering, is investigated in the present communication by high temperature X-ray reflectivity using synchrotron radiation. Complete degradation of the ML periodic structure is observed at about 610 K. The variation with annealing temperature of the intensity of the first Bragg peak, the correlated vertical roughness, and the lateral correlation length of the ML show that the ML transform in two stages with a cross-over temperature of about 515 +/- 15 K. This behavior cannot be simply explained by the change in the measured interdiffusion coefficient below and above the cross-over temperature, suggesting the formation of FePt nanograins along the interfaces.
536 _ _ |0 G:(DE-Juel1)FUEK402
|2 G:(DE-HGF)
|a Rationelle Energieumwandlung
|c P12
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-Juel1)VDB102949
|a Feydt, J.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB102950
|a Savan, A.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB102951
|a Ludwig, A.
|b 3
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB102952
|a von Borany, J.
|b 4
|u FZJ
773 _ _ |0 PERI:(DE-600)2016980-2
|a 10.1002/adem.201000358
|g Vol. 13, p. 475 - 479
|p 475 - 479
|q 13<475 - 479
|t Advanced engineering materials
|v 13
|x 1438-1656
|y 2011
856 7 _ |u http://dx.doi.org/10.1002/adem.201000358
909 C O |o oai:juser.fz-juelich.de:18070
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK402
|a DE-HGF
|b Energie
|k P12
|l Rationelle Energieumwandlung
|v Rationelle Energieumwandlung
|x 0
913 2 _ |0 G:(DE-HGF)POF3-113
|1 G:(DE-HGF)POF3-110
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|b Forschungsbereich Energie
|l Energieeffizienz, Materialien und Ressourcen
|v Methods and Concepts for Material Development
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|g IEK
|k IEK-1
|l Werkstoffsynthese und Herstellverfahren
|x 0
970 _ _ |a VDB:(DE-Juel1)132690
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21