001     18096
005     20240619090959.0
024 7 _ |2 DOI
|a 10.1088/0953-2048/24/1/015006
024 7 _ |2 WOS
|a WOS:000285344400007
037 _ _ |a PreJuSER-18096
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Applied
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Zhang, G.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB84595
245 _ _ |a Parameter tolerance of the SQUID Bootstrap Circuit
260 _ _ |a Bristol
|b IOP Publ.
|c 2012
300 _ _ |a 015006
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Superconductor Science and Technology
|x 0953-2048
|0 5665
|y 1
|v 25
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a The Istituto Superiore Mario Boella is gratefully acknowledged for financial support.
520 _ _ |a The effect of disorder is investigated in granular superconductive materials with strong-and weak-links. The transition is controlled by the interplay of the tunneling g and intragrain g(intr) conductances, which depend on the strength of the intergrain coupling. For g << g(intr), the transition first involves the grain boundary, while for g similar to g(intr) the transition occurs into the whole grain. The different intergrain couplings are considered by modeling the superconducting material as a disordered network of Josephson junctions. Numerical simulations show that on increasing the disorder, the resistive transition occurs for lower temperatures and the curve broadens. These features are enhanced in disordered superconductors with strong-links. The different behavior is further checked by estimating the average network resistance for weak-and strong-links in the framework of the effective medium approximation theory. These results may shed light on long standing puzzles such as: (i) enhancement of the superconducting transition temperature of many metals in the granular states; (ii) suppression of superconductivity in homogeneously disordered films compared to standard granular systems close to the metal-insulator transition; (iii) enhanced degradation of superconductivity by doping and impurities in strongly linked materials, such as magnesium diboride, compared to weakly linked superconductors, such as cuprates.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
536 _ _ |a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|0 G:(DE-Juel1)FUEK505
|x 1
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Zhang, Y.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB5476
700 1 _ |a Dong, H.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Krause, H.-J.
|b 3
|u FZJ
|0 P:(DE-Juel1)128697
700 1 _ |a Xie, X.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Braginski, A.I.
|b 5
|u FZJ
|0 P:(DE-Juel1)VDB97617
700 1 _ |a Offenhäusser, A.
|b 6
|u FZJ
|0 P:(DE-Juel1)128713
700 1 _ |a Jiang, M.
|b 7
|0 P:(DE-HGF)0
773 _ _ |a 10.1088/0953-2048/24/1/015006
|g Vol. 24, p. 015006
|p 015006
|q 24<015006
|0 PERI:(DE-600)1361475-7
|t Superconductor science and technology
|v 24
|y 2012
|x 0953-2048
856 7 _ |u http://dx.doi.org/10.1088/0953-2048/24/1/015006
909 C O |o oai:juser.fz-juelich.de:18096
|p VDB
913 1 _ |b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|1 G:(DE-HGF)POF2-420
|0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)POF2-400
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 1 _ |b Schlüsseltechnologien
|k P45
|l Biologische Informationsverarbeitung
|1 G:(DE-HGF)POF2-450
|0 G:(DE-Juel1)FUEK505
|2 G:(DE-HGF)POF2-400
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|x 1
913 2 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-559H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 1
914 1 _ |y 2012
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a No Peer review
|0 StatID:(DE-HGF)0020
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|g ICS
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-8-20110106
|k PGI-8
|l Bioelektronik
|g PGI
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
970 _ _ |a VDB:(DE-Juel1)132733
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a I:(DE-Juel1)PGI-8-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-3-20200312
981 _ _ |a I:(DE-Juel1)PGI-8-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21