001     18150
005     20240711085657.0
024 7 _ |2 DOI
|a 10.1016/j.ssi.2010.03.010
024 7 _ |2 WOS
|a WOS:000292848800081
037 _ _ |a PreJuSER-18150
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Fu, Q.X.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Electrodeposited cobalt coating on Crofer22APU steel for interconnect application in solid oxide fuel cells
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2011
300 _ _ |a 376 - 382
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Solid State Ionics
|x 0167-2738
|0 5565
|y 1
|v 192
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a A gas-tight cobalt-based protective coating was successfully applied by electroplating and subsequent oxidation. The coating covered all the surfaces of the machined gas channels of the metallic interconnect and adhered well to this substrate. Such a gas-tight coating offers effective blocking of Cr diffusion or evaporation from the interconnect and hence a reliable protection against Cr poisoning of the SOFC cathode. Chemical interactions were observed between the cobalt coating and the LSM contact layer, resulting in layer spallation during oxidation under pressureless conditions. Applying a pressure to the layers, spallation was effectively prevented. Although the area specific resistance (ASR) of the coated interconnect was higher than the uncoated one, it decreased steadily with time within the measurement period. The ASR was 28 m Omega cm(2) after an exposure of 1170 h. It seems thus that electroplating followed by oxidation is a promising method for the fabrication of spinel protective coatings for SOFC interconnects or other balance-of-plant components with complicated gas flow paths. (C) 2010 Elsevier B.V. All rights reserved.
536 _ _ |a Rationelle Energieumwandlung
|c P12
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK402
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Cobalt coating
653 2 0 |2 Author
|a Crofer22APU
653 2 0 |2 Author
|a Interconnect
653 2 0 |2 Author
|a Solid oxide fuel cells
700 1 _ |a Tietz, F.
|b 1
|u FZJ
|0 P:(DE-Juel1)129667
700 1 _ |a Buchkremer, H.-P.
|b 2
|u FZJ
|0 P:(DE-Juel1)129594
773 _ _ |a 10.1016/j.ssi.2010.03.010
|g Vol. 192, p. 376 - 382
|p 376 - 382
|q 192<376 - 382
|0 PERI:(DE-600)1500750-9
|t Solid state ionics
|v 192
|y 2011
|x 0167-2738
856 7 _ |u http://dx.doi.org/10.1016/j.ssi.2010.03.010
856 4 _ |u https://juser.fz-juelich.de/record/18150/files/FZJ-18150_PV.pdf
|z Published final document.
|y Restricted
909 C O |o oai:juser.fz-juelich.de:18150
|p VDB
913 1 _ |k P12
|v Rationelle Energieumwandlung
|l Rationelle Energieumwandlung
|b Energie
|0 G:(DE-Juel1)FUEK402
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IEK-1
|l Werkstoffsynthese und Herstellverfahren
|g IEK
|0 I:(DE-Juel1)IEK-1-20101013
|x 0
970 _ _ |a VDB:(DE-Juel1)132788
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21