001     18245
005     20190625112054.0
024 7 _ |2 DOI
|a 10.1002/adfm.201101117
024 7 _ |2 WOS
|a WOS:000297501000012
024 7 _ |a altmetric:21807122
|2 altmetric
037 _ _ |a PreJuSER-18245
041 _ _ |a eng
082 _ _ |a 620
084 _ _ |2 WoS
|a Chemistry, Multidisciplinary
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Nanoscience & Nanotechnology
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Physics, Applied
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Menzel, S.
|b 0
|u FZJ
|0 P:(DE-Juel1)158062
245 _ _ |a Origin of the ultra-nonlinear switching kinetics in oxide-based resistive switches
260 _ _ |a Weinheim
|b Wiley-VCH
|c 2011
300 _ _ |a 4487 - 4492
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Advanced Functional Materials
|x 1616-301X
|0 16181
|y 23
|v 21
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a We are indebted to Rainer Bruchhaus, Paul Meuffels, and Kristof Szot for many interesting discussions. This work was in part financially supported by Intel Corp., Santa Clara, and this funding is gratefully acknowledged.
520 _ _ |a Experimental pulse lengthpulse voltage studies of SrTiO3 memristive cells are reported, which reveal nonlinearities in the switching kinetics of more than nine orders of magnitude. The results are interpreted using an electrothermal 2D finite element model. The nonlinearity arises from a temperature increase in a few-nanometer-thick disc-shaped region at the Ti electrode and a corresponding exponential increase in oxygen-vacancy mobility. The model fully reproduces the experimental data and it provides essential design rules for optimizing the cell concept of nanoionic resistive memories. The model is generic in nature: it is applicable to all those oxides which become n-conducting upon chemical reduction and which show significant ion conductivity at elevated temperatures.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a resistive switching
653 2 0 |2 Author
|a switching kinetics
653 2 0 |2 Author
|a oxygen vacancies
653 2 0 |2 Author
|a temperature simulation
653 2 0 |2 Author
|a nanoelectronics
653 2 0 |2 Author
|a memristors
700 1 _ |a Waters, M.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB98340
700 1 _ |a Marchewka, A.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB100203
700 1 _ |a Böttger, U.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB3024
700 1 _ |a Dittmann, R.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB5464
700 1 _ |a Waser, R.
|b 5
|u FZJ
|0 P:(DE-Juel1)131022
773 _ _ |a 10.1002/adfm.201101117
|g Vol. 21, p. 4487 - 4492
|p 4487 - 4492
|q 21<4487 - 4492
|0 PERI:(DE-600)2039420-2
|t Advanced functional materials
|v 21
|y 2011
|x 1616-301X
856 7 _ |u http://dx.doi.org/10.1002/adfm.201101117
909 C O |o oai:juser.fz-juelich.de:18245
|p VDB
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|g PGI
|x 0
970 _ _ |a VDB:(DE-Juel1)132903
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21