000018311 001__ 18311
000018311 005__ 20240712100917.0
000018311 0247_ $$2DOI$$a10.5194/acp-11-12217-2011
000018311 0247_ $$2WOS$$aWOS:000298134300019
000018311 0247_ $$2Handle$$a2128/9950
000018311 037__ $$aPreJuSER-18311
000018311 041__ $$aeng
000018311 082__ $$a550
000018311 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000018311 1001_ $$0P:(DE-Juel1)129122$$aGrooß, J.-U.$$b0$$uFZJ
000018311 245__ $$aStratospheric ozone chemistry in the Antarctic:What controls the lowst values that can be reached and their recovery?
000018311 260__ $$aKatlenburg-Lindau$$bEGU$$c2011
000018311 300__ $$a12217 - 12226
000018311 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000018311 3367_ $$2DataCite$$aOutput Types/Journal article
000018311 3367_ $$00$$2EndNote$$aJournal Article
000018311 3367_ $$2BibTeX$$aARTICLE
000018311 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000018311 3367_ $$2DRIVER$$aarticle
000018311 440_0 $$09601$$aAtmospheric Chemistry and Physics$$v11$$x1680-7316$$y23
000018311 500__ $$3POF3_Assignment on 2016-02-29
000018311 500__ $$aWe thank Herman Smit and Peter von der Gathen for helpful discussions on the detection limits of ozone sondes. This work was supported by the RECONCILE project of the European Commission Seventh Framework Programme (FP7) under the Grant number RECONCILE-226365-FP7-ENV-2008-1.
000018311 520__ $$aBalloon-borne observations of ozone from the South Pole Station have been reported to reach ozone mixing ratios below the detection limit of about 10 ppbv at the 70 hPa level by late September. After reaching a minimum, ozone mixing ratios increase to above 1 ppmv on the 70 hPa level by late December. While the basic mechanisms causing the ozone hole have been known for more than 20 yr, the detailed chemical processes determining how low the local concentration can fall, and how it recovers from the minimum have not been explored so far. Both of these aspects are investigated here by analysing results from the Chemical Lagrangian Model of the Stratosphere (CLaMS). As ozone falls below about 0.5 ppmv, a balance is maintained by gas phase production of both HCl and HOCl followed by heterogeneous reaction between these two compounds in these simulations. Thereafter, a very rapid, irreversible chlorine deactivation into HCl can occur, either when ozone drops to values low enough for gas phase HCl production to exceed chlorine activation processes or when temperatures increase above the polar stratospheric cloud (PSC) threshold. As a consequence, the timing and mixing ratio of the minimum ozone depends sensitively on model parameters, including the ozone initialisation. The subsequent ozone increase between October and December is linked mainly to photochemical ozone production, caused by oxygen photolysis and by the oxidation of carbon monoxide and methane.
000018311 536__ $$0G:(DE-Juel1)FUEK491$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP23$$x0
000018311 536__ $$0G:(EU-Grant)226365$$aRECONCILE - Reconciliation of essential process parameters for an enhanced predictability of arctic stratospheric ozone loss and its climate interactions. (226365)$$c226365$$fFP7-ENV-2008-1$$x1
000018311 588__ $$aDataset connected to Web of Science
000018311 650_7 $$2WoSType$$aJ
000018311 7001_ $$0P:(DE-Juel1)VDB97638$$aBrautzsch, K.$$b1$$uFZJ
000018311 7001_ $$0P:(DE-HGF)0$$aPommrich, R.$$b2
000018311 7001_ $$0P:(DE-HGF)0$$aSolomon, S.$$b3
000018311 7001_ $$0P:(DE-Juel1)129138$$aMüller, R.$$b4$$uFZJ
000018311 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-11-12217-2011$$gVol. 11, p. 12217 - 12226$$p12217 - 12226$$q11<12217 - 12226$$tAtmospheric chemistry and physics$$v11$$x1680-7316$$y2011
000018311 8567_ $$uhttp://dx.doi.org/10.5194/acp-11-12217-2011
000018311 8564_ $$uhttps://juser.fz-juelich.de/record/18311/files/acp-11-12217-2011.pdf$$yOpenAccess
000018311 8564_ $$uhttps://juser.fz-juelich.de/record/18311/files/acp-11-12217-2011.gif?subformat=icon$$xicon$$yOpenAccess
000018311 8564_ $$uhttps://juser.fz-juelich.de/record/18311/files/acp-11-12217-2011.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000018311 8564_ $$uhttps://juser.fz-juelich.de/record/18311/files/acp-11-12217-2011.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000018311 8564_ $$uhttps://juser.fz-juelich.de/record/18311/files/acp-11-12217-2011.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000018311 909CO $$ooai:juser.fz-juelich.de:18311$$pdnbdelivery$$pec_fundedresources$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000018311 9131_ $$0G:(DE-Juel1)FUEK491$$aDE-HGF$$bErde und Umwelt$$kP23$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zvormals P22
000018311 9132_ $$0G:(DE-HGF)POF3-249H$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lAtmosphäre und Klima$$vAddenda$$x0
000018311 9141_ $$y2011
000018311 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000018311 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000018311 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000018311 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$gIEK$$kIEK-7$$lStratosphäre$$x0
000018311 970__ $$aVDB:(DE-Juel1)132972
000018311 9801_ $$aUNRESTRICTED
000018311 9801_ $$aFullTexts
000018311 980__ $$aVDB
000018311 980__ $$aConvertedRecord
000018311 980__ $$ajournal
000018311 980__ $$aI:(DE-Juel1)IEK-7-20101013
000018311 980__ $$aUNRESTRICTED
000018311 981__ $$aI:(DE-Juel1)ICE-4-20101013