000183560 001__ 183560
000183560 005__ 20210129214637.0
000183560 0247_ $$2doi$$a10.1088/0953-8984/27/1/015501
000183560 0247_ $$2ISSN$$a0953-8984
000183560 0247_ $$2ISSN$$a1361-648X
000183560 0247_ $$2WOS$$aWOS:000345462200014
000183560 037__ $$aFZJ-2014-06854
000183560 082__ $$a530
000183560 1001_ $$0P:(DE-HGF)0$$aFukushima, T.$$b0$$eCorresponding Author
000183560 245__ $$aFirst principles studies of GeTe based dilute magnetic semiconductors
000183560 260__ $$aBristol$$bIOP Publ.$$c2015
000183560 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1418644615_10605
000183560 3367_ $$2DataCite$$aOutput Types/Journal article
000183560 3367_ $$00$$2EndNote$$aJournal Article
000183560 3367_ $$2BibTeX$$aARTICLE
000183560 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000183560 3367_ $$2DRIVER$$aarticle
000183560 520__ $$aThe electronic structure and magnetic properties of GeTe-based dilute magnetic semiconductors (DMS) are investigated by the Korringa–Kohn–Rostoker Green's function method and the projector augmented wave method. Our calculations for the formation energies of transition metal impurities (TM) in GeTe indicate that the solubilities of TM are quite high compared to typical III–V and II–VI based DMS and that the TM doped GeTe has a possibility of room temperature ferromagnetism with high impurity concentrations. The high solubilities originate from the fact that the top of the valence bands of GeTe consists of the Te-5p anti-bonding states which are favorable to acceptor doping. (Ge, Cr)Te system shows strong ferromagnetic interaction by the double exchange mechanism and is a good candidate for DMS with high Curie temperature. Additionally, in the case of (Ge, Mn)Te with the d5 configuration, by introducing the Ge vacancies the p-d exchange interaction is activated and it dominates the antiferromagnetic superexchange, resulting in ferromagnetic exchange interactions between Mn. This explains recent experimental results reasonably. Based on the accurate estimation of the Curie temperatures by Monte Carlo simulation for the classical Heisenberg model with the calculated exchange coupling constants, we discuss the relevance of the TM doped GeTe for semiconductor spintronics
000183560 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000183560 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000183560 7001_ $$0P:(DE-HGF)0$$aShinya, H.$$b1
000183560 7001_ $$0P:(DE-HGF)0$$aFujii, H.$$b2
000183560 7001_ $$0P:(DE-HGF)0$$aSato, K.$$b3
000183560 7001_ $$0P:(DE-HGF)0$$aKatayama-Yoshida, H.$$b4
000183560 7001_ $$0P:(DE-Juel1)130612$$aDederichs, P. H.$$b5$$ufzj
000183560 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/0953-8984/27/1/015501$$gVol. 27, no. 1, p. 015501 -$$n1$$p015501 $$tJournal of physics / Condensed matter$$v27$$x1361-648X$$y2015
000183560 8564_ $$uhttps://juser.fz-juelich.de/record/183560/files/FZJ-2014-06854.pdf$$yRestricted
000183560 909CO $$ooai:juser.fz-juelich.de:183560$$pVDB
000183560 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130612$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000183560 9130_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen für zukünftige Informationstechnologien$$vExploratory materials and phenomena$$x0
000183560 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000183560 9141_ $$y2015
000183560 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000183560 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000183560 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000183560 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000183560 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000183560 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000183560 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000183560 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000183560 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000183560 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000183560 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000183560 920__ $$lyes
000183560 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000183560 980__ $$ajournal
000183560 980__ $$aVDB
000183560 980__ $$aI:(DE-Juel1)PGI-2-20110106
000183560 980__ $$aUNRESTRICTED