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The role of nonlocal Coulomb correlations in the honeycomb lattice is investigated within cluster dynamical

mean field theory combined with finite-temperature exact diagonalization. The paramagnetic semimetal-to-

insulator transition is found to be in excellent agreement with finite-size determinantal quantum Monte Carlo

simulations and with cluster dynamical mean field calculations based on the continuous-time quantum Monte

Carlo approach. As expected, the critical Coulomb energy is much lower than within a local or single-site

formulation. Short-range correlations are shown to give rise to a pseudogap and concomitant non-Fermi-liquid

behavior within a narrow range below the Mott transition.
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I. INTRODUCTION

The recent discovery of graphene1 has greatly stimulated

the study of the electronic properties of the honeycomb

lattice.2 In view of the vanishing density of states at the

Fermi level, an issue of particular interest is the influence

of electron-electron interactions. González et al.3 performed

renormalization-group calculations and showed that the sup-

pression of screening of the long-range Coulomb interaction

gives rise to deviations from conventional Fermi-liquid be-

havior. Lattice field theory simulations4 indicated a Coulomb

driven second-order semimetal-to-insulator transition. Meng

et al.5 performed extensive variational quantum Monte Carlo

(QMC) simulations for the Hubbard model with varying

cluster sizes and identified a spin-liquid phase between the

semimetallic state characterized by massless Dirac fermions

and an antiferromagnetically ordered Mott insulator. The onset

of the long-range antiferromagnetic order was found to be

consistent with previous QMC calculations for finite-size

clusters.6,7 The Mott transition of the honeycomb lattice was

also investigated8,9 within single-site dynamical mean field

theory10 (DMFT). However, because of the small number

of nearest neighbors, the neglect of spatial correlations in

this system is questionable and gives rise to a significant

overestimate of the range of the semimetallic behavior up to

large values of the on-site Coulomb interaction. To account

for nonlocal correlations in the honeycomb lattice, Wu et al.11

recently applied a cluster extension12 of DMFT (CDMFT) by

using continuous-time QMC (Ref. 13) as an impurity solver.

The transition between the semimetallic and insulating phases

was found to occur at a considerably smaller critical Coulomb

energy than within the single-site DMFT, and to be in good

agreement with the variational QMC results by Meng et al.5

In the present work, we use finite-temperature exact

diagonalization14 (ED) in combination with cluster DMFT

to investigate the two-dimensional Hubbard model on the

honeycomb lattice for unit cells consisting of six sites. The

focus is on the dynamical properties of the nonlocal self-

energy, which have not been studied before. Moreover, in

view of the large size of this unit cell and the approximate

nature of quantum impurity solvers, CDMFT results obtained

within complementary schemes are clearly desirable. An

important advantage of ED is the accessibility of large

Coulomb energies and low temperatures, and the absence

of sign problems. Also, in contrast to finite-size variational

QMC, ED is applicable away from half-filling. On the other

hand, due to the exponential growth of the Hilbert space, the

number of levels representing the bath surrounding the cluster

is severely limited. Here, we use 12 levels in total, that is, six

impurity levels and six bath levels. Since these bath states are

coupled indirectly via the on-site Coulomb repulsion within

the six-atom cluster, the spacing between excitation energies is

very small. Finite-size errors are thereby greatly reduced, even

at low temperatures, so that self-energies and spectral functions

can be evaluated reliably at rather low real frequencies.

The ED/CDMFT results discussed later reveal a contin-

uous Mott transition in excellent correspondence with the

variational QMC simulations by Meng et al.5 and with the

QMC/CDMFT calculations by Wu et al.11 The critical on-site

Coulomb energy is considerably smaller than that found in

single-site DMFT calculations.8,9 Furthermore, short-range

correlations included within CDMFT are shown to give rise to

metallic and insulating contributions to the self-energy at the

Dirac points in the Brillouin zone, where the former dominate

at low Coulomb interactions and the latter increase essentially

quadratically with the nearest-neighbor nonlocal self-energy

component. These terms lead to the excitation gap above the

Mott transition. Below the transition, they yield a narrow

pseudogap. Thus, short-range correlations induced via on-site

Coulomb repulsion give rise to deviations from Fermi-liquid

behavior in some range below the critical interaction strength.

Also, the effective-mass enhancement does not diverge at the

Mott transition, but increases to a finite value. The opening

of the pseudogap below the transition, and the variation of

the effective mass with Coulomb energy, are qualitatively

similar to analogous results obtained within cluster DMFT

calculations for the square lattice.15–17

The outline of this paper is as follows: In the next section, we

briefly outline the application of ED/CDMFT to the Hubbard

model for the honeycomb lattice. Section III provides a

discussion of the results. The summary is presented in Sec. IV.

The focus in this work is on the paramagnetic semimetal-to-

insulator transition. Spin-liquid and antiferromagnetic phases

will be addressed in a subsequent publication.
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II. CLUSTER ED/DMFT FOR THE HONEYCOMB

LATTICE

In this section, we discuss the combination of cluster DMFT

with finite-temperature ED for the purpose of evaluating the

effect of nonlocal Coulomb interactions on the honeycomb

lattice. The Hubbard Hamiltonian is given by

H = −t
∑

〈ij〉σ

(c+
iσ cjσ + H.c.) + U

∑

i

ni↑ni↓, (1)

where the sum in the first term includes only nearest neighbors,

t is the hopping matrix element, and U is the on-site Coulomb

repulsion. The band dispersion for the honeycomb lattice

may be written as ǫ(k) = ±t |1 + eikx

√
3 + ei(kx

√
3+ky3)/2|. In

the following, we define t = 1 as an energy unit.

Let us divide the two-dimensional lattice into clusters

consisting of six sites. Within the unit cell, the positions

are specified as a1 = (0,0), a2 = (1,0), a3 = (
√

3/2,3/2),

a4 = (
√

3,1), a5 = (
√

3,0), and a6 = (
√

3/2, − 1/2). The

nearest-neighbor spacing is taken to be a = 1. The supercell

lattice vectors are then given by A1/2 = (3
√

3/2, ± 3/2).

Within CDMFT,12 the interacting lattice Green’s function in

the cluster site basis is given by

Gij (iωn) =
∑

k

[iωn + µ − t(k) − �(iωn)]−1
ij , (2)

where ωn = (2n + 1)πT are Matsubara frequencies and µ is

the chemical potential. The k sum extends over the reduced

Brillouin zone, t(k) denotes the hopping matrix for the

superlattice, and �ij (iωn) represents the cluster self-energy

matrix in the site representation. The diagonal elements of the

symmetric matrix Gij are identical and there are three inde-

pendent off-diagonal elements: G12 = G16, G13 = G15, and

G14. Because of these symmetry properties, it is convenient to

go over to a diagonal “molecular orbital basis,” in which the

elements Gm(iωn) are given by

G1/2 = (G11 + 2G13) ± (G14 + 2G12),
(3)

G3/4 = G5/6 = (G11 − G13) ± (G14 − G12).

The self-energy matrix satisfies the same symmetry prop-

erties as G and can therefore be diagonalized in the same

fashion. These elements will be denoted as �m(iωn). Later

we will focus on the special case of half-filling. Since the

density of states is then particle-hole symmetric with respect

to ω = 0, Gii(iωn) is purely imaginary. The same applies to

G13, whereas G12 and G14 are real, corresponding to odd

density-of-states components. Thus, the diagonal molecular

orbital components of G satisfy G2 = −G∗
1 and G4 = −G∗

3.

Figure 1 illustrates the uncorrelated density-of-states compo-

nents in the diagonal basis, where ρm(ω) = − 1
π

Im Gm(ω) for

� = 0. The even and odd on-site and intersite components

may be obtained by inverting Eq. (3).

A central feature of DMFT is that, to avoid double-counting

of Coulomb interactions in the quantum impurity calculation,

the self-energy must be removed from the small cluster in

which correlations are treated explicitly. This removal yields

the impurity Green’s function

G0(iωn) = [G(iωn)−1 + �(iωn)]−1. (4)
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FIG. 1. (Color online) Total density of states ρ(ω) (solid curve)

of the honeycomb lattice and cluster components ρm(ω) (dashed

curves) within a diagonal molecular orbital basis. For clarity, these

components are divided by nc = 6. Orbitals 3 and 4 are doubly

degenerate. ω = 0 defines the Fermi energy for half-filling.

For the purpose of performing the ED calculation, we now

project the diagonal components of G0(iωn) onto those of a

larger cluster consisting of six impurity levels and six bath

levels, that is, ns = 12 is the total number of levels. Thus,

G0,m(iωn) ≈ Gcl
0,m(iωn)

=

(

iωn + µ − ǫm −
12

∑

k=7

|Vmk|2

iωn − ǫk

)−1

, (5)

where ǫm denotes impurity levels, ǫk denotes bath levels, and

Vmk denotes hybridization matrix elements. The incorporation

of the impurity level ǫm in the fitting procedure yields a more

accurate representation of G0,m(iωn) than by projecting only

onto bath levels.

Assuming independent baths for the diagonal cluster

molecular orbitals, each component G0,m(iωn) is fitted using

three parameters: one impurity level ǫm, a bath level ǫk , and

a hopping integral Vmk . To evaluate the finite-temperature

interacting Green’s function of the cluster, it is useful to

transform the impurity orbitals back to the site representation

in which the Coulomb interaction is diagonal. We denote

this transformation by T̄ , where the matrix elements are

given by

T̄im =



























1√
6

1√
6

0 1√
3

1√
3

0

1√
6

− 1√
6

− 1
2

1

2
√

3
− 1

2
√

3

1
2

1√
6

1√
6

1
2

− 1

2
√

3
− 1

2
√

3

1
2

1√
6

− 1√
6

0 − 1√
3

1√
3

0

1√
6

1√
6

− 1
2

− 1

2
√

3
− 1

2
√

3
− 1

2

1√
6

− 1√
6

1
2

1

2
√

3
− 1

2
√

3
− 1

2



























. (6)

Thus, the diagonal 6 × 6 subblock of the cluster Hamiltonian,

hb = (ǫkδkk′), representing the bath levels remains unchanged,

while the 6 × 6 impurity subblock becomes nondiagonal in
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the cluster site basis:

hc =



















ǫ τ τ ′ τ ′′ τ ′ τ

τ ǫ τ τ ′ τ ′′ τ ′

τ ′ τ ǫ τ τ ′ τ ′′

τ ′′ τ ′ τ ǫ τ τ ′

τ ′ τ ′′ τ ′ τ ǫ τ

τ τ ′ τ ′′ τ ′ τ ǫ



















, (7)

with

ǫ = [(ǫ1 + ǫ2) + 2(ǫ3 + ǫ4)]/6,

τ = [(ǫ1 − ǫ2) − (ǫ3 − ǫ4)]/6,
(8)

τ ′ = [(ǫ1 + ǫ2) − (ǫ3 + ǫ4)]/6,

τ ′′ = [(ǫ1 − ǫ2) + 2(ǫ3 − ǫ4)]/6.

We point out that the hopping element t of the original lattice

Hamiltonian does not appear since it is absorbed into τ via the

molecular orbital cluster levels ǫm, which are adjusted to fit

G0,m(iωn). The preceding procedure, therefore, includes not

only hopping between cluster and bath. It also introduces four

new parameters within the six-site cluster: the on-site level ǫ,

and up to third-neighbor hopping parameters: τ , τ ′, and τ ′′. At

half-filling, ǫ2 = −ǫ1 and ǫ4 = −ǫ3 for symmetry reasons, so

that ǫ = τ ′ = 0. In this mixed site-molecular orbital basis, the

hybridization matrix elements Vmk between cluster and bath

molecular orbitals introduced in Eq. (5) are transformed to

new hybridization matrix elements between cluster sites i and

bath orbitals k. They are given by

V ′
ik = (T̄ V )ik =

∑

m

T̄imVmk . (9)

The single-particle part of the cluster Hamiltonian now reads

h0 =
(

hc V ′

V ′t hb

)

. (10)

Adding the on-site Coulomb interactions to this Hamiltonian,

the nondiagonal interacting cluster Green’s function at finite

T can be derived from the expression18,19

Gcl
ij (iωn) =

1

Z

∑

νµ

e−βEν

( 〈ν|ciσ |µ〉〈µ|c+
jσ |ν〉

Eν − Eµ + iωn

+
〈ν|c+

iσ |µ〉〈µ|cjσ |ν〉
Eµ − Eν + iωn

)

, (11)

where Eν and |ν〉 denote the eigenvalues and eigenvectors of

the Hamiltonian, β = 1/T , and Z =
∑

ν exp(−βEν) is the

partition function. Further details concerning the evaluation of

the cluster Green’s function can be found in Ref. 20, where

the analogous procedure is discussed for the square lattice.

Since Gcl
ij satisfies the same symmetry properties as Gij , it is

diagonal within the molecular orbital basis, with elements Gcl
m.

The diagonal cluster self-energy components are then given by

an expression analogous to Eq. (4):

�cl
m(iωn) = 1/Gcl

0,m(iωn) − 1/Gcl
m(iωn). (12)

The important assumption in DMFT is now that this

impurity cluster self-energy is a physically reasonable rep-

resentation of the lattice self-energy. Thus,

�m(iωn) ≈ �cl
m(iωn), (13)

where, at real frequencies, �m(ω) is continuous whereas

�cl
m(ω) is discrete.

In the next iteration step, these diagonal self-energy

components are used as input in the lattice Green’s function

Eq. (2), which in the molecular orbital basis may be written as

Gm(iωn) =
∑

k

[

iωn + µ − T̄ t(k)T̄ −1 − �(iωn)
]−1

mm
, (14)

where T̄ is the transformation defined in Eq. (6). Note that

T̄ t(k)T̄ −1 is not diagonal at general k points. As a result,

all molecular orbital components of �(iωn) contribute to all

components Gm(iωn). We also point out that, to get adequate

resolution at low frequencies, because of the vanishing density

of states, a sufficiently large number of k values near the Dirac

points must be included in the Brillouin zone integration.

III. RESULTS AND DISCUSSION

Figure 2(a) shows the low-energy region of the interacting

density of states for several Coulomb energies, at temperature

T = 0.005. These distributions are derived from an extrapo-

lation of the local lattice Green’s function G11(iωn) to real

frequencies. To illustrate the stability of this extrapolation,
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FIG. 2. (Color online) (a) Low-energy region of density of

states A11(ω) = − 1

π
Im G11(ω) of the honeycomb lattice for several

Coulomb energies at T = 0.005. The noninteracting density of states

is indicated by the black dotted curve. Between 50 and 200 Matsubara

points are used to extrapolate the lattice Green’s function to real

frequencies. (b) Density of states over a wider energy range for U = 5

and 7.
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at each value of U several curves are plotted for 50 to 200

Matsubara points, with an additional small energy broadening

of the order of 0.1ω2. (For |ω| > 1, the broadening is kept

constant at 0.1.) At U = 3, a tiny gap or pseudogap is seen,

which is near the limit of what can be resolved within

ED/DMFT. At U = 4, a full gap of width � ≈ 0.25 has

opened. Its width increases approximately to � ≈ 0.6 when

the Coulomb energy is increased to U = 5. This trend is

consistent with the one found in Refs. 5 and 11. The variation

of the gap over a wider range of U is indicated in Fig. 3(a).

The spectral distributions in Fig. 2 show that the van Hove

singularity at ω = ±1 is strongly broadened and its weight is

shifted to lower energies. Above the transition, the Hubbard

bands are difficult to resolve as long as U is less than the

bandwidth, but they become pronounced once U > W , as

shown in Fig. 2(b) for U = 7.

These results suggest that nonlocal correlations in the hon-

eycomb lattice induce a paramagnetic semimetal-to-insulator

Mott transition in the range U = 3–4. Because of the continu-

ous nature of the transition (see later), it is difficult to identify

the precise value of the critical interaction. Nevertheless, our

finding is consistent with the variational QMC simulations5

and the QMC/DMFT calculations,11 which yield Uc ≈ 3.6.

It is also in qualitative agreement with earlier finite-size

cluster QMC simulations, which gave Uc ≈ 4.5 (Ref. 6) and

Uc ≈ 4–5 (Ref. 7). On the other hand, all of these values

are significantly lower than those obtained within single-site

DMFT, which yields Uc ≈ 10–13.8,9 Moreover, in agreement

with Refs. 5–7 and 11, we do not find any hysteresis behavior

for increasing versus decreasing U , as shown in Fig. 3(b),

for the double occupancy, indicating that the transition is

continuous. In contrast, within local DMFT the transition was

shown to be of first order.9 Figure 3(c) shows the on-site and

intersite spin correlations, 〈S1zSiz〉, for i = 1–4. The on-site

and second-neighbor components are positive, while the first-

and third-neighbor components are negative, underlining the

antiferromagnetic nature of the spin correlations.

One of the interesting effects of Coulomb interactions in

multiorbital systems is the possibility of correlation-induced

charge transfer between orbitals. As shown in Fig. 1, the

six-site unit cell of the honeycomb lattice may be viewed

as consisting of six molecular orbitals, which are split

by an effective crystal field and therefore have different

orbital occupancies. Figure 3(d) shows the variation of these

occupancies with Coulomb energy. Evidently, there is little

orbital polarization, a result that was also observed in CDMFT

calculations for the square and triangular lattices.21 Moreover,

the double occupancy, the spin correlations, and the orbital

occupancies reveal no clear sign of a Mott transition in the

region where the spectral distribution exhibits the opening of

a gap.

To analyze the nature of the semimetal-to-insulator tran-

sition, it is therefore necessary to examine the nonlocal

contributions to the self-energy. Figure 4 shows the four

independent components of the cluster self-energy �(iωn)

within the site basis, for Coulomb energies in the region

of interest, U = 3–5. For symmetry reasons, �11(iωn) and

�13(iωn) are purely imaginary. They behave as ∼ iωn at low

frequencies. In contrast, �12(iωn) and �14(iωn) are real and

approach a finite value in the limit ωn = 0.
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FIG. 3. (Color online) (a) Excitation gap �, (b) average dou-

ble occupancy docc, (c) local and nonlocal spin correlations

〈S1zSiz〉, and (d) molecular orbital occupancies nm as functions

of Coulomb energy for T = 0.005. Orbitals 3 and 4 are doubly

degenerate. There is no indication of hysteresis behavior in the

critical region U = 3–4.

In a seminal paper long before the synthesis of graphene,

González et al.3 studied the influence of electron-electron

interactions on the quasiparticle lifetime in a single layer of
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FIG. 4. (Color online) Self-energy components �1i(iωn),

i = 1–4, for the honeycomb lattice in cluster site representation as

functions of Matsubara frequency for Coulomb energies U = 3–5 in

steps of 0.2; T = 0.005.

graphite. Taking into account the long-range nature of the

Coulomb interaction, their renormalization-group calculations

indicate that the suppression of electronic screening at low

frequencies yields deviations from conventional Fermi-liquid

behavior, with Im �(ω) approximately linear in ω for

ω = 0.4–3.0 eV (for t = 2.4 eV).

To determine possible non-Fermi-liquid contributions to the

self-energy derived within the present ED/CDMFT approach,

we have carefully searched for ωnln(ωn) behavior in the

imaginary components �11(iωn) and �13(iωn). Within the

accuracy of our results, these functions do not indicate any

such deviations and seem to be well proportional to iωn

in the entire range U = 0–5. Also, they do not indicate

a finite limiting value for ωn → 0, which would imply a

finite lifetime for states near the Fermi energy. Thus, the

non-Fermi-liquid properties obtained in Ref. 3 seem to be

associated with the long-range part of the Coulomb repulsion,

which is absent in the Hubbard model for purely on-site

interactions.22

We note, however, that to understand the spectral features of

the quasiparticle density of states, it is not sufficient to study

the self-energy components shown in Fig. 4. In particular,

these isolated components do not provide any evidence for

a Mott transition in the region U = 3–4, where the density

of states shown in Fig. 2 indicates the opening of a gap. To

illustrate the smoothness of the self-energy components in

this range of Coulomb energies, we show in Fig. 5(a) the

slopes of Im �11 and Im �13, and the values of Re �12 and

Re �14 in the low-frequency limit. Evidently, these individual

components do not reveal the existence of the Mott transition

seen in the density of states. This behavior differs qualitatively

from the Hubbard model for the square lattice at half-filling,

where at the metal-insulator transition the (π,0) component of

the self-energy changes from ∼ iωn to ∼ 1/iωn at small ωn,
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FIG. 5. (Color online) (a) Low-frequency limits of self-energy

components: slopes of Im �11(iωn), Im �13(iωn), and values of

Re �12(iωn), Re �14(iωn), as functions of U . (b) Amplitude

b2/(1 − a) of insulating contribution to �(K,iωn), Eq. (20), as a

function of U ; T = 0.005.
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and the real part of the (0,0) and (π,π ) components exhibits a

jump.16,17

The origin of this apparent discrepancy is the fact that,

as pointed out earlier, the local interacting density of states

depends in a highly nonlinear manner on all nonlocal

self-energy components �ij . This is evident from the

expression for the lattice Green’s function, Eq. (2), where the

hopping matrix t(k) and �(iωn) cannot be simultaneously

diagonalized, as indicated also in Eq. (14). To account for

this admixture of intersite self-energy elements, it is useful to

examine the 6 × 6 cumulant matrix

M(iωn) = [iωn − �(iωn)]−1. (15)

Since M has the same symmetry properties as �, its nonlocal

components are given by

M11 = [(M1 + M2) + 2(M3 + M4)]/6,

M12 = [(M1 − M2) − (M3 − M4)]/6,
(16)

M13 = [(M1 + M2) − (M3 + M4)]/6,

M14 = [(M1 − M2) + 2(M3 − M4)]/6,

where the diagonal molecular orbital elements are

Mm(iωn) = [iωn − �m(iωn)]−1. (17)

The opening of the Mott gap takes place at the six K points

of the Brillouin zone. To analyze the behavior of the cumulant

at these points, we make use of the periodization23

M(k,iωn) =
1

6

6
∑

ij=1

eik·(ai−aj )Mij (iωn), (18)

where ai are the positions within the six-site cluster. At

K = 2π (2/3
√

3,0) and K ′ = 2π (1/3
√

3,1/3), this expres-

sion simplifies to

M(K,iωn) = M11(iωn) − M13(iωn)

= [M3(iωn) + M4(iωn)]/2. (19)

The self-energy at K is therefore given by

�(K,iωn) = iωn − M−1(K,iωn)

≈ iωna +
b2

iωn(1 − a)
, ωn → 0, (20)

where a is the initial slope of Im [�11(iωn) − �13(iωn)] and

b is the low-frequency limit of Re [�12(iωn) − �14(iωn)].

This self-energy is shown in Fig. 6 for various Coulomb

energies. The preceding expression indicates that �(K,iωn) is

imaginary as expected for particle-hole symmetry at the Dirac

points. It consists of metallic (∼ iωn) and insulating (∼ 1/iωn)

contributions. The insulating term, which is responsible for

the opening of the Mott gap, increases quadratically with

b = Re (�12 − �14). Thus, the semimetal-to-insulator transi-

tion is driven primarily by the nearest-neighbor component of

the nonlocal self-energy, with a minor additional contribution

due to the third-neighbor self-energy, and a weak renormaliza-

tion related to the initial slope of Im [�11(iωn) − �13(iωn)].

The variation of the amplitude b2/(1 − a) of the insulating

term with Coulomb energy is depicted in Fig. 5(b). The
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FIG. 6. (Color online) (a) Imaginary part of self-energy at K ,

Eq. (20), as a function of Matsubara frequency, for U = 1–5 at

T = 0.005. (b) ωnIm �(K,iωn), demonstrating the range of the

insulating part of the self-energy at Dirac points K . Solid red curves

denote integer values of U , dashed blue curves denote intermediate

values.

comparison with Fig. 3(a) demonstrates that the excitation

gap � roughly tracks the amplitude of this term.

According to the results shown in Fig. 4, a ≈ −0.2, . . . ,

−0.6 and b ≈ −0.05, . . . , − 0.6 in the range U = 3–5. Thus

at U = 3, the amplitude of the insulating term is about

102 times smaller than at U = 5. Nevertheless, this small

contribution is responsible for the pseudogap below the Mott

transition, indicating the breakdown of Fermi-liquid behavior

in the metallic phase. For U < 2, we find |b| < ω0, so that the

pseudogap can no longer be resolved within the accuracy of

ED. A similar pseudogap induced by short-range correlations

at half-filling was observed below the Mott transition in the

Hubbard model for the square lattice.15–17 Neglecting the

small insulating term of �(K,iωn) sufficiently far below

the transition, the effective-mass enhancement of the quasipar-

ticle bands near the Dirac points is given by m∗/m = 1 − a =
1.0, . . . ,1.2 for U = 0–3, that is, it does not diverge at the

Mott transition, in contrast to results derived within single-site

DMFT. This finding is also consistent with the behavior seen

on the square lattice.16

We close this section by commenting briefly on the rele-

vance of the results discussed earlier for graphene. There exists

at present considerable debate on the role of screening and on

the magnitude of the short-range Coulomb repulsion in this

material.2 In the case of a benzene molecule, the on-site Hub-

bard interaction was estimated to be U ≈ 17 eV.24 In contrast,

in polyacetylene this value is reduced to about U ≈ 10 eV, with

a hopping interaction t = 2.5 eV.25 The ratio U/t ≈ 4 would

then be slightly larger than the critical Coulomb interaction
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found here and in Refs. 5 and 11. On the other hand, first-

principles and mean field Hubbard model calculations26 yield

ratios U/t ≈ 1, . . . ,2, depending on the exchange-correlation

functional used in the density-functional calculation. There is

clearly a great need for further theoretical and experimental

work to investigate to what extent a purely on-site Hubbard in-

teraction is adequate for graphene, and to determine its realistic

magnitude.

IV. SUMMARY

The influence of on-site Coulomb interactions on the

electronic properties of the honeycomb lattice has been

investigated within cluster dynamical mean field theory

combined with exact diagonalization. The interacting density

of states exhibits the opening of a Mott gap in the region

U = 3–4, which is caused by a change of the self-energy

at the Dirac points of the Brillouin zone from metallic-

to-insulating behavior. This transition is in good agreement

with finite-size extrapolations of variational QMC simulations

and with continuous-time QMC calculations based on cluster

DMFT. As a result of short-range fluctuations, the critical

Coulomb energy is significantly smaller than in single-site

DMFT calculations. Also, a narrow pseudogap is found close

to the Mott transition. Finally, the effective mass shows a

moderate enhancement at finite U , but it does not diverge at

the transition.

The consistency between the ED and QMC calculations for

the honeycomb lattice, including the variation of the Mott gap

with on-site Coulomb repulsion, suggests that, as long as the

overall size of the Hilbert space is sufficiently large, yielding

small enough level spacing, the use of only one bath level per

impurity orbital can be adequate. This situation differs from

the one for fewer sites or orbitals, where more bath levels per

impurity level must be included to achieve sufficiently large

Hilbert spaces.
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