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Abstract

The scope of this thesis is to gain insight, by means of ab initio-calculations, into the physics
of momentum and spin relaxation phenomena induced by electron scattering at impurities
and defects in the noble metals copper, silver and gold.

The main results are subdivided in three parts. In the first part, momentum- and spin-
relaxation times due to scattering at 3d, 4sp, 4d, 5sp , bd and 6sp impurities in copper and
gold fcc bulk are investigated. The inversion symmetry of the crystals leads to a two-fold
degeneracy of all states on the Fermi surface, and therefore spin relaxation is dominated
by the Elliott-Yafet mechanism as well as the spin-orbit coupling of the impurity. For im-
purities in gold, we calculate much shorter spin-relaxation times than in copper because
of the stronger spin-orbit coupling of the gold host. Furthermore, we have found impor-
tant qualitative differences between the relaxation times obtained for the d- and the sp-
impurities. As scattering at d-impurities is resonant, the electrons spend much more time
at the impurity sites than in the case of the sp-impurities; therefore, they are much longer
exhibited to the spin-orbit coupling of the impurity. This results in considerably shorter
spin-relaxation times, even if the momentum scattering rates are in the same order of mag-
nitude. Finally, the investigation of interference of scattering processes at impurity dimers
reveals that relevant differences to the independent-impurity approximation appear only
for strong d-scatterer, placed at nearest neighboring sites.

In the second part we investigate the reduction of spin-conserving surface-state lifetimes in-
duced by adatom- and impurity-scattering on the (111) surfaces of copper, silver and gold
films with different thicknesses. We have found strong qualitative differences in the life-
times when comparing the results for adatoms to those of impurities in the first and second
layer. The trends for the latter ones are similar to those calculated in bulk in the first part
of the thesis.

In the third part, we investigate spin-orbit induced effects on thin (001) and (111) copper
and gold films with focus on spin-relaxation mechanisms. We consider both symmetric
and asymmetric systems, where the asymmetry of the latter ones is created by covering one
side of the film with one layer of Zn. For the symmetric films, spin-mixing parameters
and momentum- and spin-relaxation times due to scattering at self-adatoms are calculated.
Whereas the largest spin-mixing in (111) films has been obtained for the surface states, on
the Fermi surfaces of the (001) films spin hot spots occur, which are caused by anticrossings
of bands and lead to locally very high spin mixing.



ii Introduction

In the asymmetric films, the situation is qualitatively different, as the spin-orbit coupling
results in a splitting of all bands and the formation of local effective magnetic fields, the
so-called spin-orbit fields. The precession of the electron spin around these axes together
with momentum scattering, resulting in a change of the precession axis after each scatter-
ing event, is known to lead to spin dephasing. Spin-orbit fields for (001) and (111) copper
and gold films are presented. Large fields have been obtained for both surface orientations
especially for bulk-like states at the outer boundaries of the Brillouin zone. Furthermore,
for the (111) surface states, we find a Rashba-splitting which agrees with experiment and
previous calculations.



Zusammenfassung

In der vorliegenden Arbeit werden spinerhaltende und spinumkehrende Relaxationszeiten
in den drei Edelmetallen Kupfer, Silber und Gold berechnet, die durch Streuung an Fremd-
atomen und Fehlstellen reduziert werden. Dabei werden spinumkehrende Streuprozesse
durch Einbeziehung der Spin-Bahn-Kopplung beriicksichtigt.

Die Ergebnisse der Arbeit sind in drei Teile gegliedert: Im ersten Teil werden spinerhal-
tende und spinumkehrende Relaxationszeiten in unendlich ausgedehnten kubisch flachen-
zentrierten Kupfer- und Goldkristallen untersucht, die durch die Streuung an 3d, 4sp, 4d,
5sp, 5d und 6sp Fremdatomen verringert werden. Die Inversionssymmetrie der idealen
Kristalle fithrt zu einer zweifachen Entartung aller Zustande, so dass spinumkehrende Streu-
prozesse im wesentlichen durch den Elliott-Yafet Mechanismus und durch die Spin-Bahn-
Kopplung der Fremdatome induziert werden. Aufgrund der stirkeren Spin-Bahn-Kopplung
von Gold sind die berechneten Spinrelaxationszeiten in Gold wesentlich kiirzer als die,
welche fiir den Kupferkristall berechnet wurden. Desweiteren ergeben sich wichtige Un-
terschiede zwischen der Streuung an d- und sp-Fremdatomen. Da die Streuung an d-
Fremdatomen resonant ist, verweilen die Elektronen wesentlich langer auf den Fremd-
atomen als bei den sp-Streuern, so dass sie fiir eine lingere Zeit der Spin-Bahn-Kopplung
des Fremdatoms ausgesetzt sind. Dies fithrt zu deutlich kiirzeren Spinrelaxationszeiten fiir
die d-Streuer. Schliefllich werden die Auswirkungen von Vielfachstreueffekten an Dimern
von Fremdatomen diskutiert. Ein wesentlicher Unterschied wurde nur fiir starke d-Streuer,
die auf benachbarten Gitterplitzen sitzen, gefunden.

Im zweiten Teil der Arbeit werden Lebensdauern von Oberflichenzustanden auf den (111)
Oberflachen von Kupfer, Silber und Gold studiert. Dabei werden Schichtsysteme mit unter-
schiedlicher Lagenanzahl sowie die Auswirkungen von 3d- und 4sp-Adatomen und Fremd-
atomen in der ersten und zweiten Oberflichenlage diskutiert. Es zeigt sich, dass sich die
Oberflachenlebensdauern bei Streuung an Adatomen deutlich von denen an Fremdatomen
in der ersten und zweiten Oberflichenlage unterscheiden. Letztere ahneln sehr stark den
Kurvenverldufen, die im ersten Teil fiir die unendlich ausgedehnten Kristalle berechnet
wurden.

Im letzten Teil der Arbeit werden die beiden Aspekte des ersten und des zweiten Teils ver-
eint, und Spin-Bahn-induzierte Effekte auf (001) und (111) Oberflichen diinner Kupfer-
und Goldschichten untersucht. Dabei werden sowohl symmetrische als auch asymmetrische
Systeme studiert, wobei die Asymmetrie durch die Ersetzung einer Kupfer- bzw. Goldlage

iii
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durch eine Lage Zink erzeugt wird.

Fiir die symmetrischen diinnen Schichten wurden die Spin-mixing-Parameter auf der Fer-
miflache berechnet. Wihrend bei den (111) Oberflachen das grofite Spin-mixing fiir die
Oberflachenzustinde gefunden wurde, werden die (001) Oberflichen durch sogenannete
Spin-hotspots an den Réndern der Brillouinzone dominiert, die durch Bandantikreuzun-
gen entstehen. Die Berechnung der spinerhaltenden und spinumkehrenden Relaxations-
zeiten an Selbstadatomen zeigt deutliche Unterschiede zwischen Gold und Kupfer als auch
den verschiedenen Oberflachenorientierungen auf.

In asymmetrischen diinnen Schichten fiihrt die Spin-Bahn-Kopplung zu einer Aufspal-
tung aller Zustande und der Ausbildung von lokalen effektiven Magnetfeldern, den soge-
nannten 'Spin-Bahn-Feldern', um die der Elektronenspin prazediert. Die Streuung zu an-
deren Zustdnden mit anderen Magnetfeldachsen fiihrt zu einem Verlust der urspriinglichen
Spinquantisierungsachse. Dies wird als D'yakonov-Perel' -Mechanismus bezeichnet. In
der Arbeit werden die Spin-Bahn-Felder von diinnen (001) und (111) Kupfer- und Gold-
schichten berechnet. Die Oberflachenzustinde der (111) Oberflichen zeigen eine Rashba-
aufspaltung, die gut mit experimentellen und frither berechneten Werten tibereinstimmmt.
Grofle Spin-Bahn-Felder wurden auerdem fiir bulk-artige Zustdnde an den dufleren Rin-
dern der Brillouinzone gefunden, die insbesondere in der Néahe der zinkartigen Zustande
auftreten.
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CHAPTER 1

Introduction

The control and manipulation of electron spin currents in metals is one of the grand chal-
lenges in the field of spintronics. Being a truly multidisciplinary field it combines key in-
sights from magnetism research, semiconductor and mesoscopic physics, and optics with
technological advances such as the structure miniaturization of nanodevices. Even though
it is a relatively recent field, it relies closely on a long tradition of investigations. One of the
pioneering works was provided by Mott already in 1936 [1, 2], who explained the unusual
behavior of the resistance in ferromagnetic metals with the concept of spin-polarized cur-
rents. Furthermore, the discovery of the giant magnetoresistance effect (GMR) by Albert
Fert [3] and Peter Griinberg [4] in 1988 mark a breakthrough in spintronics, which was re-
warded with the Nobel price in 2007 and led to a very successful application: already eight
years after its discovery, the effect was exploited in hard disk drives common to most PCs;
its spectacular innovation was the transformation of spin information into charge current.
A few years earlier, Johnson and Silsbee [5, 6] for the first time succeeded to electrically
inject and measure a non-equilibrium spin accumulation in metals, establishing a new
method to detect spin relaxation.

All these findings rely on three fundamental characteristics of electrons, making them highly
attractive for the transfer of information [7]: First, they can be polarized and store infor-
mation in their spin state (up or down). Secondly, their mobility allows to transfer the
information to another place, where, third, the information can be read out. Of course,
this works only if the information is not lost, i.e. the spin state has not changed during the
transport process.

The decay of a non-equilibrium spin state towards an equilibrium is generally called spin re-
laxation. The strength of spin relaxation is quantitatively specified by a spin-relaxation time
T, after which the system has come close to equilibrium, or the related spin-relaxation
length )\, characterizing the length after which the spin current has decayed. In order to
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ensure the successful transfer of information, long spin relaxation times are desired!. Fur-
thermore, the active manipulation of the spin states must be able to benefit fully from these
properties; otherwise, the sheer existence of two spin states is of limited use. These two
closely related issues are the major subject of most of theoretical and experimental investi-
gations in the field of spintronics.

Spin relaxation is a very complex phenomenon. It strongly depends on the investigated ma-
terial, and can be modulated by a great variety of parameters. Changing the dimensionality,
doping or alloying can reduce or enhance the spin relaxation by several orders of magni-
tude [8]. There are several mechanisms of spin relaxation, but most of them are induced
by spin-orbit coupling, providing a spin-dependent potential, which together with momen-
tum scattering processes can be considered as a randomizing force. The two most important
mechanisms of spin relaxation are the Elliott-Yafet mechanism [9] and the D'yakonov-Perel
mechanism [10]. Whereas the first one leads to a decrease of spin-relaxation times for large
momentum scattering rates, the latter mechanism yields the inverse behavior: large mo-
mentum scattering rates entail long spin-relaxation times.

The Elliott-Yafet mechanism is dominating in inversion-symmetric metals, in small-gap
semiconductors as well as in those with a large spin-orbit coupling. In contrast, the D'ya-
konov-Perel' mechanism is uniquely present in systems without inversion symmetry and
based on the splitting of the energy levels caused by the interplay of asymmetry and spin
orbit-coupling together with momentum scattering.

Although spin relaxation in semiconductors has been studied intensively, there are not so
many studies on this subject in metals. Theoretical investigations of spin relaxation due
to electron-electron scattering were recently published [11], while first results for ab ini-
tio spin-relaxation times in metals caused by impurity-scattering have been published in
[12, 13]. Furthermore, an investigation of conduction electrons in polyvalent metals (Al)
was provided in [14].

Experimentally, spin relaxation in metals has been first studied in Na, Be and Li with the
conduction-electron spin resonance technique (CESR) [15], allowing for an indirect mea-
surement of spin-relaxation times. Already these early investigations have shown that spin-
relaxation times strongly depend on the impurity concentration. Furthermore, a linear
scaling with temperature has been observed [16, 17]. With the development of the spin-
injection technique in [5], the detection of spin-relaxation times became experimentally
feasible. Compared to the spin resonance technique, it has the advantage of not requiring
magnetic fields and enabling the measurement of spin-relaxation times in films [6, 18], su-
perconductors [19], spin-glasses, and Kondo systems. Just recently, the measurement of
spin-relaxation times via the inverse spin Hall effect was realized in two different setups
[20, 21] and spin relaxation in e.g. Pt, Pd, Au and Mo has been studied.

As already mentioned, the experimental investigations of spin-relaxation times in metals
have revealed, that spin-relaxation processes are dominated by scattering at impurities and
phonons. Whereas phonons can be frozen out, in preparing samples a small concentration
of impurities and defects cannot be avoided. A first goal of this thesis is to contribute to this
field of exciting physics, providing a systematic ab initio study of impurity scattering in the

! An exception are devices, for which short switching times are required.



bulk of noble metals. The calculations of spin-relaxation times together with momentum
relaxation allow to draw conclusions about the dominating spin-relaxation mechanisms.
Coming back to the aspect of downscaling of nanoelectronic devices, not only the charac-
teristic of materials on an atomic scales gains importance, but also two-dimensional systems
get into the focus of research. Often, at surfaces or thin films, physics completely change.
In some materials such as at the (111) surfaces of the noble metals copper, silver and gold
surface states form and dominate the electron dynamics. To understand these electronic
excitations at surfaces even without spin-orbit coupling is of great interest, because their
temporal evolution determines the effectiveness of many important applications [22]. In
this extensive field of research, in the last years a lot of theoretical and experimental re-
search was done, which is not only due to the widespread of the subject; apart from the
great variety of systems which could be investigated, several very powerful methods for its
investigation have been developed [23]. While in (angle-resolved) photoemission experi-
ments an indirect measurement of surface-state lifetimes via the linewidth is possible [24],
two photon photoemission [25, 26] enables a direct measurement of lifetimes. In addition,
lifetime measurements using scanning tunneling microscopy and spectroscopy [22] allow
for a local investigation of surfaces, enabling the exclusion of defects and grain boundaries.
Similar as in photoemission spectroscopy, surface-state lifetimes can then be extracted from
the spectral linewidth. Just as spin-relaxation times, surface-state lifetimes are reduced by
different scattering mechanisms [23], namely scattering at crystal defects, phonons and by
electron-electron scattering [27]. Therefore, a second goal of this thesis is to focus on the
lifetime reduction of the (111) surface states of copper, silver and gold caused by scatter-
ing at impurities and defects; these are dominant at low temperatures, and in contrast to
electron-electron scattering [27] and scattering at phonons they are not well studied so far.
The third goal of this thesis is to combine the first two aspects, i.e. to gain inside into spin-
relaxation mechanisms at surfaces and in ultrathin films. As we find, the reduction of di-
mensionality affects the spin relaxation in non-trivial ways, due to effects of quantum con-
finement or by the onset of structural asymmetry in deposited films.

The thesis is structured as follows. The first two chapters give a short introduction to the the-
ories providing the basis of our calculations, namely density functional theory (DFT) [28,
29] in chapter 2 and the Korringa-Kohn-Rostoker method (KKR) [30, 31] for electronic-
structure calculations in chapter 3. The latter is based on Green functions and follows a
multiple scattering ansatz. Therefore, it is very well suited for the numerical treatment of
scattering processes; the scattering ansatz is exploited in chapter 4, where a scheme to cal-
culate the band structure, the Fermi surface and the momentum-dependent wavefunction
on the Fermi surface is derived. Furthermore, the formalism used to describe impurity
scattering is introduced. The resulting scattering matrix yields the scattering rate from one
momentum state to a second one due to scattering at impurities in momentum space. Itisa
central quantity from which a number of physical quantities can be obtained. In this work,
we use it for the calculation of momentum-relaxation times and residual resistivities.

In chapter 5 spin-orbit coupling is discussed which is of central importance to this work.
After giving a short introduction into the underlying theory, we will outline how it is in-
cluded in the multiple scattering formalism of the KKR method. The derivation of this
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scheme and its implementation within the KKR code was an important part of this thesis.
It allows for the calculation of the (momentum-dependent) spin expectation values and the
Elliott-Yafet spin-flip parameters. We demonstrate that the degeneracy of wavefunctions
for inversion-symmetric systems due to spin-orbit coupling leads to unexpected phenom-
ena concerning the spin expectation values. Using a simple analytic model we show that
these are not due to a numerical mistake but of fundamental nature.

Furthermore, the Lippmann-Schwinger equation applied to impurity scattering is extended
to spin-flip scattering processes. A general expression including the spin degrees of freedom
for the scattering matrix is given. Finally, we demonstrate how spin-conserving momentum-
relaxation times as well as spin-flip relaxation times are obtained from the scattering matrix.
Chapter 6 provides some numerical tests of the implementation of spin-orbit coupling in
the code and discusses solutions to some of the problems we have encountered.

In the remaining three chapters 7 to 9, we finally present our calculated results. The main
topic of chapter 7 are spin-conserving and spin-relaxation processes due to impurity scat-
tering in the fcc bulk metals copper and gold. In these systems, the Elliott-Yafet mechanism
for spin-flip scattering prevails. Therefore, this chapter starts with a theoretical outline of
this mechanism. Afterwards, we discuss unexpected results from test calculations of spin-
conserving and spin-flip scattering rates. These results are substantiated by similar findings
obtained for a simple tight-binding program, documented in Appendix C. Furthermore, we
compare the calculated momentum-relaxation and spin-relaxation times to numerical and
experimental data.

A systematic study of momentum-relaxation and spin-relaxation times for 3d, 4sp, 4d, 5sp,
5d and 6sp impurities in gold and copper hosts is presented. The role of the spin-orbit
coupling in the host is investigated and the trends for spin-conserving and spin-flip scatter-
ing rates are compared. In order to understand the differences between these two trends,
Wigner delay times as well as residual resistivities are calculated. At the end of this chapter
we investigate multiple scattering at neighboring impurities, which has not been investi-
gated so far.

Chapter 8 focuses on spin-conserving scattering processes occurring at the (111) surfaces
of copper, silver and gold. Surface-state lifetimes due to impurity scattering are calculated
for impurities in the surface, one layer below the surface as well as for adatoms. Significant
qualitative differences in the trends are obtained. At the end of this chapter, we present
surface-state lifetimes as well as residual resistivities in thin films of varying thickness.

For many applications such as the spin Hall effect [32] as well as for spin relaxation, spin-
orbit induced effects occurring on surfaces and thin films are of crucial importance. There-
fore, in chapter 9 we consider quasi two-dimensional copper and gold systems as in the
chapter before, but under the influence of spin-orbit coupling. Furthermore, thin films with
broken symmetry are investigated, where the spin-transport processes are fundamentally
different compared to symmetric systems due to the appearance of spin-orbit fields, lead-
ing to the D'yakonov-Perel' mechanism. In the presented results we show that quantum
confinement leads to hot spots for spin-flip scattering that are absent in the bulk, and we
investigate the shape and strength of spin-orbit fields. We roughly estimate spin-dephasing
times, using the theory developed by D'yakonov and Perel'.

The results of this thesis are summarized in chapter 10.



CHAPTER 2

Density functional theory

In order to describe the chemical and physical properties of materials correctly, a quantum-
mechanical treatment of the many-particle system of electrons and nuclei with their basic
electrostatic Coulomb interactions is indispensable. Such systems are characterized by the
many-body Hamiltonian

ﬁ(rl,...,rN) = [T+U+‘7ext] (21)
N 1 N
= |- Vit ——5+ > Veu(r) |
i=1 i.j |I“i —1"]'| i=1

where V,; denotes an external potential and r; are the positions of the particles. In the
above formula, atomic units 7 = 1, m, = 1/2 and e = /2 have been used. The solution of
the corresponding Schrodinger equation

HV = BV, (2.2)

the many-body wavefunction W(ry,---,ry), is a very complicated object since it is a func-
tion of 3V spatial variables and [V spin variables. It is obvious that it cannot be obtained
without an approximation and even if this was the case, it would have been a too compli-
cated object to understand and predict properties of real materials.

The first idea how to deal with this problem came by Thomas [33] and Fermi [34] in 1927,
who obtained a heuristic description of the many-electron system totally in terms of the
electronic density. With this ansatz they provided the conceptual root of modern den-
sity functional theory (DFT) which formally reduces the many-body problem to a single-
electron problem. The basic statement of DFT is that all ground state properties of the
system are uniquely determined by the ground state electron density no(r). It goes back to
the original works of Hohenberg and Kohn in 1964 [28]. In this publication, Hohenberg
and Kohn showed that any property of a system of interacting electrons can be viewed as
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a functional of the ground state density n(r). However, since the exact functional is not
known, the statement is rather abstract and just by itself of no practical use. The key to its
application was provided only shortly after that in 1965 by Kohn and Sham [29] by intro-
ducing a fictitious, auxiliary electron system of non-interacting particles with an effective
potential Vg (r) constructed such that the density of the auxiliary non-interacting electron
system equals the density of the original system.

With this formulation Kohn and Sham paved the way to modern density functional theory
which since then has had many applications. It is nowadays the basis of most present-day
methods for treating electrons in atoms, molecules and solids.

2.1 Hohenberg-Kohn theorems

In their publication of 1964 [28], Hohenberg and Kohn formulated density-functional the-
ory as an exact theory of many-body systems. This fundamental work consists of two basic
theorems.

Theorem | For any system of interacting fermions in an external potential V. (r), the
potential V.. (r) is determined uniquely, up to a constant, by the ground state particle den-

sity no(r).

Corollary | Since both the kinetic energy and the Coulomb interaction are known, ac-
cording to the first theorem the Hamiltonian is fully determined, except for a constant shift
in the energy. Therefore, the many-body wavefunctions for all states including the ground
state and all excited states are fully determined, too. Consequently, it follows that all prop-
erties of the system are completely determined by the ground state density only.

According to Levy [35], the unique energy functional F'[n] can be defined as the minimum
over all wavefunctions which yield the density n(r),

EEI;<W|T+U+V;3)6|W> (2.3)

Fln]+ f @1 n(r) Ve (1) .

In the latter equation, the universal functional F'[n] with
Fln] = (9|T+Uv) (2.4)

was introduced being universal in the sense that it does not depend on the external potential
‘/ext ( r ) .

Theorem Il For any particular Vi (r), the energy obtains its minimum for the ground
state density ng and yields the ground state energy Ey = E[no].
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Corollary Il 'The functional E[n] alone is sufficient to determine the exact ground state
energy Fy and ground state density nq(r). In general, excited states of the electrons must
be determined by other means. Nevertheless, the work of Mermin [36] shows that ther-
mal equilibrium properties such as specific heat are determined directly by the free-energy
functional of the density.

The proof of the Hohenberg-Kohn theorem is simple and based on the Rayleigh-Ritz prin-
ciple for the ground state energy, given by E, = (¥, ’Ifl ’ \I/()). It enables the ground state
electron density to be calculated variational. For further information, see [37].

Originally, Hohenberg and Kohn formulated the two theorems for non-degenerate ground
states. However, at later times, the theorems were extended to the case of degenerate sys-
tems.

2.2 Kohn-Sham equations

Hohenberg and Kohn have transformed the formidable problem of finding the minimum
of (\II\I:I |\If) with respect to the 3V -dimensional trial wave function ¥ into the problem of
finding the minimum of E[n]. However, since the explicit form of the functional F[n] (see
eq. (2.4)) is not known, the theorems themselves are of no practical use. The key for their
application was given by Kohn and Sham [29] who used the variational principle implied by
the minimal properties of the energy functional to derive single-electron Schrodinger equa-
tions. Their basic idea was to to introduce a fictitious auxiliary system of non-interacting
particles with an effective external potential Vg (r) constructed such that the density of the
auxiliary non-interacting system equals the density of the interacting system of interest. The
one-to-one correspondence between the densities and the effective potentials is guaranteed
by the Hohenberg-Kohn-theorems applied for U = 0. In this case, the universal functional
F[n] reduces to the single-particle kinetic energy functional T[n], and the total-energy
functional results in

En]=Tin]+ f dr Vig(r)n(r) . (2.5)

Application of the Hohenberg-Kohn variational principle as formulated in Theorem II in
section 2.1 then leads to

[Es[n] + 1 [N - f d3r n(r)” = (Z;s([:)] +Veg(r)-pu=0 (2.6)

where we have introduced the Lagrange parameter 4 so that conservation of particles [ n(r)
N is guaranteed.

Using single-particle wavefunctions ®;(r) allows to construct the density n(r) as well as
the kinetic energy functional 7[n] in the form

)
on(r)

n(r) = Zl | (r)? 2.7)
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and
N
=y f &Br 0 (r) Vo, (r), (2.8)

respectively. The index 7 denotes both the spatial as well as the spin quantum numbers,
and N is the highest occupied state. Variation of E[n] with respect to the single-particle
wavefunctions 1);(r) then yields the N equations

[-V? + Ve (r) = p]®@i(r) = €04(r) (2.9)

which are the so-called Kohn-Sham equations. The parameter ¢; was introduced to guar-
antee for the normalization of the orbitals ®,(r), thus (®;|®;) = 1.

For solving the Kohn-Sham equations, it is necessary to find a useful expression for the ef-
fective potential Vi (r), which is still unknown. Therefore, Kohn and Sham suggested the
following splitting of the functional E[n] (see eq. (2.5))

fd r\/ext(r)n(r)wtff d3 dS N n(r)n(l") Exc[”]; (2.10)

e —r'|

where the third term represents the well-established Hartree-functional; the fourth term is
the so-called exchange-correlation energy functional defined as

By [n] = F[n] -Tyn] - % f dr d*r' M (2.11)

v =]

Application of the Hohenberg-Kohn variational principle (2.4) to eq. (2.10) results in

0Ti[n] . 2, n(r’) 5Exc[n] o
671( ) ext( ) fd I"| (S’I"L(I‘) K 0. (212)

Comparison of the latter equation with eq. (2.6) allows to find an expression of the effective
potential V g (r)

Var(r) = Veu(0) + [ ds'” +Vie(r) (213)
with the exchange-correlation functional
_ 0Ex[n]
Vie(r) = Sn(r) (2.14)

The Kohn-Sham equations (2.9) together with (2.7) and (2.8) are probably the most im-
portant equations in Density-Functional Theory. Although they are principally exact, their
practical solution requires approximations, since the exchange-correlation potential is not
known explicitly. The whole problem constitutes a self-consistent field problem, since the
effective potential depends on the density which, obviously, is directly connected to the
wave functions (see eq. (2.7)).

The Kohn-Sham equations can be solved iteratively, starting from a trial density which is
inserted into eq. (2.13) to obtain a first effective potential. This is used to calculate the wave



2.3. The local spin-density approximation 9

functions via eq. (2.9) and, finally, using eq. (2.7), a new density. The procedure is repeated,
until the difference between the starting density and the resulting one becomes sufficiently
small. A proof that the iteration process can always be made convergent to a stable solution
can be found in [38].

After having solved the Kohn-Sham equations, the ground state density can be used to cal-
culate the energy of the ground state. Considering that

Ts[n]:iei— f &Br Vg (t)n(r) , (2.15)

the energy functional (see eq. (2.10)) becomes

Eln] = iéi - f d&*r Veg(r)n(r) + % f Br d3r n(r)n(r’)

i=1 |I' - I'"

+ f &®r Vo (v)n(r) + By [n] . (2.16)

The total energy thus equals the sum over the eigenvalues ¢; minus the so-called double
counting terms. Expression (2.16) gives the ground state energy for the exact exchange-
correlation functional, provided that the inserted values for the density and the effective
potential are the results of the self-consistent solution.

Note that the eigenvalues ¢; do not equal the true single-particle excitation energies, since
they are introduced as Lagrange parameters without having a physical meaning. However,
in reality they are often and quite successfully taken even as excitation energies.

2.3 The local spin-density approximation

Although density-functional theory as presented in the last sections, i.e. the Hohenberg-
Kohn theorems as well as the Kohn-Sham equations, is formally exact, its practical ap-
plication requires to approximate the exchange-correlation potential Vi.(r), which is not
known explicitly. The most simple approximation is to assume the effects of exchange and
correlation to be local in character. For the noble metals considered in this thesis this ap-
proximation leads to sufficiently good results, while it fails for other materials with more
complicated band structures. Following the above assumption leads to the so-called lo-
cal density approximation, or more general, the local spin-density approximation (LSDA),
which was already proposed by Kohn and Sham. It replaces the exact functional Ey.[n],
ie. Ex.[n',n'] by

EUSPA[RT nt] = / d*r n(r)eESPA (! (r), n'(r)), (2.17)

where n! = n'(r) and n = n*(r) are the (spin-dependent)densities of electrons and n(r) =
n*(r) + n'(r). Furthermore, cZSPA(n(r)) is not a functional but a function evaluated at

C

each point r with the values of the up and down densities n'(r) and n*(r).
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Then, the exchange-correlation potential V.(r) appearing in the Kohn-Sham equations
eq. (2.9) is easily calculated, because it is just the functional derivative of the exchange-
correlation energy. Variation of the exchange-correlation energy functional (2.17) results
in

. Hehom
OB [n] = Z[ d*r I:ef:‘c’m + n;"c] on(r,s) (2.18)
s N r,s
where the spin index s was introduced.
Thus, the exchange correlation potential becomes
Hehom
Vi(n) = [eﬂgm + nexc] . (2.19)
ons |,

It is convenient to split the correlation part from the exchange part e25PA(n) = eLSPA(n) +

€LSPA(n) since the latter one can be obtained by the Hartree-Fock method, neglecting cor-
relation but taking exchange effects into account. It is given by

(LsDA () — 3 (ﬁ)“ b (2.20)
2\
and hence
VISDA(p) = —2 (%)3 ns. (2.21)
T

The correlation part eZ5PA(n) is more difficult to calculate, but can be accurately deter-
mined by a quantum Monte Carlo method [39]. Interpolation of the results allows to ex-
tract a parametrization for ¢ZSPA(n) (see [40] and [41]).

For some systems with more inhomogeneous densities, however, the local density approxi-
mation fails and a more accurate description is necessary. An improvement can be reached
by taking not only the local density into account but also the gradient of the density

ESSA[n] = f Br f(n(r), vn(r)). (2.22)

However, the function f(n(r), Vn(r)) is not unique and many different forms have been
suggested. The most common one is the generalized gradient approximation (GGA) [42],[43],
which is very well tested and leads to good numerical results. For instance, an improve-
ment for the cohesive energies and lattice constants for the 3d transition metals is achieved.
Nevertheless, in the present work all results are obtained within the local spin density ap-
proximation which leads to good results for the applied materials.

2.4 Summary

In this chapter I presented the basics of density functional theory, which is an adequate
method for electronic structure calculations. According to the Hohenberg-Kohn theorems,
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all ground states properties of a system of interacting electrons are uniquely determined by
its ground state density; this is the density, for which the energy becomes minimal. In prac-
tice, it is calculated via a solution of the Kohn-Sham equations. These are single-electron
Schroédinger equations with an effective external potential constructed such that the density
of the auxiliary non-interacting electron system equals the density of the interacting system
of interest. In the last section, I have presented the local spin-density approximation for the
exchange-correlation potential assuming the effects of exchange and correlation to be local
in character.






CHAPTER 3

The KKR Green function method

The multiple-scattering method for electronic structure calculations was introduced in 1947
by Korringa [30] and in 1954 by Kohn and Rostoker [31] (KKR). At its heart is the multiple-
scattering ansatz which proved to be an especially powerful tool for the solution of the
Schrédinger equation, electronic structure and band structure calculations. The first step
in KKR is to determine the scattering properties of each scattering site, resulting in a single-
site scattering matrix. Then, in a second step, multiple scattering by all atoms in the lattice is
taken into account by demanding that the incoming wave at one lattice site equals the sum
over the outgoing waves from all other scattering centers. In this way, geometric proper-
ties are separated from the potential properties of each atomic site which allows an efficient
calculation scheme.

Further improvement of the method was obtained when it was reformulated as a Green
function method [44, 45, 46]. While the separation between the single-site scattering and
the multiple scattering effects was retained, the Dyson equation provided an efficient way
to calculate the Green function of the considered system from the Green function of free
space. Furthermore, impurity scattering could be easily taken into account by considering
the Green function of the crystal as a reference and relating it to the Green function of the
crystal including the impurity via the Dyson equation [47]. The efficiency of this procedure
lies on the fact that no large supercells have to be constructed, which would have been the
case in a wavefunction method.

A further significant step into the development of the KKR scheme was the introduction of
the screened or tight-binding method [48, 49]. Via a transformation of the reference system
a decoupling of remote lattice sites was achieved and the numerical efficiency of the method
was enhanced enormously. The principal layer technique enables the computation time
to scale linearly with the number of atoms in systems with two-dimensional translational
symmetry. This is especially efficient for layered systems such as surfaces, interfaces and
multilayers and cleared the way for the study of e.g. interlayer exchange coupling or ballis-

13
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tic transport through junctions. Successful applications of the KKR method for calculations
of the electronic structure of solids within the frame of density functional theory include
bulk materials [50], surfaces [51], interfaces and tunnel junctions [52], and impurities in
bulk and on surfaces [53]. Spectroscopic properties and transport properties [54, 55, 56],
have also been studied using this method.

Furthermore, the KKR scheme can incorporate the Dirac equation, enabling fully relativis-
tic calculations [57].

The current chapter provides a brief introduction to the KKR method and follows the in-
troduction given in [58]. It starts by giving an overview about the basic aspects of Green
functions needed for understanding the following sections. Before illuminating the Green
function approach of the method, the single-site scattering problem is treated. Then, the
tull-potential treatment is explained and a sketch of the screened KKR method is given. We
close the chapter with the presentation of the self-consistency cycle of the KKR method.

3.1 The Green function approach

3.1.1 Obtaining physical quantities from Green functions

The central problem of density functional calculations as presented in the first chapter, sec-
tion 2.2, is the solution of the Kohn-Sham-equations in order to obtain the single-particle
wavefunctions @, and the corresponding eigenvalues ¢;. However, all information about
the ground state is also contained in the single-particle Green function G(r,r’; E'). In par-
ticular, the local density of states and the charge density can be directly calculated from the
single-particle Green function G(r,r’; E'). Therefore, it is not mandatory to calculate the
Kohn-Sham orbitals ®; and the corresponding eigenvalues ¢;, if the single-particle Green
function is known.

The Green function solves the Schrodinger equation at an energy F with a source at position
I.I

[—Vf+V(r)—E] G(r,v;E)=-6(r-1'). (3.1)

In terms of a complete set of eigenfunctions ¢;(r) and eigenenergies E; of the Hamilton
operator H = -V?2 + V(r) the Green function can be written in its spectral representation

G(r,x"; E +ic) = Z% (3.2)

Using the Dirac identity it can be shown that the imaginary part of G(r,r’; E) is directly
related to the spectral- and space-resolved local density of states n(r, E)

n(r; E) = —%ImG(r,r;E). (3.3)
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Integration over the energy yields the expression for the charge density p(r)

p(r)=2 > |pi(r)| - [oo dEImG(r,1; E) (3.4)

i, Ei<Ep

2 Er )
—;Im[m dE Tr [FG(E)],

where 7 = |r) §(r — ') (1’| is the position operator and the factor two accounts for the two
spin directions.

Thus, as claimed at the beginning of this section, the charge density can be directly calcu-
lated from the imaginary part of the diagonal elements of the Green function. It can be
interpreted as the local density of states n(r; ') at the position r.

On the other hand, the local density of states of a particular atom in a defined volume V'
can be determined by integration over the atomic volume

nv(E) = —%

f dr ImG(r,1; E). (3.5)
v

In general, from the spectral representation follows that the expectation value of any single-
particle physical quantity, represented by an operator A, can be obtained via the relation

(A) = —%Im[EF dE Tr [AG(E)]. (3.6)

Hence, there is no need to evaluate the wavefunctions ¢;(r).

In eq. (3.2) a small imaginary part ic was added to the energy in order to guarantee the
convergence of the integrals, and, after performing the integration, the limit ¢ — 0% is
taken. The reason for that procedure can be found in the analytical properties of the Green
function: G(r,r’; E) is singular for real energies (has poles in the discreet spectrum and a
branch cut in the continuous spectrum), but is analytic for Im £ > 0. Therefore it is allowed
and convenient for its computation to transform the energy integrals to contour integrals
closed in the upper complex energy plane

2 Er
p(r) = —fIm/ dz G(r,r;2) (3.7)
T Bp

with z = E +i¢, but the imaginary part € is not small anymore. The contour starts at £, an
energy below the bottom of the valence bands, but higher than the core states, goes into the
complex energy plane and comes back to the real frequency axis close to the Fermi energy.
The core states are treated differently, their wavefunctions are calculated via an integration
of the Schrodigner equation. Then, their contribution to the density p(r) is simply obtained
by calculating their norm. For complex energies with an imaginary part ¢, the structure of
the Green function is broadened and thus typically only 20 to 30 energy points are required
for a sufficiently accurate numerical evaluation of the integral. However, special care is nec-
essary for the points close to the Fermi level, since here the full structure of G(E) reappears
as the real axis is approached.
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Whereas the order of approximately 103 integration points are usually needed on the real
axis, about 20 to 40 points suffice when the contour described above is chosen. Obviously,
in this way a large amount of computation time can be saved.

Additionally, for systems with two- or three-dimensional translational symmetry, compu-
tation time can be further reduced, since the smooth behavior of the Green function at large
ImFE allows for a coarse k-mesh in the Brillouin zone integration.

3.1.2 Relation between the Green function of perturbed and unperturbed
system

We focus now on another important issue concerning Green functions and show how to
obtain them by relating Green functions of different systems with each other.

The formal solution of the Schrodinger equation (3.1) at a given energy, characterized by
the Hamiltonian H = Hy+V/, with Hy, V being the Hamiltonian of the original system and
the perturbing potential, respectively, reads

1 1
E+ic—-H FE+ie-Hy-V

G(E) - (3.8)

The same holds for the Green function G solving the Schrodinger equation corresponding
to Hy. Thus, we can write

G(E) ' =Go(E) " -V (3.9)
being equivalent to
1
E) = E E L) = )y 1
G(E) = Go(E) + Go(E)VG(E) = Go( )1—VG0(E) (3.10)
The latter equation, known as Dyson equation, can be expanded as
G(E) =Go(F) + Go(E)VGo(E) + Go(E)VGo(EYWGo(E) +... (3.11)

and hence allows an interpretation in terms of scattering events, representing an analogue
of a Born series for Green functions.

In analogy to Green functions, the Schrodinger equation for wavefunctions of a perturbed
system can be written as

(E=H) ) =V o) . (3.12)

Furthermore, the solution |¢/) can be expressed in terms of the unperturbed eigenstates [ty),
the perturbing potential V' (r) and the Green function of the unperturbed system G

[V) = [tho) + Go(E)V 1) . (3.13)
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The above equation is the famous Lippmann-Schwinger equation®. Substitution of the so-
lution |} on the right hand side of eq. (3.13) leads to the Born series

[) = [tho) + Go(E)V [tho) + Go(E)V Go(E)V [tho) - . .. (3.15)

If £ does not belong to the spectrum of the unperturbed Hamiltonian H, |1y) vanishes
and the Lippmann-Schwinger equation reduces to the homogeneous equation

[¥) = Go(E)V ) (3.16)

from which the bound states follow.
Now, we introduce the transition matrix 7, defined by

V) =T(E) o), (3.17)

relating the wavefunction |¢)) of the perturbed system to the wavefunction |¢g) of the un-
perturbed system.

Using this definition, both the Lippmann-Schwinger equation and the Dyson equation can
be formulated in terms of the 7-Matrix instead of the potential V, hence

¥)
G(E)

[tho) + Go(E)T(E) [t)o) and (3.18)
Go(E) + Go(E)T(E)Gy(E). (3.19)

Furthermore, in some cases it is very practical to deal with the scattering matrix denoted
as S, which transforms an incoming into an outgoing wave. Because of norm conservation
during an elastic scattering process, S must be a unitary operator

Sts=1. (3.20)
It can be shown that S'is related to the transition matrix 7" by
S=1-2VET. (3.21)

Inserting the above expression in eq. (3.20) leads to the optical theorem for the 7"-matrix
1
5(TT -T)=iVET'T. (3.22)

Details concerning the operator .S can be found in [59].

We will now come back to the solution of the Dyson equation (3.10). In order to solve it in
practice, the Hamiltonian H is chosen such that Go(E) can be easily calculated. For ex-
ample, in order to obtain the Green function G,y of a bulk crystal, the free space is taken

'In space, both the Dyson equation and the Lippmann-Schwinger equation are integral equations; in chapter
4, we will need the Lippmann-Schwinger equation (3.13) in direct space, thus

w(r):wg(r)+fd3r' Go(r,t'; E)V (r')o(r') . (3.14)
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as reference system. In this case, G is known analytically and V' is just the sum over all
atomic potentials. When calculating the Green function of a surface geometry Gyyface> an
adequate choice of the reference system is the corresponding bulk crystal, i.e. Gp,y. The
potential difference V' entering in the Dyson equation is then simply the difference of the
potential at the surface and in the bulk.

Going one step further, this scheme also provides an easy way for calculating the Green
function of an impurity embedded in a bulk crystal or localized at the surface. In the first
case, (5 is identified with the bulk Green function and V' is the change caused by the im-
purity potential with respect to the bulk potential at the impurity site as well as the change
at the neighboring potentials. In the latter case, first the Green function of the surface is
needed: an essential condition to obtain an accurate solution of the Dyson equation is that
the perturbing potential V' has to be well localized. The locality of the perturbed wave-
functions is not required — and usually not realized — but this behavior does not affect the
accuracy of the Dyson equation and favors the use of Green functions instead of wavefunc-
tions.

Naturally, the presented Green function method can be also applied to small clusters of im-
purities in bulk or at surfaces, provided that the change in potential is restricted to a well-
defined volume. These facts make the Impurity-KKR Green function method applicable to
a great variety of interesting problems.

3.2 Single-site scattering

As already mentioned in the introduction of this chapter, the KKR Green function method
allows a decoupling of the potential and the structural properties of the system of scattering
atoms. Therefore, in a first step the scattering of a single impurity with spherical potential
V embedded in free space is dealt with. In this case, the potential of the reference system is
zero, and the Green function g of free space which obeys the Hamiltonian H, = -V2 is

1 eiklr—x|

T E) = ——
9(x,x's E) 4 v —r'|

(3.23)

with £ = VVE [60, 61]. The corresponding eigenfunctions are plane waves with ¢y (r) =
e’®r Considering the scattering by a central potential, it is useful to work in angular-
momentum representation, in which an incoming wavefunction ¢}"*(r) is expanded in

) = e = R ari i (VEDYL (Y2 () (324

Here, the combined index L := (I,m) is used, j; is the spherical Bessel function, and Y}, de-
notes the real spherical harmonics. Expanding the Green function g in spherical harmonics
results in

g(r,v;E) = ZYL(r)gl(’r, r's E)Yr(r') (3.25)
L

with

a(r,r"; B) = ~iVEj(VEr)M(VEr,), (3.26)
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where h; = j; +in,; are spherical Hankel functions, n; are spherical Neumann functions [62],
while (7 ) is the smaller (larger) of the radii  and 7. The Bessel functions j;(r) are finite
in the limit 7 — 0, behaving asymptotically as r!, whereas /() and n;(r) diverge as r — 0,
behaving as 1.

In the following, a spherical scattering potential of finite range

V(r) forr <rpax

V(r) = { (3.27)

0 for r > ryax

is assumed. Then, a separation of coordinates ¢(r) = Y, Y.(#)R,(r; E) is possible, the
radial scattering wavefunctions R;(r; E) satisfy the radial Schrédinger equation

= +
r 8r2r r2

[fi 1) +V(r)fE] Ri(r; E) =0 (3.28)

The asymptotic form of the wavefunctions R;(r; ) for r — oo, where V' = 0, following
from the above equation, is

Ri(r;E) — \/I%r sin [\/Er _n + 61(E)], (3.29)

2
where A, is a constant and d; is the phase shift with respect to the incoming wavefunction.

Outside the range of the potential, thus for 7 > 7y, the radial wavefunction R;(r; F) is
just a linear combination of two independent solutions

RZ(T; E) = Bljl(\/ET') + le(\/ET) (3.30)

with the constants B; and C;. They can be determined with the help of the asymptotic forms
of j;(r) and ny(r) for r - oo

q(r) ~ 1sin (r—l—ﬂ-) (3.31)
r 2
1 l
n(r) ~ — cos (r - g) (3.32)
and equations (3.29) and (3.30), leading to
Ri(r; E) = A, [jg(\/Er) cosd; — nl(\/Er) sin 51] for r > rmax. (3.33)

On the other hand, using the Lippmann-Schwinger equation (3.14) the expression
R(r;E) = i(VEr) + f "y g(r,r"s EYV(r" YR, (r'"; ). (3.34)
0
can be obtained. Combining the latter equation with eq. (3.26), for 7 > 7., follows

Ri(r; E) = ji(VEr) - iNEh(VEr) /OTmax r2dr’ ji(VEY YW (") R(r'; E).  (3.35)



20 3. The KKR Green function method

The integral is just the atomic scattering (¢-)matrix in angular-momentum representation
H(E) = f " 2dr i (VEX)YV () Ry(r'; E). (3.36)
0
With the above definition the regular radial wavefunction results in

Ri(r;E) = i(VEr) —iVEGW(E)W(VEr) > e (3.37)

or, using eq. (3.33), in terms of the phase shift §;,(E)

1. ;
tL(F) = —ﬁsmél(E)e";l(E). (3.38)
Before closing the section we give the Green function for scattering at a central poten-
tial without proof. It can be written as the product of two linearly independent solutions
Ry (regular, i.e. finite as  — 0) and H, (irregular, i.e. diverging as » — 0) of the radial
Schrodinger equation, hence

G(r,x;E) = -iVE Z;R,(m EYH,(r; E)Y,(r)Y(x")

~VEY Gi(r,r; B)Yi(r)Yi(r'). (3.39)

The boundary conditions for the regular solutions R, are determined by eq. (3.37).
In analogy to eq. (3.34), the Lippmann-Schwinger equation for the irregular wavefunction
H, writes as

Hy(r; E) = hy(VEr) + /Tmax r2dr’ g (r,r"; EYV(r'YH,(r"; E) . (3.40)
0

The boundary conditions for H, can be found using the identity G; = g, + g;t,g; with g; given
by eq. (3.26)
H)(r;E) = hl(\/Er) for 7 > ryax - (3.41)

In practice, the general procedure to obtain the wavefuntions is the following: First, the
radial Schrodinger equation (3.28) is integrated outwards up to r = 7, to obtain R;. The
continuity of the logarithmic derivative at 1 = 7, yields the ¢t-matrix ¢;. Then, in a second
step the irregular wavefunction H; is calculated by an integration inwards starting at r =
T'max- Here, only one boundary condition (at r = 7,,,) has to be satisfied. Finally, the Green
function of a single scatterer can be constructed according to (3.39) just by multiplying the
regular with the irregular wavefunctions.

3.3 KKR as a Green function method

In this section, we proceed to derive the full Green function taking multiple scattering
events into account.
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A periodic crystal with spherical potentials? given by
V(x+R") =V"(r) (3.42)
is assumed and the Green function is the solution of the Schrodinger equation
(-v2+V"(r) - E)G(r+R",x' + R"; E) = =0, 0(r - 1"). (3.43)

Here, cell-centered coordinates r + R, r’ + R™ have been introduced, where r and r’ are
restricted to the cells n and n’ and R™ and R™ are the vectors pointing to the center of the
cells n and 7/, respectively. For simplicity, we stay in the formalism of the atomic sphere
approximation (ASA), where the scattering potential is assumed to be spherically symmet-
ric around each scattering center (atomic site) within a sphere of radius r,,,,x (which is also
called Wigner-Seitz radius Rws) and constant otherwise; the spheres are overlapping such
that the sum over the volumes of all spheres equals the total volume of the crystal.

In the case of n # n’/, the Green function satisfies the homogeneous Schrodinger equa-
tion and thus can be expanded in regular solutions R? (r; ), which in the atomic sphere
approximation have the form R} (r; E) = Rp'(r; E)Y, (). Close to the origin, they are
proportional to ! and represent the solutions for an incoming spherical Bessel function
51(VEr)YL(#). An r-dependent potential demands more cumbersome calculations (see
section 3.4).

For n = n’, the Schrodinger equation becomes inhomogeneous, and the solution is the
Green function for a central potential eq. (3.39), but with a boundary condition of back-
scattering by all other potentials in the crystal. In contrast to the case of n # n/, additionally
to the regular solution R}, the corresponding irregular solutions I} enter, behaving as
H" o< 771=1 at the origin and being identical with the spherical Hankel function h;(v/Er)
outside the range of the potential.

Finally, the Green function for the whole crystal is a sum of the general solution of the
homogeneous equation plus a special solution of the inhomogeneous one

Gr+R"r'+R"E) =
~iVEY R (ve; BYH}(rs; E)op + Y. Ry (x5 B)GUE(B)RY(x; B). (3.44)
L

LL

In the second summand, the homogeneous part, the so-called structural Green function
G (E) enters, which has not been defined yet and which shall be calculated in the fol-
lowing. We will use the Dyson equation in the form

G(r+R" '+ R"; E)=g(r+R" 1"+ R":E)
+3 f Er" g(r+ R " + R E)WY (r")G(r" + RY x' + R"; E), (3.45)

n'’

The procedure presented in the following is also valid when taking the full potential V' (r) into account, the
special case of spherical symmetric is chosen just for reasons of brevity.
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taking free space as reference system. Substitution of expansion (3.44) and the correspond-
ing expression for the free Green function

g(r+R"r'+R":E) =
~iVEY ji(ve; E)hp(vs: E)op + Y. jr(rs E)gih (EB)ju (x's E) (3.46)
L LL

in equation (3.45) results in the algebraic Dyson equation

1h(E) = g1 (BE) + Y gitn(E)t (B)GE(E) . (3.47)

n!' L

Here, we have introduced the structural Green functions for free space g7, ( E), which are
also denoted as free space structure constants. They are given analytically by

gZTLL/I(E) = *(1 - 5nn/)47Ti \/EZ ilil,HIICLL/L//hL//(Rn - Rn/; E) 5 (348)

L

where C', 1 are the Gaunt coefficients defined as
Crun = f dQ Y, (7)Y (7)Y (7) . (3.49)

While the potential V(1) enters in the usual Dyson equation (3.45), here it is the atomic ¢-
matrix ¢]'( E') eq. (3.36) that enters the algebraic Dyson equation. The derivation of eq. (3.47)
is lengthy and can be found in [63].
In practice, the structural Green functions G77%,(E) are first calculated in k-space. There-
fore, in a first step, the free space structure constants g7, (E) are Fourier transformed,
yielding

gk E) = 3 gr(B)e (W R). (3.50)

ik~(R"—R"')

The choice of n is arbitrary, because only the difference e enters and the sum has

to be performed over all n’. In analogy, the G(k; E') are defined as

Gk E) = Y G (B)e (R RY) | (3.51)

n'

Then, the algebraic Dyson equation 3.47 in reciprocal space becomes

GLL’(k; E) = gLL’(k; E) + ZgLL”(k; E)tl/I(E)GLNLr(k;E) . (352)
LH

It is solved by matrix inversion, making a cutoff at some [ = [, for which the ¢-matrix
becomes negligible. Usually, the choice of l,,.x = 3 or 4 is sufficient. Then, the resulting
Green function G,1- (k; E') has to be Fourier transformed to the real space matrix G}, (E).
The last two steps can be subsumed to the formula

1

Gip(B) = 30—

f &l R[4 gk EYE) Yg(k: B)],,,,  (3.53)
BZ
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where g(k; E') and ¢(E) are matrices in L and L’ and the integral has to be taken over the
Brillouin zone volume V.

Once the structural Green function é’ﬁ', (E) of the ideal crystal is known, the Green func-
tion G7%,(E) of the crystal with impurity can be evaluated by a modified Dyson equation

m(B) =G (B)+ Y, Gri(E)Aty (E)Gr.(E), (3.54)

n!'L"

where At(E) = t7(E) - {7(E) is the difference between the ¢-matrices of the perturbed
and the ideal lattice?. Since this difference, caused by the perturbation of the potential, is
restricted to the vicinity of the impurity, the Green function in this subspace can be deter-
mined in real space by matrix inversion. The rank of the matrices to be inverted is given
by N+ (Imax + 1)?, i.e. the number N of perturbed sites times the number (Ijax + 1)? of
angular momenta (! and m;) used in the expansion of the potential, the Green function
and the wavefunctions. In this thesis, the maximum angular momentum generally is set to
lmax = 3, which leads to a satisfying accuracy for the treated materials and problems.

For a single impurity it is often sufficient to consider only the perturbation at the impurity
site and thus neglect the perturbation at neighboring sites. For a more accurate description,
the perturbations of the neighboring atoms have to be included. The difference between the
two results depends on several criteria, e.g. the strength of the scatterer, the geometry and
the scattering properties of the host system the impurity is embedded and above all the
range of displaced charge by the impurity.

A different possibility to increase the accuracy?, which is more general and not only valid
for impurity calculations, is to take the non-spherical contributions of the potential into
account. A summary of the full-potential treatment within the KKR method is the subject
of the next section.

3.4 Full-potential treatment within the KKR method

The atomic sphere approximation which was presented so far, describes the physics of many
systems quite reasonably and efficiently. Nevertheless, systems with lower symmetry such
as non-cubic crystals, surfaces or interfaces require a more accurate treatment beyond the
spherical approximation. If forces and lattice relaxations have to be calculated, the atomic
sphere approximation even fails and the correct description of the full anisotropic potential
becomes necessary.

The multiple scattering expansion eq. (3.44) of the KKR-Green function is still valid in
the case of a full potential treatment, so that the important separation between the single-
potential problem and the multiple-scattering problem remains the same. In this section,
we will introduce the basics of the full potential treatment, further details can be found in

3The difference A#(E) = t7(E) - {7(E) can be calculated equivalently using At}(E) =
[ 72drR)" (r; E)AV™ ()R} (r; E). The proof (for full potential, thus the t-matrix Aty/) is given in the
Appendix, section A.4.

*apart from increasing the number of sites in the impurity calculation, i.e. in eq. (3.54)
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[63, 46, 64] and [65].

In contrast to the previous sections, the potential V' (r) depends not only on the norm of r
but on the full vector, and scattering from an incoming wave with angular momentum L to
another wave characterized by L’ is no longer forbidden. Hence, the Lippmann-Schwinger
equation for the regular wavefunction (see eq. (3.34)) has to be written as

Ri(v;E) = i(NVEr) YL (7) + / &r' g(r,v; B)V ()R, (v, E), (3.55)

and requires a three-dimensional instead of a one-dimensional integral.
However, expansion of the regular wavefunctions Ry (r; E') and the potential V' (r) in spher-
ical harmonics

Ry(r; E) =Y Ry (r; E)Yp(7) (3.56)
&

and
V(r) = zL: Vi(r)Yr() = LZU Vi (r)Yo (7)Y (7) (3.57)

allows to reformulate the corresponding Lippmann-Schwinger-equation for the compo-
nents Ry (r; E) (see also the Appendix, section A.3)

RL/L(T;E):jl,(\/Er)5LL/+fO gy gv(r,7"s E) Y Vi ()R (r'; E) . (3.58)
LII

The component of the potential V() is defined as
VLL’(T) = Z CLL/LHVLH(T), (359)
7

with the Gaunt coefficients C 1/~ defined in eq. (3.49). Although the integral in the
Lippmann-Schwinger-equation (3.58) is now one-dimensional, its solution is not as trivial
as it might seem at first glance, since a system of coupled equations has to be solved

10 I(l+1
Z[(—;w7’+ ( 2 ) —E) 5LL”+VLL”(T'):| RLNLr(T‘;E) =0. (360)
LH

Substitution of g/ (r,r'; E') in terms of the regular and irregular solutions as expanded in
eq. (3.39) leads to a system of coupled equations

Rip/(r; E) =app(r; E)ji(r; E) + bpp(r; E)h(r; F) (3.61)
with

{,lLL/(”'; E)

6LL’ — Z\/Ef " T’erl hl(?"l; E) Z VLLH(’I',)RLHL/(’I',; E) (362)

"

b (r; B)

—l\/E /T 7"/2(17"/ jl(?",; E) Z VLLH(T/)RLHL!(T/; E) (363)
0 iz

In the limit » — 0, the second term of eq. (3.61) approaches 0 and the characteristics of
Ryp/(r; E) is determined by arr/(r; E)

RLLI(T‘; E) ~ (lLLr('I"; E)jl(T‘; E) for r—0. (364)
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arr(0; E) is denoted as a-matrix

aLL’(E) = 5LL’ - Z\/E/; " T’Zd’f’, hl(\/ET’) Z VLLH(T’)RLHLI(T,; E), (365)

LII
describing the enhancement of the solution Ry (r; E') compared to the free solution

610ji(VEr). The inverse of ovy, 1/ ( E) transforms the complex wavefunctions Ry (r) to real
wavefunctions Uy, (r) following [66]

UL(I‘) = ZRU(I')O(E}L (366)
T’

and
RL(I‘) = Z ULI(I')O(L/L . (367)
L/

This property of the cv-matrix will be used when calculating the scattering matrix Ty in
section 4.3.

The atomic transition matrix (¢-matrix) can be obtained similarly as in the case of a spherical
potential, thus by matching Ry, (r; E') to an outgoing free wave at the boundary .S

tLLI(E) = fo " T2dT jl(\/ET) Z VLLH(T)RLHL/(T; E), (368)
L//
being equivalent to its definition
to(E) = [ &Pr Ty (v: EYV () Rus(r: E). (3.69)

In contrast to the ¢-matrix t;( /) for spherical potential, ¢, ;/(z) is not diagonal any more
while it still holds
top(E) = trn(F) (3.70)

if the potential is local; this condition is not fulfilled, if spin-orbit coupling is included.
However, for local potential the property (3.70) follows from the symmetry of the Green
function G(r,r’; ') = G(r’,r; E'), a proof can be found in [60]. Furthermore, the ¢-matrix
fulfills the optical theorem (3.22), which in the special case of the atomic scattering matrix
can be reformulated as

1 * . *
5(tL,L —tpp) ==iVEY thupting (3.71)
LH
or,for L =L/,
Imtr, =VEY |tr| . (3.72)
LH

Outside the range of the potential, equivalently to eq. (3.37),

RLLI(T‘; E) = KSLLrjl(\/ET‘) - i\/EtLLr(E)}Ll(\/ET) for r> Tmax (373)
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is valid.
Similar to the regular wavefunction Ry, (r; F), the irregular one, Hy,(r; F), which diverges
at the origin is expanded in spherical harmonics as

HL(I';E) = ZHL’L(T;E)YL’OQ) . (374)
I

Of course, it would be possible to solve the full-potential problem starting from scratch
by solving the systems of linear equations (3.60) but another, much simpler way can be
chosen, too. This ansatz is based on perturbation theory exploiting the fact that the non-
spherical part of the potential is usually weak compared to the spherical one. It occurs to be
much more favorable to first solve the problem for the spherical part of the potential (thus
taking Vj-(r) instead of the full one), and obtain spherical wavefunctions R?ph(r; FE) and
H*"(r; E). The Green function corresponding to this problem is then

G (r,r'; E) = =iV ER™ (ro; BYH™ (ry; E) (3.75)
Afterwards, in a second step, the results of the spherical problem are used to solve the
Lippmann-Schwinger equation
Rup(r; E) = B (r.E)op + / e G B) Y AV () Ry (1 B)
: 0 ' 7

(3.76)
where only the non-spherical part of the potential enters

AVLL/(T) = Z CLL/LHVLH(T) = VLLr(T') - %0(7‘) . (3.77)

L"#0

Additionally, since the potential inside and close to the core is almost spherical, the non-
spherical contribution can be safely neglected within a radius denoted by 7,,;,. Then, the
coupled equations (3.61) to (3.63) can be rewritten as

Rip(r; B) = App(r; EYRP(r; E) + B (r; EYHP (15 E) (3.78)
with
App(rB) = Spp —iVE [ r2dr’ HP™ (1" B) ¥ 00 AV (r') Rpnp (/s E) (3.79)
Brp(r;E) = ~iVE [ r2dr' B (r'; E) Y00 AV () Rpnps (s E) . (3.80)
For 7 < rmin, Brr/(r; E) in eq. (3.78) vanishes (see eq. (3.80)) and R/ (r; E') simplifies to
Rip(r;E) = App(Tmi; E)prh(r; E) for 7 <rum

AOKLL'R?ph(Ti E)
~ appj(r;E) for r—0. (3.81)

2

In the last equation we have used a1/ (E) = Aaz(E)a*"(E), where o;”" (E) is the a-

matrix corresponding to the spherical part of the potential Voo (7).
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Equivalently to the difference in potential AV}, ;/(r) we obtain a difference in the ¢-matrix
AtLLI = tLL’ - tl(SLL’a which can be calculated via

Atpp(E) = f

Tmin

Tma:

. 7"2d7” RsPh rmE AVLLH r RL”L’ rE 5 (382)
l ’ )
L/I
or, more general,
Atp(E) = [ dr R (r; E)AV () Ry (v; E). (3.83)

The proof of the above equation can be found in the Appendix, section A.4.

Equation (3.76) is solved iteratively via the system of the coupled equations (3.78) to (3.80),
while it is sufficient to start the integration in equation (3.80) at r,,;,. The successive solu-
tions obtained for the regular R,/ (r; E') and the non-regular wavefunctions Hy,;/(r; E)
represent a Born series. Usually, convergence is reached within 3 or 4 iterations.

In contrast to the atomic sphere approximation where the spheres are allowed to overlap,
in the full-potential treatment the whole crystal is divided into space-filling Wigner-Seitz
polyhedra. Outside these cells, the potential is cut off by the introduction of shape functions
On(r) defined as

1 ifr is inside the Wigner-Seitz cell of site n
(3.84)

O™ (r) =
() { 0 otherwise.

The radius 7p,,x, which in the ASA is the Wigner-Seitz radius, i.e. the radius of the ASA-
spheres, in the full-potential description it is meant to be the maximal radius of the non-
spherical Wigner-Seitz polyhedra.

Then, the crystal potential in the n-th Wigner-Seitz cell can be rewritten as
V™ (r) =0"(r)V(r). (3.85)
As all other quantities the shape functions are expanded in spherical harmonics as

O"(r) = 0L (r)YL(7). (3.86)

The coefficients ©% (1) enter the expansions for the charge density and the potential, in
order to ensure the correct cutoff at the Wigner-Seitz cell boundary. More details about the
calculations of the shape truncation functions for Wigner-Seitz atomic polyhedra can be
found in [67, 68].

3.5 Screened KKR

The development of the so-called screened or tight-binding KKR formalism [48, 49] con-
stitutes a substantial improvement of the KKR method. It helps to reduce the calculation
time significantly and is in particular favorable for large systems, since it allows the solu-
tion of the Dyson equation to scale (in the ideal case) with O(V) instead of O(N?); here,
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N denotes the number of different atoms in one unit cell. The optimal scaling is reached
for layered systems.

This achievement became possible by a clever choice of a reference system: It can be chosen
such that the reference Green function falls off exponentially with distance, resulting in the
inversion of sparse, or even tridiagonal, matrices, which is much faster than a full matrix
inversion if only the diagonal elements of the inverse matrix are needed (as it is the case
in charge-density calculations). Due to the decoupling between distant atomic sites, the
corresponding transformation is called screening transformation and the method screened
KKR; because of its formal resemblance to tight-binding theory, the method is also called
tight-binding KKR.

Basically, there are three reasons why the screened KKR formalism works so efficiently. First
of all, it is based on the Dyson equation which allows the choice of an arbitrary reference
system of the same periodic structure, and not the free space only (see Appendix, section
A.1). Naturally, taking a constant potential as reference is the most evident choice, since
the Green function and structure constants are given by analytical expressions. However,
further analysis shows that in practice this choice is not the best. An adequate reference sys-
tem can be constructed in which there are no states in the energy region of interest (up to
1-2 Ry higher than Er) and in which the structural Green functions fall oft exponentially
with distance. Such a system is defined by a collection of repulsive muffin-tin potentials
(one around each site n) as

Ve for 1< Rigp

3.87
0  otherwise ( )

Vref,n(r) - {
R,ep is the radius of the repulsive potential at site n, and V- a positive constant, usually
chosen to be a few Rydbergs, e.g. V- = 4 Ry or 8 Ry. For such a potential, the eigenvalue
spectrum starts from an energy Ef somewhat smaller than V- but much higher than E.

ot
Then, because of the absence of eigenvalues, for £ < %, the Green function of the refer-
ence system drops rapidly and in practice exponentially with distance; the same holds for
the true structural Green functions.

A further advantage of this choice of reference system is that one avoids a cumbersome cal-
culation of the free-space structure constants g,z (k; £') by an Ewald summation. Because
of the rapid decay of the screened structural Green functions Gf ", the matrices G*' ()
can be cut off in real space at a finite value of |R”' - R, for fcc lattices typically after two
lattice constants. Then, the Dyson equation is solved by a direct matrix inversion, yielding

ref nn’
G

3.6 Self-consistency Cycle in the KKR method

At the end of this chapter, we shortly present the algorithm for calculating the potential
self-consistently. As the KKR scheme is based on density-functional theory, the basic and
central quantity is the electronic density. We start with

1. an initial guess of input potential V4, (r), which is used
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2. to calculate the wavefunctions Ry (r) and H(r) and the t-matrix ¢,/ (E).

3. Determine the {-matrix of the reference system ¢\, (E') and
AtLLI(E) = tLL/(E) - tie{/(E).

4. Then, the structural Green function GYLSZ’,"”’(E ) of the reference system can be cal-
culated.

5. The algebraic Dyson equation is solved to evaluate the structural Green function of
the real system G, (E).

6. Calculate the Green function using the structural Green function and R (r) and
Hp(r). Integrate the Green function over complex energies Z from the bottom of
the valence band Ey,. up to Ey by using a complex-energy contour (see below) and
take the imaginary part to find the valence electron density
p(r)=-1 Imfbiit dzZ G(r,r; 7).

7. Calculate the core-electron wavefunctions and core-electron density p¢;
here, the multiple-scattering formalism is not needed, because the core wavefunctions
are assumed to be highly localized at the atomic sites. Obtain the total density p(r) =
pe(r) + p¥ ().

8. Find the output potential V;,;(r) by solving the Poisson equation and adding the
exchange-correlation potential. If V;,,(r) = V4,(r) to a reasonable accuracy, exit the
cycle, otherwise

9. Properly mix V,,(r) with Vi, (r) to obtain a new input potential, and return to step
1

In figure 3.1 we present a diagram showing the scheme used for self-consistent calculations
of the potential. This might be a bulk potential (in this case the term reference system is
more suitable than 'host’, which can be found in the scheme) or an impurity potential. The
essential quantity to know is the reference or host Green function.

3.7 Summary

This chapter has provided a short introduction into the KKR Green function method for
electronic structure calculations. We started with a brief summary of the most important
properties of Green functions such as its relation to the density. In particular, the Dyson
equation, which relates the Green function of a perturbed system to that of another, 'un-
perturbed' system, has been illustrated.

One of the strong points of the KKR Green function method is the ability to separate the po-
tential properties of each scattering site from the geometric arrangement of the atoms in the
crystal. Therefore, in a first step the scattering at a single potential is treated and the atomic
scattering matrix, which is one of the key quantities in this work, is derived. Secondly, the
Green function of the whole system is obtained under the condition that the incoming wave
at one scattering site is just the sum of the outgoing waves of all other scattering sites.
Furthermore, we have shown that the non-spherical parts of the potential can be included
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in the KKR Green function method, allowing for an exact full-potential treatment of scat-
tering matrices, wavefunctions etc.. While this increases the numerical effort, the usage of
the screened KKR formalism drastically reduces the calculation time, especially in layered
systems.

Finally, all steps described in detail in the previous sections to obtain the self-consistent
potential are summarized in a schematic view of the self-consistency cycle.
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Figure 3.1.: The self-consistency cycle used in the KKR method






CHAPTER 4

Multiple Scattering Theory

The multiple scattering ansatz is one essential characteristic of the KKR method and gives
access to the scattered wavefunctions at defects. Through these, many physical properties
can be calculated, such as momentum-scattering times, residual resistivities, or surface state
lifetimes. The central quantity required for their calculation is the scattering matrix 7jq,
describing the elastic scattering process from one state characterized by the reciprocal space
vector k’ to another characterized by k. In this chapter, Tjy is derived for scattering pro-
cesses where the coupling between the two spin channels is neglected. The formalism for
scattering processes including spin-flip scattering by spin-orbit coupling will be presented
in chapter 5.

We start with a derivation of the KKR wavefunctions, then explain how band structures are
obtained in the KKR method. Since elastic scattering processes at impurities at low temper-
atures are to be considered, it is assumed that scattering takes place at the Fermi energy Ey
and therefore the Fermi surface is required; its calculation is analogous to that of the band
structure. After having calculated and normalized the wavefunctions on the Fermi surface,
scattering processes provoked by impurities will be treated. Both the expressions obtained
for the wavefunction of the host as well as of the impurity are used to derive a formula for
the scattering matrix 7Tjgo. Finally, starting from 7j, we will deduce expressions for the
residual resistivity, the momentum-relaxation time, the lifetime of surface states and the
Wigner delay time. The formalism presented in this chapter will be the foundation of the
treatment of spin-flip scattering processes as developed in chapter 5.

A general description of wavefunctions in KKR can be found in [69], while [70] focuses to
wavefunctions using screened KKR. For more information about impurity wavefunctions
we refer to [71].

33
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4.1 KKR expansion of the wavefunctions 1) (r) and band
structure calculations

4.1.1 The KKR expansion of the wavefunctions ) (r)

In the previous chapter, the problem of multiple scattering events was solved on a level
of Green functions, because the full wavefunctions are not needed for the self-consistent
calculation of the potential. Nevertheless, we will require the wavefunctions for further
purposes such as the calculation of the scattering matrix 7jqe in section 4.3. Therefore, an
expression for the full wavefunction will be derived in this section, taking into account the
multiple scattering events which occur in a periodic crystal with many scattering sites. In
addition to the wavefunction, the band structure of a periodic crystal is obtained.

The procedure is based on a bookkeeping of incoming and outgoing waves: the amplitude
of the incoming wave at scattering site n must be the superposition of the sum of scattered
waves from all other scattering sites n’ # n plus a possible external incident wave. We start
by considering a periodic array of scatterers, and focusing on two scattering centers at R™
and R"™. A wave scattered at site R" for 7 > 7., can be expanded in outgoing waves

hi(r; E) = hy(\V/Er)Y.,(#) around R™:
() = 3 a " hy (11 E) . (4.1)
L
Around the site R™, the same wave can be resolved in incoming waves j (r'; E)
0 = D ar i E) (42)

where ji(v; E) = 5i(VEr) YL (7).
Using site-centered coordinates and setting R” + r = R™ + 1’ we obtain

; &, (¢ + R ~R" E) = ; & (' E) . (4.3)

In order to simplify the above expression and derive a formula for the effective amplitude

~(n)

Cy1,» we use the theorem of transformation of the Hankel functions

! 7: I
hi(x'+R" -R™ E)=— ) g/'L(E)j.(r; E). (4.4)
Nk
The expansion coefficients g7, ( E) are the free space structure constants defined in eq. (3.48).
Using the expansion of Hankel functions (4.4) in terms of Bessel functions, eq. (4.3) can be
transformed to

~(n') . . i ~sc(n) nn’ . .
Cop i (o E — > G g (ENjp (v B (4.5)
SALROE) = e S A (e )

> e g (B)jy (r; B).
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Comparison of the coefficients links the incoming and scattered amplitudes

an) = Z g (B)a (4.6)

- = Zng(E)eik‘<R"—R"’>affL‘7’> .

VE T

Besides the equality ¢77, (E) = g¢7'7.(E) which follows from the property of the Green
function g(r,r’; F) = g(r',r; E) as defined in eq. (3.23), the Bloch condition for a periodic

lattice was used in the last step. It allows to establish a relation between the amplitude c< Y

at a position R and the amplitude ¢, N(") of the wave at R"
cl(("L) = exp[ik-R"] &Y = exp [ik-(R"-R")]¢& & ). (4.7)

In order to obtain the amplitude of the total incoming wave at the scattering center R™’, we
have to sum over all waves originating from all other identical scattering sites n

A" clgg (4.8)
n#n’

) f ¥ (B O
n#n’ !
sc(n’)

= \/_ ZgLLr(k E)CkL,

(n

sc(n)

The coefficients ¢, ) and ;. as introduced in the above equation are the coefficients for
the total incoming and scattered wave, respectively. Le., they are summed over incoming
waves from all centers, while 5 ) and csc(n ) were the contributions coming only from the

incoming wave due to site R™. Addltlonally, the KKR structure constants
g (& E) = Y. g (B)e B R (4.9)
n

have been introduced. They do not depend on the potential, but on the geometry of the
lattice only.

The total scattered wave of a scatterer at lattice site n is connected to the total incoming wave
at the same site via the ¢-matrix ¢% ;,(E') according to

&M - iVE ZtLL,(E)(cing”) +cdM), (4.10)

ext(n)

where ¢, is the amplitude of a possible external wave incoming to the crystal. Combin-
ing eqs. (4.10) and (4.8) allows to establish the following system of equations

CYAREIDY [m’-Zgw«k:,E)tzuU(E) —= (o (E) G5 @1

LIL" § VvV E



36 4. Multiple Scattering Theory

In the absence of an external incoming wave ci’}f(") = 0, they can be rewritten as
3 [5LL, - grn(k; E)tg,,L,(E)] -0, (4.12)
L! LH

From their solutions, the electronic eigenvalues in a periodic crystal without incoming wave
are derived. Non-trivial solutions of the system of equations (4.12) exist, if the necessary
and sufficient condition

det |:5LL’_ZQLL”(k§ E)ﬁzuL,(E)] =0 (413)
7
is fulfilled. Eq. (4.13) is called the KKR secular equation and allows to determine the band
structure F'(k) of periodic crystals in KKR theory. Furthermore, it shows the separation
between potential and structural properties, which is typical for the KKR method: Whereas
the t-matrix ¢7 ;,(E) solely depends on the single scattering event of the wave at the poten-
tial V" (r), the KKR structure constants g7, (k; E) are determined by the given geometri-
cal arrangement of atoms in the crystal only. As we will see in the next section, the KKR
secular equation (4.13) can be analogously formulated in terms of the structure constants
G, (k; F)) of an arbitrary system instead of free space. In this case, the ¢-matrix must be
replaced by the difference At7,,(E) = t7,,(E) - 17(E) of the corresponding ¢-matrices.
We have now all necessary ingredients to express the full wavefunction ¢y (r + R?). In
each cell n, the incoming wave scatters at the corresponding potential V" (r). According to
eqs. (3.73) and (3.56), the regular wavefunction Ry (r; E) for r > 7y,ax is given by

RL(I‘; E) = Z (6LL/jl(\/ET) - Z\/EtLLI(E)hl(\/ET)) YLI(’f’) . (414)
i

Therefore, the total wavefunction becomes

(r+R™) = ch(:z)Rz(r; E) for 7> ryax. (4.15)
I

On the other hand, for 7 < 74y, the regular wavefunctions are solutions of the Schrodinger
equation (3.60) and together with the expansion (3.56), the full wavefunctions write as

Y(r+R™) = Zc&)R’Z(r; E) for 7 < rpax. (4.16)
2

Because of the continuity of the regular wavefunctions at r = 7,,,, and the requirement of
the total wavefunction to be continuous, the coefficients ¢}, are the same for all r and

G(r + R = Y R (1 E) (4.17)
L

holds for all r.
It is straightforward to generalize the method to the case of more than one atom per unit
cell, say V. Introducing an index jz = 1, -+, N to account for the different atom types and
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reserving the index n for the periodic lattice positions, an atomic position in the crystal is
defined by the lattice vector R" plus the site vector x* connecting the lattice point to the
basis atom

R™ =R" + x". (4.18)

Then, the Fourier transforms are carried out with respect to n only such that we obtain an
expression analogous to eq. (4.9)

gt (ks E) =Y gt (EB)e e (RRT) (4.19)

The ¢t-matrix t(E) as well as the coefficients ci, depend on the atom-type u and eq. (4.12)
must be modified according to

= 3 ol B () (4.20)
IJ’, Ty

where the index n = 0 was dropped to simplify the notation.
Finally, the KKR secular equation becomes

Z (6;m’5LL’ - Zgglzju(ka E)tl[l//qu(E)) C{i/L’ =0. (421)

w'L i

4.1.2 Normalization of the wavefunctions

The regular wavefunctions R/ (r; E') as defined in section 3.2, eq. (3.34) in the ASA and
section 3.4, eq. (3.56) for full potential calculations are normalized as scattering solutions
of a potential in free space. They are fully determined due the requirement that the R (r; E)
and their derivatives have to be continuous at 1 = 7%, which is the Wigner-Seitz radius rysg
in the case of ASA and the maximal radius of the Wigner-Seitz polyhedra in full potential
calculations, respectively. However, for the normalization of the total wavefunctions ¢/ (r +
R") = ¥, ¢, R (r; E') we need another normalization; the wavefunctions ¢ (r; £') must
fulfill the normalization condition

Nat
> fv &Er L) =1, (4.22)

p=1 Iz

which is achieved by choosing a prefactor of the coefficients ¢}/, accordingly. Since the
regular solutions Ry (r; E') do not comprise a basis set, this is not an algebraic problem,
but requires integration. The periodicity of the system makes the choice of the lattice site n
arbitrary; however, we must account for all basis atoms in the cell, i.e. take the sum up to
Ny

We will first develop the normalization condition for spherical potentials before discussing
the condition for non-spherical potentials.
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Normalization of 1 (r) in the atomic sphere approximation

In the atomic sphere approximation, the radial wavefunctions expand as
RY (r; E) = R (r; E)Y.(7) and thus the normalization condition (4.22) becomes

Nat
1 = f d’r

p=1

Nat max 2

— I Y1)

= f dr | RE( B
u= 1 L

2
Zc LR (s E)Y(r) (4.23)

where the orthogonality of the spherical harmonics is exploited.

Normalization of the wavefunctions for full potential

In the case of full potential calculations, the non-spherical contributions to the potentials
have to be taken into account. Furthermore, the volume to be integrated over is that of the
non-spherical Wigner-Seitz cells. Therefore, the shapefunction O(r) (see eq. (3.84)) has to
be included in the normalization condition, which is one inside the cell and 0 outside

3 fv &Br 08 () [t + x| =1. (4.24)
o I3

Expanding the wavefunctions according to eq. (4.64) and the shapefunction ©#(r) in spher-
ical harmonics

O'(r) = ZO (r)YL(7) (4.25)

leads to

—_
1l

va d*r ©4(r) [tac(r + x| (4.26)
S [, a7 SOLEW) 3 i By, (Vi ()

7Ly
Z cﬁLz L,LQ(T E)YLr (7).
LhLs

Since only the spherical harmonics depend on the direction of r, the integral over the spher-
ical coordinates can be performed and yields the Gaunt coeflicients Cr,1,r,. The above
equation hence results in

S f, r o @ linte e xF

Z Z CkLlckLgf ridr Z @ZS(T)CL;L’ZLL%R;TLI(T%E)RM'QM(T?E)

K LiLp LiL,yL3
Z Z CﬁzlckLgleLz(E)’ (4.27)

w LiLo

1
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where we have introduced

e (E) = fo e Y O (NCyuy, Ry, (RE)RY,, (5E). (428)

Ly Ly

The quantity pf ; (F) containing the integral over r and the summation over L/, L), and
L3 does not depend on k. Therefore, it has to be calculated only once for all k. In practice,
the spherically symmetric contribution (L3 = 0) is calculated independently from the non-
spherically symmetric one, since in this case the Gaunt coeflicients C, ,,1,-0 reduce to
Cr 1,0 = 1/v/476,, 1, and the shape function o, (r) to ©§(r) = V.

Once pf ;,(E) is known, the normalized coefficients |, are finally determined by

1
2

n weopl u! H
a4 — ZLZL: ckLlckszLle(E) 4 - (4.29)
12 142

4.1.3 The KKR secular equation in terms of the reference system

Although we have already presented a method to obtain the KKR energy eigenvalues in
the last section, a second, slightly different method should be introduced [71]. It avoids
the cumbersome evaluation of the free-space structure constants and uses the structural
Green function of a reference system instead, making it more efficient for practical use. Its
derivation starts with the Lippmann-Schwinger-equation (3.13) in its integral form

Ui (r+R"™ E) :wf((r+R";E)+Zfd3r’ G (r+R" ' +R™: E)AV" (v )b (r' +R™),

(4.30)

which relates the wave function ¥y (r + R"; E) of the considered system with the wave
function ¥{ (r + R"; E) of a reference system, which has the crystal periodicity but is oth-
erwise arbitrary. It is described by the Green function G*(r + R, 1’ + R"; E). AV"(r) =
Vn(r) — Vrn(r) denotes the difference of the potential at site n.
If the energy F is not part of the energy spectrum of the reference system, as it is the case
for the system of repulsive potentials described in section 3.5, the first term ¢ (r + R"; E)
of the Lippmann-Schwinger equation (4.30) vanishes. Then, the above equation simplifies
to the homogeneous integral equation

Uk(r+RME) =) f ' G*(r + R, + R E)AV™ (r' ) (r' + R™) . (4.31)

In the following, we will insert the expansions of the wavefunctions as well as the Green
function in the above equation; furthermore, we assume that the potential of the reference
system is spherical, hence V"7 (r) = V" (r). Again, the system of repulsive potentials from
section 3.5 fulfills this condition.

As derived in the previous section, the wavefunctions expand as (see eq. (4.17))

G(r +RY) = Y e R (x5 E) . (4.32)
L
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The same holds for the true reference system

Yh(r+R") =Y TR (r E) . (4.33)
L

As shown in chapter 3, eq. (3.44), the Green function G*(r + R™, 1’ + R"; F') can be ex-
panded in its spherical components according to

G'(r+R"r' +R";E) =
S G (s B, (F)Y2, (7)o + 3 R (e )G (BYRYY (45 ), (4.34)
I

Li,Lo

where the first term is the single-site scattering term, resulting from the scattering within
cell n, whereas the second one contains the backscattering of all other atoms.

The single-site Green function can be expanded in regular and irregular solutions of the
Schrédinger equation R} (r; E)) and Hy"(r; E) as

Gy (r,r'yE) = =iVER]"(r; EYH," (r; E) , (4.35)

where we have exploited that the reference potential is spherical at each site n.
In order to calculate the coefficients ¢}, , we insert the expansions (4.32), (4.33) and (4.34)
in the homogeneous Lippmann-Schwinger equation (4.31) and obtain

Z CﬁLzRglLQ (r; E)YL,(7) =

LiLs

5 f & [ S G (1 B, (7)Y, (7)o
ZAVLi(",)YLz(’N) S R E)Y, ()
LoLy

+ 0 Ry E)YLl(T)GZ?Z(E)RlQ (7 E)Yi,(7)

LiLo

;A (T’)YLé(f')LZ Chr RE, 1, (' E)YL, (7) |
(4.36)

The spherical contribution to the integral is
[ A9 YL WY (7)Y () = Crpa (437)

Using the definition of V7, 1, (,), see eq. (3.59),

Viiro(r) = Criror, Vi » (4.38)
L3
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eq. (4.36) simplifies to

Y G, Ly, (1 E)Y1, (7) =

LyiLo

S d, f 2y G (e ) Y AVE L (7R, (5 E) Y (7)

Ll La (4.39)

+X N an, [ R E)YL (DG (B R (7 E)
n' LiLsLyg

YAV, (MR, (7 B).
Ls
As the radial solutions R} ; (r; E) obey the radial Lippmann-Schwinger equation (A.31)

Ry, (riB) = R (r; E) + f P2y’ G (' B) YAV (7 RY (5 E)
L3

(4.40)
the first term on the right-hand side can be merged with the left-hand side, hence

Z CﬁLQRE’;L(T; E)(SLleYLl (72) =
L1Lo
IDNTS f 2y’ R (3 E)Y, (PG (EY R (s E)

n' LiLy La
S AV, ("RY,, (1 E) . (441)
Ls
Exploiting the linear independence of the spherical harmonics yields

ETAED I IR f r2dr’ G (EYRY™ (r'y E) Y. AV (r)RE, L, (1 E) . (4.42)
Ls

n' Lo Ly

The integral on the right side can be evaluated using the definition of the A¢-matrix (see
Appendix A4, eq. (A.34))

Aty 1, (B) = [ rdr R B) X AVE, 1, (1) R, 1, (73 B) (4.43)
L3

with At} | (E) =t} (E)-1;", (F). Because of the periodicity of the potential, the -
matrix is identical for all lattice sites. Thus, At} | (E)=At) | (F)forallnand eq.(4.42)
becomes ’ o

CﬁLl = Z Z Gz?zz(E)At%ng(E)cﬁ’Lg

n' LaoLs

S @ (B, (B)e (R R )

n' LaoLs

> G,k E)AL L (E)d, - (4.44)

LyLs
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This can be written as

> (5L1L2 -Gk E)AtOLZSLQ(E)) hp, =0, (4.45)
Lo Ls

which is the sought-after secular equation for the band structure calculation.

Taking the free space as reference system, the t-matrix ¢, (E) becomes zero, the struc-
tural Green functions G ;,(k; E) are simply the free structure constants g,z (k; E') and

eq. (4.45) reduces to

Z (5LL' - ZQLL”(k§ E)t%”L’(E)) C?(L’ =0, (4.46)

L/ LH
which is equivalent to the secular eq. (4.12) derived in the previous section.
In analogy to the previous section, the above equation can be extended to the case of several
atoms being in a unit cell. Then, the structural Green function of the reference system writes
as

G (k) = 3 G (B)e R (4.47)
and eq. (4.44) must be modified according to
A= Y Gk E)AY,  (BE)d,, (4.48)
}.LILIL”

where the index n = 0 was dropped to simplify the notation.
Finally, the KKR secular equation becomes

3 (%,5“, AL E)At‘L",,L,(E)) =0, (4.49)
ll/,L’ L”
which formally is an eigenvalue problem with eigenvectors
CI];LL;I’L:17"'7Nat7 Lzla"'7LlnaX (4'50)

and eigenvalues A = 0. The scheme used in the band structure calculation employing
eq. (4.49) is explained in appendix A.2.

Before closing this section and coming to the calculation of the Fermi surface we want to
mention that in general the eigenvalues and eigenvectors of the two matrices

(m Y6 E)Atg,,L,(E)) (451)
"
and
(5LL' — ZgLLN(k; E)t%HL/(E)) (4'52)
7

are different; only in the case of eigenvalues A = 0 the eigenvectors are the same which can
be seen by multiplying eq. (4.46) from the left with the matrix G* - g~!

G-g'(l-gt)c = 0
— Gr(g’l—tr+tr—t)c =0
=  G'((G)'-At)c = 0
— (1-G"-At)c = 0 qed. (4.53)
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4.1.4 The Fermi surface

At T = 0, all energy levels are up to the Fermi energy Er are occupied. In momentum
space, this energy corresponds to an energy isosurface F(k) = Er, which is determined by
the band structure and denoted as Fermi surface. For the free electron gas, it is simply a
sphere, since the energy F is proportional to k2. However, even for simple metals like Cu,
Ag or Au the shape of the Fermi surface exhibits significant deviations from that of the free
electron gas. For example, the Fermi surfaces of Cu and Au are shown in chapter 7. For
complex materials it might be a very complicated object.

The Fermi surface allows to gain inside into many characteristics of materials such as scatter-
ing and transport processes. Due to the Fermi Dirac distribution (especially at low temper-
atures) mainly electrons close to the Fermi energy contribute and determine the transport
properties of a material. In the current work, elastic scattering processes without energy
dissipation will be treated, i.e. scattering processes, in which the electrons keep their energy
and only the k-vector changes. Hence, scattering processes are only allowed from one k-
vector on the Fermi surface to another reciprocal space vector k’ also being on the Fermi
surface.

The calculation of the Fermi surface is very similar to the band structure calculation as ex-
plained in the previous section and in appendix A.2; the energy is pinned to £ = £ while
the k vector is varied such that eq. (4.49) is fulfilled.

Once the k-vectors ky obeying eq. (4.49) are found, the corresponding coefficients ¢’
can be determined by calculating the eigenvectors ¢|; in eq. (4.49). In order to identify
the full wavefunctions )y (r) at the Fermi surface, the regular solutions Ry (r; E') of the
Schrodinger equation have to be calculated by solving the Schrodinger equation as de-
scribed in chapter 3, section 3.2 or 3.4, respectively. Besides, the coefficients ¢;//' are needed
for the calculation of the scattering matrix Ty, describing the scattering amplitude for scat-
tering from one state with crystal momentum k’ to another state characterized by k. The
scattering matrix Ty will be derived in section 4.3.

4.2 Impurity scattering

Whenever an impurity or a defect exists in a crystal, the periodicity is broken, and the wave-
functions are not Bloch functions any more. Hence, they cannot be determined as described
in the previous sections. However, the wavefunctions 1,"" (r+R"; E) of the impurity prob-
lem with the boundary condition of an incoming wave ¢, (r + R"; E') are given by the full

Lippmann-Schwinger equation (4.30)
WP (r+ R E) = Y (r+ R E)

+> f Pr'G(r+ R + R E)AVY (£)™ (v + R™) . (4.54)

Here, AV™ (r') = Vimen'(¢/) — V"' (1') denotes the difference of the impurity potential and
that of the periodic host system, whereas G (r+ R, r’+ R"'; E) is the corresponding Green



44 4. Multiple Scattering Theory

function of the homogeneous (host) system. Since the perturbation is localized, the differ-
ence between the potentials AV (r’) is non-zero for a finite number of sites only. Hence,
the sum over n’ has no longer to be performed over the whole crystal but can be restricted
to the finite number of perturbed lattice sites, in contrast to the case of the homogeneous
system in section 4.1.

In analogy to the expansion (4.17) of the wavefunction of the homogeneous system, the
wavefunction ¢} (r + R"; E) in the presence of an impurity expands as

(e R E) = Y R (1 F) (455)
L

where RY™™" (r; E) is the regular solution of the Schrodinger equation at the lattice site . of
the impurity problem. Because of the locality of the perturbation, for atoms far away from
the impurity where AV (r) ~ 0, it simplifies to the regular solution of the homogeneous
system, i.e. R)™"(r; E) ~ R} (r; E).

In a first step, we will consider the case of a spherical potential, thus AV™ (r') = AV™ (1),
while in a second step, the full potential AV™ (r’) will be treated. As the exact deriva-
tions are lengthy, they are just outlined in the following sections and discussed in detail in
appendix A.5.1 and A.5.2.

4.2.1 Impurity scattering in the atomic sphere approximation

imp

The procedure pursued to obtain the impurity coefficients ¢, ;" is the following: We insert
the expansion for the wavefunctions calculated within the ASA

GEP(r+ R E) = Y P R (ry )Y (7)) (4.56)
L

the Green function eq. (3.44) and the difference of the potentials
AV (r) = Vien(p) -V (r) (4.57)
into the Lippmann-Schwinger equation (4.54). Integration over the spherical part, replac-
ing the radial integral by the t-matrix At}?(E) = t;"*"(E) - {*( E') and comparison of the
coeflicients yields the relation
ar” =+ 3 Y G (B)AL (B)e)™. (4.58)
n' Ly

Viewed as a matrix multiplication, the above expression is equivalent to

-1
(ci) = [ > (12200 - E’Z'l(E)AtZ'(E»] (ex). (4.59)

n',Ly

imp,n

where (cﬁ“p) and ((ci ) are column matrices with elements ¢;/;"" and ¢}, , respectively. In
terms of the structural Green function of the impurity instead of the host Green function
the above relation can be formulated as

A" = (Grarabune + GET (B)ALL (E) ) 6, (4.60)

n', Lo
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The equality of [1 + Gi™P(E)At(E)]and [1 - G(E)At(E)]™ canbe proven easily by trac-
ing it back to the Dyson equation (3.10)

G (E) = G(E) + G(E)At(E)G™(E) . (4.61)
We start with the assumption
[1-G™(B)AH(E)] = [1-G(E)At(E)] ™" . (4.62)

This can be rewritten as

1 = [1-G(E)AHUE)][1+G™(E)AH(E)] (4.63)
1-G(E)At(E) + G (E)AH(E) - G(E)AH(E)G™ (E)At(E).

Subtraction of 1 on both sides and factoring out A¢(E) yields the Dyson equation (4.61),
q.ed.

The form (4.60) is more convenient in practice than (4.59), and is used in the calculations
of this thesis.

4.2.2 Impurity scattering in the case of a full potential

If the full potential of the host or the impurity is taken into account, the relation as well as
the derivation of the impurity coefficients ¢;';>" in terms of the homogeneous ones ¢, is
very similar to that described for ASA in the last section. Then, the potential V'(r) depends
not only on the norm of r but the full vector, scattering from one orbital with angular mo-
mentum L, to another orbital characterized by L, is no longer forbidden and the expansion

of the wave function (4.32) has to be modified
Z Cier, R7, (3 E)
L

Z e, BE, 0, (1 E)YL,(r) . (4.64)

LiLs

¢k(r + Rn)

Here, the wave function R, (1) represents the scattering solution for an incoming wave
with angular momentum Z; to a wave with angular momentum L.

Similar to the wavefunction, the Green function G(r + R™, ¥’ + R"’; E}) has to be expanded
as (see eq. (3.44) in section 3.3)

G(r+R",r' +R"; F)
=—iVEY R} (ro; EYH} (v E)ou + Y, Y Ry (v E)GY, (E)RY, (x'; E)
Ly

n' LiLo
= _Z\/EZ Z RTleLl(TdE)YLz(TAS)HZ;Ll (r5: E)Y1, (75) 00
L1 LoLg
+ Z Z Z YLii(,ﬁ)R’lL«sLl (74; E)GZT’LZ (E)Rz;Lz (T,; E)YL4 (,F,) >
n' LiLo L3Ly
(4.65)
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while the difference of the potentials AV (1) is expanded in terms of spherical harmonics
as

AV (x') = ST AVE (r)YL(7) (4.66)
L

As in the case of the spherical potential, the Lippmann-Schwinger equation (4.54) provides
the basis for establishing the relation between the perturbed and the unperturbed coeffi-
cients. Replacing the Green function, the wavefunctions as well as the potential difference
by the right-hand sides of eqs. (4.64), (4.65) and (4.66), integration over the solid angles,
identification of the atomic scattering matrix Aty , (F') and comparison of the coefficients
while exploiting the linear independence of the spherical harmonics and the radial wave-
functions R} ; (r; ) results in

imp,n _ n nn’ imp,n’
ckLl - CkLl + Z Z GL1L2 (E)AthLsckL3 . (467)
n' LaL3

Finally, we arrive at the general expression

aPt= Y (5L1 LoOnne + ) G (E) ALY, LQ(E)) L, - (4.68)
TL’,LQ L3

Naturally, the above equation can be generalized to the case of IV,; atoms per unit cell as

introduced in section 4.1.3. Then, eq. (4.68) transforms to

Cizlz[.;,ﬂ}/‘ - Z (5L1L2 Snn Oy + Z Gﬁl‘i’:" gt (E)Atz;‘L2 (E)) (ﬁL/; . (4.69)
n'p' Lo L

These expressions reduce to the ones for spherical potentials (egs. (4.58) and (4.60)) when

replacing the full potential A¢-matrix by the spherical one Aty 1, = 07, 1,AtL,.

4.3 The scattering matrix 7/

In chapter 3 we have already defined the transition matrix T'(E), eq. (3.17), relating the
wave function 1)) of a perturbed system to the wave function |1y) of the unperturbed sys-
tem [72]. We will now consider 7'( £) in its reciprocal-space representation, i.e. T, where
it represents the scattering amplitude from one state characterized by the state vector k’ to
a second state described by k. For the purposes of this thesis, Ty is of central importance,
since all physical quantities, i.e. the momentum scattering times, the surface state lifetimes
as well as surface residual resistivities calculated later-on are derived from Tiy. Although
scattering might have several reasons such as electron-electron or electron-phonon cou-
pling, we will deal with impurity or defect scattering only. In this case, the scattering matrix
Ty is defined as

Tae = f &r g (v B)AV (£)¢™ (r; ) (4.70)
> &r i (r+ R E)AV (1) (r + R E)

n Jcelln
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where the sum is to be understood as the sum over all perturbed cells/sites included in the
impurity calculations.

In the following, we will simplify the latter expression and express the scattering matrix in
terms of the coeflicients ¢, and ciﬁp, the structural Green function of the impurity GiLmLp,’”nl
as well as the atomic scattering ¢-matrix At and the related A-matrix Azz/. As in the
previous sections, we will start with the atomic sphere approximation and then proceed

with the full-potential treatment.

4.3.1 Spherical potential

In the ASA, inserting the expansion of the wave functions eq. (4.56) in the definition of
Ty €q. (4.70) leads to the expression

Tkk’ = Z dST

n Jcelln

S eup Ry (r E)YL () AV (r) Y o Ry (s E)Yy(7) . (4.71)
L 7
Integration over the spherical coordinates yields

Tae = 33 e cmen f r2dr Rp* (r; E) AV (1) R™™ (B . (4.72)
T cell n

n

In the present form the remaining integral cannot be replaced by the atomic scattering ma-
trix At;(F), since in the definition of At;(F), egs. (A.34) and (A.35), the wavefunction of
the homogeneous system appears and not its complex conjugate R"* (r; E'). Therefore, we
define the above integral as A-matrix

A(E) = fceun'r‘zd’r R (r; E)AV™(r)R™"(r; E) . (4.73)

There are several ways to proceed in order to calculate the A-matrix A;(E). Of course, one
possibility is to calculate the integral directly, which will be done later when the scattering
matrix is calculated taking spin-orbit coupling into account.

However, if spin-orbit coupling is neglected, there are other possibilities to obtain A;(E),
too. The most simple one in the case of a pure spherical potential is to remember that the
complex radial wave function R}'(r; E) is real except a complex phase factor [73], thus
R}'(r; E) = exp [i0,] U*(r; E), where U*(r; E) is real. Therefore, its complex conjugate
is simply R (r; E)) = exp [-2i6;] R*(r; E). The exponents J; are the [-dependent phase
shifts which describe the difference in phase at the Wigner-Seitz radius of the wavefunction
compared to the wavefunction of free space. The phase shifts can be obtained from the
atomic ¢-matrix, since the relation

t(F)=- sin 0;(E)e™ (4.74)

L
VE
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holds, thus )
5(B) = 5111[72i\/Et1(E) + 1] . (4.75)
1

Then, the integral in eq. (4.72) can be identified with the A¢-matrix and the scattering ma-
trix becomes

Tiae = Y. Y. ey exp [-2i6] Aty e (4.76)
n L
Inserting expression (4.60) for the impurity coefficients, the above relation becomes
Tae = Z Z Chip exp [-2i6] At (6LL’6rm’ + GiLmLEWL’(E)At?,(E)) (/'ﬁ,L’ . (4.77)

nn' LL'
The scattering matrix Ty fulfills the optical theorem!

1
Z |Tkk’|2 6(Ek - Ekr) = —7IHITkk N (478)
K a

which will be useful when calculating the momentum relaxation time 7y of a state k. An
expression for 7y will be derived in section 4.5.

4.3.2 Full potential

Considering a non-spherical potential, expansion of the wavefunctions and the potential in
the definition of the scattering matrix T, eq. (4.70), yields

Tiae = f dr Y e Ry, B) Y AV ()Y, (7) Y P " REP" (r, E) . (4.79)
Ly Lo L3

Integration over the solid angles leads to the same problem as in the previous section: the
integral over the radial part cannot be identified with the atomic scattering matrix, since the
complex conjugate of the host wavefunction appears in the integral. In order to trace it back
to the definition of the A¢-matrix, we refer to the a-matrix a1, as defined in eq. (3.65).
As explained in chapter 3, section 3.4, the inverse of the a-matrix transforms the regular (in
general complex) wavefunctions Ry, (r) to real wavefunctions Uy, (r), eq. (3.66). There-
fore, the complex conjugate can be rewritten as

Rzl(r):[Lz UM(r)aLm] - Y R ()ailyan, - (450)

LaLs

Inserting the above expression in eq. (4.79) we obtain

Te = f dr Y ey Ry (v, E)AV(x) Y cmon R (v E)
L Lo

- Y " Y o, [ Ru@AV @R (v E)

L1LQ L3L4

_ *1 imp,n -1 *

= Z s Cern Z L., At (E), (4.81)
LiLy LsLy

In its original form, the optical theorem is %(TJr —T) = i/ET'T, which in the case of atomic ¢-matrices
simplifiesto 1/2(t7,;~t 1) =iV E Y pntpupt .. Knowing, that the atomic ¢-matrices ¢ 7, are symmetric
and setting L = L’ leads to the above form.
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thus
Tao= 3 Q0L Al,,ad)) - (4.82)
LiLyLsLy
For a spherical potential, the above expression must reduce to eq. (4.76), which can be
proven easily by inserting

X L, = (SLle |OéL1L2| Giéll and (483)
Atp, = 0,0t (4.84)

in expression (4.82).

4.4 Wigner delay time

In order to analyze the time scale of the scattering process, it is useful to define the Wigner
delay time p as

tp=2 (4.85)

dE’
where §; denotes the phase shift as introduced in chapter 3 eq. (3.29). The above definition
follows from the interpretation of the scattering process of a wave packet. The Wigner delay
time ¢, describes the delay of a scattered wave compared to an unperturbed one, or, in other
words, the time which the electron spends at the impurity during the scattering process.
More information and a detailed derivation of the Wigner delay time can be found in [60]
and [72].

4.5 The lifetime i

Having calculated the scattering matrix 7y and assuming elastic scattering, the micro-
scopic scattering probability Py can be found via the relation

2m
Pkk' = FNC|Tkk,|2 (S(Ek - Ekl) 5 (486)

where NN is the total number of atoms in the crystal and c is the impurity concentration —
hence, Nc¢ is the number of impurities present in the crystal. Assuming that each impurity
scatters independently, the lifetime of a state k can be found by summing up the scattering
probabilities for scattering of k into all states k’
-1 27 2
T = Zpk/k = ?NCZ|Tk’k‘ (S(Ek—Ek/) . (487)
o

Kk’

The summation over k' can be transformed to an integral

14 p
;Z (zw)3/d3k , (4.88)
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where V' is the volume of the crystal. The integration over d3k’ can be separated into an
integral over surfaces with Ej = const. and an integration in the direction £/ perpendicular

to them v . 15
max d Sy
- dBw f _ 4.89
; (2m)3 [0 ¥ Jse) how (4.89)

Therefore, the inverse lifetime (4.87) results in

1 1 QWNCf dSkr
S

T, = ——
K Viz A2 (Er) Ukr

[Thek|” > (4.90)

replacing (277)* /V by the volume of the Brillouin zone Vi, carrying out the integration
over the energy d Fy and setting Ey = Ey, since we are interested in lifetimes at the Fermi
energy Ip. If only the total momentum relaxation time should be calculated, the optical

theorem
Loy ds
Viz Js(Er) huy

can be used. Then, the integration over the Fermi surface can be omitted and the inverse
momentum relaxation time is given by

1
Thae|” = ~—ImTig, (4.91)

2
lel = 7ch ImTyy . (4.92)

4.6 Residual resistivity

In a metal, the mean free path Ay of an electron with wavevector k is given by the product
Ay = ViiTk (4.93)

where vy is the Fermi velocity and 7 denotes the mean time between two scattering events.
This so-called transport scattering time 7y does not equal the momentum relaxation time
Tx calculated in the last section. It is obtained by a self-consistent solution of the Boltzmann
equation [59]
_ NcV, / d Sy NcV, / dSy . ViV
Tk ——— T
KR 2 S(Ep) huys Aw? Js(ep) huw K
As in the last section, N ¢ denotes the number of impurities in the crystal, and V/, is the vol-
ume of a unit cell n. Once the transport scattering time 7y is known, the residual resistivity
per impurity concentration cp can be calculated. It is given by
I 1 e
cp  34m3h Js(er)

|Tkk’|2 = Uk + |Tkk’|2 . (4.94)

dSk Uk’f'k . (495)

The factor 1/3 is due to averaging the Fermi velocity over the three dimensions of space. If
residual resistivities for 2-dimensional (host) systems such as thin films have to be calcu-
lated, the factor has to be replaced by 1/2 and the residual resistivity per impurity concen-
tration becomes

e? !
0= dS 7 . 4.96
cp [87r3h S(Er) k Uka] ( )
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In such two-dimensional systems, the integral over the Fermi surfaces reduces to a line
integral.

4.7 Summary

In the current chapter, the multiple scattering ansatz of the KKR Green function method has
been exploited to calculate wavefunctions scattered at defects and impurity atoms. These
are necessary to obtain the (k-dependent) momentum-relaxation times and residual resis-
tivities, whose derivation has been the aim of this chapter.

Therefore, in a first step the KKR secular equation has been derived, allowing for the cal-
culation of the bandstructure, the Fermi surface as well as the expansion coeflicients of the
wavefunctions. Then, scattering processes at impurities and defects are considered, and
the Lippmann-Schwinger equation is used to obtain wavefunctions scattered at impurities
and defects. With this, a central quantity of this thesis, the scattering matrix in reciprocal
space can be calculated. It quantifies the scattering amplitude from one state characterized
by a state vector k’ to another state described by k. Together with a delta-function in en-
ergies (guaranteeing elastic scattering processes) and the number of impurities present in
the crystal, it determines the microscopic scattering probability. Finally, the summation
over all possible final states gives the scattering rate of a state k, i.e., the inverse lifetime or
momentum-relaxation time 7"

Apart from that, we have shown that the residual resistivity can be obtained via a Fermi sur-
face integral over the transport-relaxation time multiplied by the Fermi velocity. In contrast
to the momentum-relaxation time, the transport-relaxation time is calculated by the self-
consistent solution of the Boltzmann equation, in which —similar as to the calculation of
the momentum-relaxation rate —the scattering matrix Ty enters.






CHAPTER 5

Spin-orbit coupling

Spin-orbit coupling is the most important mechanism which couples the spin moment of
an electron to its orbital motion. In the interplay with ordinary momentum relaxation, it
determines the spin-relaxation time and the spin-flip lifetime for electrons, which is one
of the major subjects of the present thesis. Therefore, at the beginning of this chapter a
short introduction to the theoretical concept of spin-orbit interaction will be given. Up to
now, the description of the scattering processes within the KKR-formalism has been done
without spin-orbit coupling. In this chapter, we will extend the method to systems under the
presence of spin-orbit coupling and describe its implementation within the KKR-formalism.
However, we work in an approximation where the charge-density is calculated without spin-
orbit coupling, while spin-orbit coupling is then included in the final step of wavefunction
and ¢-matrix calculation for scattering properties.

We present a scheme to calculate the spin expectation operators and point out the problems
arising when considering degenerate states. A simple model will be used to confirm that
our unexpected results regarding this aspect are correct. Finally, the concept of momentum
relaxation caused by impurity scattering is extended to systems where spin-orbit coupling
effects are included and a formula for spin-relaxation times is derived.

5.1 Theory of spin-orbit coupling

Spin-orbit coupling denotes the interaction of a particle's spin with its motion. From a clas-
sical point of view, this can be understood by considering a moving electron in an electric
field E. A Lorentz transformation to the frame of reference of the moving electron leads to a
magnetic field B ~ v x E which couples to the magnetic moment of the electron. However,
spin-orbit coupling is a purely relativistic effect, and therefore not inherent in the frame of
the non-relativistic Schrodinger equation or even the scalar relativistic approach. The aim

53
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of this section is to derive a correction term to the Schrodinger equation coupling the mag-
netic moment o of the electron to its orbital momentum L. Therefore, one has to start with
the fully relativistic Dirac equation for an electron in an external scalar potential V' (r) and
a vector potential A(r)

H¥(r)= zh%\l’(r) = E¥(r) (5.1)
with the Hamiltonian
H=-eV(r)+pmc®+a-[cp+eA(r)] (5.2)

for an electron with charge —e and rest mass m.
The ov-matrix is a vector of 4 x 4-matrices

0 o (5.3)
o= .
o 0
consisting of the Pauli spin matrices

01 0 —i 1 0
Oy = , oy=1. and o, = R (5.4)
10 i 0 0 -1

while 3 is a matrix of same rank, built of 2 x 2 unit matrices I

(0 55
(). ”

The eigenfunctions W (r) of (5.1) are four-component vectors usually written as

w(r)) ’

o= (é(r)

(5.6)

and the two-component vectors ¢ (r) and {(r) are called large and small component of
the wave function. Inserted into eq. (5.1) and using eq. (5.2), two differential equations
coupling the large and small component are obtained

a-(cp+eA(r))&(r) (5.7)
a-(cp+eA(r))y(r). (5.8)

(E-2mc®+eV(r))y(r)
(E+2mc® +eV(r))&(r)

A substitution of eq. (5.8) in eq. (5.7) allows to formulate an equation for the large com-
ponent, also denoted as Pauli-equation. For non-magnetic systems, the vector potential
A(r) = 0 vanishes. Furthermore, in the non-relativistic limit, i.e. v <« ¢, the Pauli-equation
reduces to the Schrodinger equation but with the additional term

eh

WU (VV(r)xp), (5.9)
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comprising the coupling of the electron spin to the cross-product Exp. Here, the relativistic
mass M () enters instead of the rest mass m. An expression for M (1) will be given in the
following section 5.2, eq. (5.20).
Then, the following transformation
o (W) xp) = 1o ()
r dr
_1dV(r)

r o dr

(5.10)
o-L

is valid and leads to the sought-after coupling of the electron spin to its orbital momentum
L. Definition of the spin operator S = o/2 yields the correction term

eh 1dV (r)
- 1 LS. |
2(M(r)c)r dr (5.11)

provided that the potential is spherical symmetric V' (r) = V' (r). This term is added to the
non-relativistic or the scalar relativistic Hamiltonian H5®4, respectively, and is often also
denoted as spin-orbit Hamiltonian Hgoc. Then, the correction to the energy is obtained
within first order perturbation theory.

In principle, the potential comprises contributions of all other electrons within the atom as
well as the potential caused by the nucleus. In order to simplify calculations, this potential
is replaced by a mean-field potential which is found during calculation, e.g. within density
functional theory. The exact treatment of the potential in this thesis will be sketched in
section 5.2.1. The strongest influence on the spin-orbit interaction comes from the strong
nuclear field, whose derivative close to the core behaves as 1/r dV'/dr ~ —Z|e|/r3; the de-
pendence on the atomic number Z is also the reason why the influence of spin-orbit cou-
pling is stronger in heavy atoms.

In the derivation of eq. (5.11), the definition of the angular momentum L = r x p has been
used. In the above form, it becomes evident that s-electrons do not contribute to spin-orbit
coupling. The positive sign of the operator L - S indicates that spin- and orbital moment
prefer to orient antiparallely giving rise to Hund's rule.

Although the spin-orbit Hamiltonian is proportional to L, p-electrons experience a stronger
spin-orbit coupling than d- or f-electrons, since the p-wavefunction has a larger amplitude
close to the nucleus (the wavefunctions of angular momentum [ start off as ~ r!), where
the effect of spin-orbit coupling is largest (caused by the proportionality of the spin-orbit
coupling Hamiltonian to 1/r3).

For further information, we refer to [74] or to any book on quantum mechanics, e.g. the
books by Rose [75].

Vsoc

5.2 Evaluation of the spin-orbit Hamiltonian

The spin-orbit potential V5o as defined in eq. (5.11) is composed of a factor

eh  1dV(r)

5(T):2]\/[(7")202; dr (5.12)
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also called the spin-orbit coupling parameter, and the term L - S. Whereas the parameter
&(r) determines the strength of the spin-orbit coupling, the term L - S accounts for the
coupling of the orbital momenta to the spin. In order to include the term Vgoc in the KKR-
formalism, we write eq. (5.11) in matrix notation

(Vs%cm vgé,cm): ([T @8y
Vabo(r) Vibe(r) L-s" (L-s)*)”

where 1 and | denote the spin directions. In the following we will first make some remarks
on the coupling constant £(r) before evaluating the L - S-matrix. The evaluation will be
carried out in the basis of the real spherical harmonics

L, L.

L, -L,

((L-sfﬁy (L'sm,) 1 (

ey G
wo, @osi) 3
5.2.1 The spin-orbit coupling parameter £(r)

(5.13)

5 YL,(f)) . (5.14)

As already mentioned in the introduction, in principle the potential V' (r) entering in the
spin-orbit coupling comprises the contributions of all other electrons as well as the nucleus.
However, for a practical evaluation only the spherically symmetric component of the mean-
field potential is taken. Both approximations lead to relatively good results since spin-orbit
coupling is strong in the region close to the nucleus and negligibly weak in the interstitial
region, where non-spherical terms appear (see figure 6.1 in chapter 6.
In order to calculate the derivative of the spherical potential dV'(r)/dr at r, the potential is
split into two parts

V(r)=V(r)ee+V(r)z.. (5.15)

This is useful, since the contribution coming from the interaction of the nucleus with the
electrons V() z. is known analytically

- —% for r > Ry
Vie(r)={ . 2 5.16
z-(r) —%+%§ for r < Ry, (5.16)
where Ry is the radius of the nucleus, approximated by [76]
o 1.2
Ryw~12- AV 1075A~» ——— . A3 107%a.u.. 5.17
N 0.520177 a (5.17)

Here, A is the total number of nucleons (protons and neutrons) contained inside the nu-
cleus, which is assumed to have a homogeneous charge distribution.

Additionally, in eq. (5.16) we have used the definition of V(r), the potential divided by the
elementary charge e, hence V(1) = V/(r)/e. The derivative of the interaction contribution

is hence
dVy_o(r) ZT—? for r > Rn
dr % for r < Rx. (5.18)
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The derivative of the electronic part has to be calculated numerically, and is simply calcu-
lated as the differential quotient at the position r

AVeo(ri) 1 (V(rga)=V(r) V(ry)-V(ri1)
dr 25( * )’

where r; are the radial points on which the potential is defined in the code. Inside the nu-
clear radius, the electronic part of the potential is much smaller than the first contribution,
whereas it becomes important for increasing r.

In the evaluation of £(r), the relativistic mass M (r) has to be included, taking the mass
enhancement close to the core into account. With the above considerations about the po-
tential, M () becomes

(5.19)

Tiv1 = T4 Ty —=Ti—1

1 ~ A4
M(r)=m+ @(E—VE,S(T) +2?). (5.20)

Then, using atomic units, €2/2 = 2m, = h = 1, the spin-orbit coupling constant results in

1 1dv(r)

= 521
£r) M(r)2cr dr (5:21)
5.2.2 Evaluation of L - S in terms of real spherical harmonics
The term L - S can be decomposed according to
L-S=L,S,+L,S,+L.S. . (5.22)
Exploiting the definitions of the ladder operators
L, = L,+iL, (5.23)
Sy = Sp+iS,, (5.24)
the above decomposition can be written as
1
L-S-= 3 (LS +L.S,)+L.S,. (5.25)
The z-component of the spin operator measures the direction of the spin, thus
1
S = +§\T> and (5.26)
1
Sl = =5l (5.27)

where [1) and ||) denote eigenstates of the spin operator with spin oriented in 'up'- and
‘down'-direction, respectively.
On the contrary to S, the operators S, and S_ change the spin state according to
Sty =) S_|N)=0, (5.28)
Sy =11) S, [t} =0. (5.29)
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In matrix-form, equation (5.25) can then be rewritten as
(L-S)" (L-s)" 1f{ 0 o0 0 L. 1(L. 0
= = + + =
(L-S)"" (L-S)* 21\ L+ 0 0 0 2\ 0 -L.

_ 1( L. L ) (5.30)

2\ L, -L,

where, in the basis set of spherical harmonics, L,, L_ and L, are matrices of the size 2] + 1.
For the evaluation within the KKR-formalism we require the above matrix in the basis set
of the real spherical harmonics denoted with Y7, ()

L, L

L, -L,

((L.sm, (L-S)T;L,) 1<Y )
= — L T
(L-S)y (L-S)py) 2

However, we start with the evaluation of the L - S-matrix in complex spherical harmonics
V5i(7) = Vim(7), since they are eigenfunctions to the L,-operator and also simplify the
application of the ladder operators.

The projection (V| L. Vi) is diagonal, i.e.

YL/(f')>. (5.31)

<ylm|Lz‘yl'm’) = 511’5mm’m> (532)
or, written in matrix notation,
—1 0 0
0 -l+1
(ylm|Lz|ylm’) = 0 . (533)
-1 0
0 0 I

Theladder operators L, and L_ change m, thus the z-component of the angular momentum
following

Lo Vim) = VI +1) =m(m £ 1) [Vinar) » (5.34)
o1,
0 0
V2l 0
0 4l-2

(Vim| L\ Vi) = E \/m

(5.35)
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and

Dl L Vi) = | Vl(.lfl) . N CEY

VAal+2 0
0 Va2
0 0

respectively.

In order to calculate the action of the three operators L., L, and L_ on the set of basis
functions of real spherical harmonics, the transformation of complex spherical harmonics
to real spherical harmonics is required. Choosing m > 0, it is

?

l-m = \/i [yl,—m - (_1)m ylm] (537)
Yio = Yo

1
Yi,m = [yl,—'m + (_l)m ylm] > m> 0.

V2

The inverse transformation yielding the complex spherical harmonics as linear combina-
tions of the real spherical harmonics is given by

1

yl,fm ﬁ [}/l,m - iY;;m] (538)
Yo = Yo
1) )
yl,m = (\/% [Yi,m + Z}/lsm] , m>0.

A detailed derivation of the action of L, and the ladder operators L, and L_ on the real
spherical harmonics can be found in Appendix B.

Inserting the results of Appendix B into eq. (5.30) allows to obtain the spin-orbit coupling
matrix L - S in the appropriate basis set of real spherical harmonics.

In principle, another much easier way can be chosen: The L - S-matrix could be evaluated
in the relativistic x-j-basis set defined as

{ l for j=1-1

K

1 and (5.39)

-l-1 for j=Il+3

o= L+8S., (5.40)

where j(j+1) is the expectation value of the squared total angular momentum operator. In
this basis set, the L - S-matrix is diagonal [75], and can be subsequently transformed to the
basis set of real spherical harmonics. However, in the presence of non-spherical potentials,
the x-fi-representation does not have an important advantage any more.
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5.3 Spin-orbit coupling in KKR formalism

5.3.1 The spin-dependent Lippmann-Schwinger equation

Taking spin-orbit coupling into account, the wavefunction becomes spin-dependent

(W' (r; E),¥4(r; E))" and is calculated as a perturbation of the spherical solution of the
system without spin-orbit coupling characterized by ¥ (r; E), 1 (r; E), G} (r,v’; E) and
G} (r,1'; E)'. Therefore, the Lippmann-Schwinger equation

(W(r)) _ (%(r))
vHr) ) \wg(r)
5. (GO (r,1) 0 Vsoo(r)" Vsoo(r)™) (¢1(x")
+ f d T,( 12 ) ( / ! ) ( ’
0 Gy (r,17)) \Vsoc(r')!! Vsoc(x')* J \vH(r')
is solved, which is identical to the solution of the full-potential problem, eq. (3.76), as de-
scribed in chapter 3, section 3.4. To simplify the notation, the dependence of the wavefunc-
tion and the Green function on the energy F is omitted.
The perturbation potential is the spin-orbit correction term Vgoc as defined in eq. (5.11),
which couples the two spin components If full- potential calculations are performed, the
non-spherical components AVl (r) and AV, | (r) of the potential are added to
the terms diagonal in spin space to the perturbation Hamiltonian. Therefore, Vs is re-

placed by AV in eq. (5.41) which is defined as

AV (D) AV(r)M
(AV(r)H AV(r)”)_

Vsoc(r)™ Vsoco(r)M AV r 0
( SOC( )H SOC( )H) " ( non-sph. ( ) N ) (542)
‘/fSOC(r) ‘/SOC(r) 0 A‘/non sph. ( )

For non-magnetic systems, the equality AV!" oo (T) = AVH o, (1) holds. In the fol-
lowing, we assume that the incoming wave has only one spin component, thus

)T r ! r
() )

Uy (r 0
(l/fégr;) ) (wg(r))' (5.44)

The total wavefunctions, i.e. the solutions of the Lippmann-Schwinger equation (5.41) with
incoming wave in up direction (5.43) will be denoted by

(W(r)) , (5.45)

) (5.41)

or

Pi(r)

'In a non-magnetic system, 1)} (r; £) and 44 (r; E) (or G} (r,v'; E) and G (v, r'; E), respectively) are even
the same.
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and by

Ph(r)
(o) 649

for an incoming wave in down direction.
The two different choices lead to the two Lippmann-Schwinger equations

(W (r)) B (wg(r))
eMry) o
L (GI(x) 0 (AVIGY) AVH(r) (1)
+fd7 ( 0 O) (Avu(r/) AV“(r’)) (,l/m(r,)) (5.47)

and
[ste) o)

00 \(AVI) AVE@) (N ()
+f @ (0 Gy(r,r'))(Avw(w) AV“(r’))(z/;”(r’))' (5.48)

The above two equations are not only valid for the wavefunctions (¢'(r), 2 (r))" and
(1 (r),*(r))", but can be analogously formulated for the basis functions, the regular
solutions of the Schrédinger equation )" (r) and R}"(r).

Merging the two equations (5.47) and (5.48) into one matrix equation and replacing the
full wavefunctions with the regular wavefunctions as explained above, we obtain the full
Lippmann-Schwinger equation

RI(r) R}(r))_(R;'(r) 0
(Rf(r) Rf(r)) ( 0 R%i(r))

o[ (BE (80 avue) RI() R ()
0 G ))\Avae) AVHE) ) R () R

) (5.49)

for the regular wavefunctions.
In order to solve this equation, it is helpful to expand the variables G§°(r,r’), AV (r)
and R77'(r) in terms of spherical harmonics Y7, (7)2

G3o(rx') = LY ()G (r )i (i) (5.50)
AV (r) = iAV‘”'(r)YL(f) (5.51)
R37(r) = %L;RZ‘,’L'(T)YLr(f) and (5.52)
RYM () - ;R%,TL(”(r)YL/éL/L(f). (5.53)

%As we start from the spherical solution of the host system, G5, (r,r") = G§9,(r,r’") and the regular wave-

functions R%,TL(D (r) are diagonal in L.
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Inserting the above expressions in the Lippmann-Schwinger equation (5.49), a system of
coupled equations is obtained. In a first step this yields

L (REL() REL(DY (R (Yo 0
;memmRmmygan 0 @MWW%

Gl (r, 1) 0 AV AV ()
d3 ’ 0,1 ’ Yo (7 You (i L o
/ ( 0 Géfy(m')) v g (’”)(Avﬁ(r') AV

1" ’ I ’
Z YLl/l(f,) (RLWL(T ) RLWL(T ))] . (5.54)

11 I
" RL’"L(T,) RL//IL T,)
The linear independence of the spherical harmonics Y7, (7) allows to omit the summation
over L', and the above equation can be simplified to

(RTLT,L(r) RT;,L(T)) (R%,TL(T)aL,L 0 )

RlLT'L(T) R?’L(T) 0 R%'lL(T)‘SL’L
+ Z fdQ’YL/(f’)YLH(’Iﬂ)YLW(f’)fT’2dT’
LIIL//I

Gl (r,r) 0 AVIEGY AV (R, () R, ()
0 Go (r ) JNAVEL () AVE() AR () R, (7))
(5.55)

The integral over the angular part [ dQ' Y (#')Y#(#)Yym (') can be identified with
the Gaunt coeflicients C'ps v (see eq. (3.49)). Defining the double-indexed perturbation
Hamiltonian as

S i AVEE (1) = AVEL (1) (5.56)

i

finally results in

(RTLT’L(T) RTLl’L(r)) _ (R%'TL(T)(sL’L 0 )

RiLT'L(T) Ril’L(r) B 0 ROL’}L(”‘)(SL’L

G (r, 1) 0
Ry |0 5.57
E r( 0" e (5.57)

m

The above equation comprises only a one-dimensional integral over r’ instead of the three-
dimensional integral in eq. (5.49) and is solved iteratively. The procedure followed in this
work will be sketched in the next paragraph.

Solution of the Lippmann-Schwinger equation for the regular wavefunctions
For the solution of the Lippmann-Schwinger equation (5.57) for the regular wavefunctions,
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the radial Green function of the spherical potential G(T)Tl(m(r, ') is expressed in terms of
the known radial solutions R (r) and H(r)

GO (1 17) =~/ BRI () B (1) (5.58)

with
r> =max(r,r’) and r.=min(r 7). (5.59)

This leads to a decomposition of the regular wavefunctions

(RTLT’L(T) R;f’L(r)) _ (ATLT’L(T) AE’L(T)) (R%'TL(T)éL’L 0 )

Rg’L(T) R%’L(r) A‘LLT’L(T) A%’L(r) 0 R%'lL(T)éL’L
Bl (r) B(r) HE3TL(7“)5L'L 0 €0
BH . Bil . HO,l )6 (5 )
() Brp(r) 0 (1)
with
(ATLT’L(T) A%’L(T)) _ (5L’L 0 )_Z-\/E[T"“‘* 7,/2d7,/(H%’TL(T/)6L’L 0 )
A?,L(T) A%,L(’f‘) 0 oL r 0 HE’}L(T/)éL’L

Z(AVLT,TL,,,(T’) AVLT}L,,,(T’))(RTLT,,,L(T’) R, ()

5.61
AV L) AV )R, 1) R, m) (5.61)

"

and

(B}/TrL(T) B}f,L(’I‘)) _ _Z'\/E‘/""T/erl (ROL‘,TL(T")éL/L O ).
By (r) Br(r) 0 0 RY (7)o
(AVEL«//(T’) AVE*LI//(T’))(REI«L(T’) Rl (")
L/II

. (5.62)
AViJLﬂl (T/) A‘/.[JJI‘LL//// (/)"'I) Ri;THIL (T/) Rill//L (T/))

Equations (5.60), (5.61) and (5.62) can now be solved iteratively starting from the spherical
solution without spin-orbit coupling

(RTLT/L(T) RTLlfL(T)) B (R%jL(T)éL’L 0 )

) 0 R%}L(r)éL’L

Ry, (r) R, (1) (5.63)

The iteration scheme described above is the so-called Fredholm-method [77]. Another way
to solve the equations yielding the same results makes use of the Volterra method [66].

Relation to the At-matrix Once the matrices A and B are known, the correction to
the atomic scattering matrix At?" can be calculated. The current paragraph deals with
establishing a relation of the A¢-matrix to the matrices A and B.

Outside the range of the potential, for 7 > .y, the second term of equation (5.61) becomes

zero 1" I
A ’ A ’ 6 ! O
( () ﬁL(’“)) :( v ) (5.64)
AL’L(T) AL’L(T) 0 5LIL
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and thus (5.60) reduces to

(RET,L(T‘) RT;,L(T)) _ (R%,TL(T)(SL,L 0 )

RLLT:L(T) RlLl/L(T) 0 ROLA"lL(T)(sL'L
(Bgm B}&(S))(H%z(r)m 0 ) (5.65)
BYL(S) Bi.(S) 0 Hy ()

A comparison of the last equation with the definition of the A¢-matrix (see eq. (3.37) for
the ASA or eq. (3.73) for the case of a full potential), At can be identified as

(At?fL(E) AtBL(E)) i (B?L(S) B%(S))

T VE\BUL(S) BL(S) (566

At (B) Atp(B)) VE

Hence, according to eq. (5.62), At can be explicitly calculated as

(A%(E) AME)): f’mT,er,(R%w')m 0 )
At (B) At (E)) o 0 R (r)opir,
Z (AVLT,TL,”(T’) AV[T}L'"(T,)) (RET/HL(TJ) RTLJ;”L(TJ)

. (5.67)
AVL{’ITLIN(T,) AVg}LIII(T,) RET/IIL(TI) REJVIIIL T,))

i

5.3.2 The spinor wavefunctions including spin-orbit coupling

In the presence of spin-orbit interaction, the k-dependent wavefunction as defined in
eq. (4.32) has to be generalized to

Pe(r+R%E)\  « 4, (RI"(rE) w (RI"(rE)
(wli(HRn;E));C“L Rin ) " 2\ sy ) )

Hence, it becomes a spinor with the two components 1/)11(1" +R" F) and wi(r + R E),
which are referred to as spin-up and spin-down components.
In the above expansion (5.68), the radial wavefunction

Ry (r; E))

RY"(x; F) (569

R"(r; E) = (

denotes the spinor wavefunction of an incoming wave only containing a spin up component

(j L(E E)) = jL(VEr)Yy(7) ((1)) , (5.70)
whereas l RTLW(r; 2)
R"(r; E) = (R%”(r; E)) (5.71)
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is the spinor wavefunction of an incoming wave only comprising a spin down component,
respectively

(J.L (2 E)) = jL(VEr)Y.(7) ((1)) (5.72)

In eq. (5.68), the second spin index denotes the boundary condition, thus the spin state of
the incoming wave while the first index refers to the scattered, outgoing wave.

Expanding the regular wavefunctions %" (r; E) in their orbital components, equation
(5.68) becomes

U (r+ RS E)\ i (R E)Y |, (RS (6E) X
(iome o) =21 () () | 0 6

or, rewriting the wavefunctions in matrices

G RYE) (R E) R}%(uE))(cLz)] A
(wli(r+R”;E))_LZU[(RiLtz(r;E) R (e )\t )| BT

Again, as for the spin index in eq. (5.68), the second index L indicates the boundary con-
dition, thus the orbital momentum of the incoming wave while the first index L’ refers to
the scattered, outgoing wave.

. naT nal'
5.4 The coeflicients (o and (o

In order to evaluate the full, spin-dependent Bloch wavefunction including spin-orbit cou-
pling

1/)11 r n R}jn r . RTLln r
(%Er;) i ; il (angr;) ' ; i (Rﬁngr;) ’ (5.75)

not only the regular wavefunctions whose calculation has been described in the previous
section, but also the coefficients ;7| and ¢}/ are needed. They can be evaluated using the
Lippmann-Schwinger equation for the full wavefunction (5.41). As reference system, we
choose in analogy to the derivation of the coefficients without spin-orbit coupling in section
4.1.3 the system of repulsive potential defined in section 3.5. Under these conditions, the
Lippmann-Schwinger equation is homogeneous and reduces to

Pi(r) _ 3 G(T)T(rar') 0 AVI(r) AV (¢1(x)
(1/}*(1‘)) ) fd ' ( 0 Gél(r,r’)) (AV”(r’) AV“(r’)) (W(rr))’ (5.76)
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or, using expansions (5.68) and (5.50),

Rgg’ r n RQE’ r ~ N
2 [ (Rﬁi) (szfr;)]“(” - ?YL(’”’[

o
Gl (r,7") 0 AV AV
d3r’( 0% )Y(ff) Y,('f")( v Y )
f 0 G(i)fz (r,r") o ; L AVLL,T(’I’,) AVLi,l (r")

R (' R ('
Z I:CLHL"( L'"L ( ))+C¥£n( L'"L ( )) YLIH(W)

LNLIH RJIVITIZL[/(T") Rﬁﬁl//l(r,)
5 [RGB (1) 0 o
+ "y ' m Voo | Yo (7)
i 0 Rl (T)GO,LL””RV”/(T )

20 S0
I AV[%,T T’) AV[{'} (7‘/)

Z CTn RET/ZLN (r/) n Cln RE}"ZL” (TJ) YL (,rﬁl)
" M ) 1 .
LT kL Ri‘rlTI/LN (7"/) kL Rﬁr’z[/’ (TJ)

(5.77)

Here, the first term on the right side results from the single-site scattering, whereas the sec-
ond term is the back-scattering term. G99, is the structural Green function of the reference
system, which does not imply spin-orbit coupling. As in the derivation in section 5.3.1,
the summation over L can be omitted. For each summand the integral over the spherical
coordinates results in the Gaunt coefficients, and with the transformation of the spin-orbit
Hamiltonian according to (5.56), the above equation yields

o () ()]
L Ri7(r) Rip(r)
/r'zdr’ (Gg?l(r,r’) 0 ) (AVLTE,,,(T’) AVLTE,,,(T’))
0 Géfl(r,r’) L \ AV () AV ()

et () e ()|
Rijpn(r") Rimpn(r')
o g (FODEC )

Iz 0 RN (r) Gy Ry (1)

(AVITITNIL!H(T,) AVIT;L/HLNI(T,))
L AV[{!TNIL!H(T’) AVZ{}/I!LNI(”‘,)

CL” " (R}/T:;LN(T/) + Ci(n " RE}I?L”(T/)) .
L \Rrn ) AR L ()

(5.78)
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The first term on the right side can be summed up with the left side, since the regular solu-

T
tions ( ZLTT(N) (r), Rzzf(”) (r)) fulfill the Lippmann-Schwinger equations (see eq. (5.57))

RET'L(T) _ R%'TL(T)éL’L +[7"2d7" GE)TN(TJ/) 0 ]
Ry (r) 0 0 Géfl,(r,r’)
5 (AVETLW(T") AVLT*LW(T’)) (RTLTIIrL(r’)

(5.79)
AV () AV () RlLT,,,L(r’))

i

and

RN, . 0 GTT, ! 0
( ﬁL(ﬁ)) _( 0l (. )+/7J2d7“l ( o) 4 / )
Ry (1) Ry (r)one 0 G(),’l’(rvr )

> (AVE&f,’(T’) AVLWL,,,(T’)) (RE*WL(T’)

. (5.80
AV, () AV, () Rﬁ%(w)) (580

L

Therefore, equation (5.78) can be simplified to

RO’M,L Orrr 0
Z[CI&'( LL (7“) LL)+C¥1L,,( ot )]:
o 0 Ry (r)dLe

RYN(r)GY o Rl (1 0
f r2dr 3 ( (r)Go, o By (') o e )
L//II 0 R (T)GO LLI”/ Rll’// (T )

(AVITJ;HLHI(T,) AVE}!!!L/H(T,)) [ in (RET,?;L”(T,)) . in (R}}rﬁL//(r,))] ) (581)
L

Cirn Crpm
AVLLITWLW(T,) AVI%}H!LIH(T,) KL RETI?;];LH(7.,) KL R%ﬁLn(r,)

Using the definition of the A¢-matrix (5.67), one obtains

R'(r) 0 o v R'(r) 0 Gyppm 0 )
0 R?l (T) Ci’z LI 0 Rol (T) 0 GélLL/m

[L”L,,( tmL"(E))+ i”u( th'L"(E))] (5.82)
AtﬁzlL//(E) At%ﬁ/LN(E)
and thus

n " n n
(CLL) Z (GO,LLHH 0 ) ( t}j/mLu(E) At}ﬁ///Lr/(E)) (CkL") (5 83)
C%(Tz LLmt 0 GO LL"" AtiLT/”/q;rLu (E) At]itr’/?/llu (E) kL'

Finally, the coefficients (cf’; ., cf("L,,)T can be calculated following
Z I:((SLL/(SULH 0 ) (G(T)TLL’ 0 ) (AfTLT,}L/,,(E) ATTL‘L:IL/’(E)):I
P 0 oL pr 0 Golp) \AHL(E) At.(B)

tn
Crpr =0
n -
Crrr

(5.84)
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The above equation is the KKR secular equation for systems including non-spherical com-
ponents of the potential as well as spin-orbit coupling, as it is eq. (4.49) for systems without
spin-orbit coupling. It can be used for band structure calculations and for the calculation
of the Fermi surface, i.e. the k-points at the Fermi energy Ep, as well as the corresponding

‘ T
coefficients (c[ ., c"t,)

The method used to calculate the Fermi surface is the same as already described in chapter
4 and the Appendix, sections A.2 and 4.1.4 for systems without spin-orbit coupling.

In order to obtain the final, correctly scaled coefficients c}} and c}t, the norm of the full
wavefunctions must be calculated which is discussed in the following paragraph.

- . T
Normalization of the wavefunctions (1/;lt(r +xH), wt(r +x*))" In order to nor-
malize the wavefunctions comprising an up- and down-component, the coeflicients cl‘:TL

and c{:i must be chosen such that

Nat
> [ @ (jehee) + ) -1 (5.85)

p=1 +

for each k, which is achieved by choosing an appropriate prefactor of ((ﬁTL cﬁiL)T. Again,
we have dropped the index n, indicating the lattice site while introducing the index 1, which
accounts for the number of atoms N, in the unit cell. The procedure is similar to that fol-
lowed in the case of the full potential (see chapter 4, section 4.1.2). Hence, the integration in
eq. (5.85) has to be performed over non-spherical Wigner-Seitz cells and the shapefunction
©(r) has to be introduced

Nat

> f Prer(r) (|’(/11T((r + Xﬂ)|2 +|of(r+ x")IQ) =1. (5.86)

p=1
The square of the absolute value of the wavefunction ‘wll(r + x“)|2 and |1/}1¢((r + x“)|2 is

[k (e + x| + ek (e + x|
) (wlur + xﬂ))T (wlur + x#))

Ur(r+xt)) \g(r+x+)
Mpx W
ol [T ] W e Lo | POCS
L,1L1 1 1 RL{@LI (,) RL'luLl (,) 1
s | (R, () i, (1) (65:) izt
7 " LY
oL, RiTng(r) Rilng(T) C%:LQ
=2 2 YL ()Y ()
LiLa L L

opx o Toux to’ lopx ¢, o’
3 et (R ORI ) + B (R )
(5.87)
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Similar to the procedure used for systems without spin-orbit coupling the definition

s [ S O8I, SRR ) 6

1L,

allows to rewrite the normalization condition (5.85) as

uxo po’  poa’
IS kL, kLo Ly Ly
n oo’ L1L2
= 1. (5.89)

Z:::f d*rot(r) (|1/11T((r + X“)|2 + |w1¢((r + X“)|2)

The quantity p’ffz; calculates similarly to p ; ~described in section 4.1.2.

Finally, the correctly scaled coefficients cﬁTL and cﬁi, which fulfill the normalization condi-
tion (5.85) are given by

e pxo po’  poo’ no
G, [Z > 2 Cery %kLoPraLs | Gk (5.90)
w oo’ Ly L2

[NIE

5.5 Expectation values of the spin operators

For a number of applications it is necessary to calculate the expectation values S, Sy and
Sg of the spin operators S%, i = x,y, z at the Bloch states k. We will deal with this subject
here because of two reasons: First, the scheme to calculate them is very similar to that of the
normalization of the coefficients, which was the subject of the previous section. Secondly,
the spin expectation values are required for the determination of the coefficients CL‘Z and
cll(“L in the case of spin degeneracy. The latter is explained in the next section.

For each point k on the Fermi surface, the expectation value of the spin is determined by

S = 1/2h o, i.e. in atomic units (A = 1),

SE = 5 o) (s.9)
Se = %(wk‘ayw)k)’ (5.92)
Si = g tdo i (5.93)

where 0%, 0¥ and 0# are the Pauli matrices as defined in eq. (5.4).
Hence, S, Sy and Sf can be calculated according to

G _ L dg(wur+xwf(o v(¢ur+xw)
ko7 a2y, g wli(r+xﬂ) 10 1/J1£(r+xﬂ)
= %fv Ervf (v + x")i(r+x") +of (r+ X" +x")],  (5.94)
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w1 5 1/1{((1‘+X#) f 0 —i ¢11(1‘+X“)
. 2fvud3’(wt<r+x#>) ( 0)(wlt(r+xﬂ>)

= % fv Br [(—i)l/JlT(*(r + Xﬂ)z/)ll((r +xM) + z'q/;ll(*(r + Xﬂ)q/}lt(r + X”)] ,(5.95)

i

and

w1 (Xm0 (e x)
= s L) (o 1) Ceer)

1 9 )
= 2 [ @[ ex)f - okt ) (596)
n
In a more general form, the above equations can be subsumed to

L 1
Gk _ 1/ B Z Rg“(r) RTL“ (r) CL‘L
k 2 v, 2 RLLM(I‘) Rﬁ”(r) L

kL

i i Iy I \
(‘711 Uiz) (RL’#(II) RLf#(r)) (Ck#L') (5.97)
Ty Ob Rg,“(r) RiLlfH(r) CltuL'
or i i 1
. 1 YO AL Mk W et
U _ 0 | LL LL kL' .
St = 5 Z (ck“L ck”L) (Elmi st [\ i | 1=1,9, 2, (5.98)
LL LL rr 7 \Ckrr

where the notation

(2% 22*5:): / dsr(Rl’“<r> R’;“(r)) (au Uu)(Rzﬁ“(r) R}/ (x)
V#

st s RM(r) RP(x)) \ob o%)\R{¥(r) RP(r)

) (5.99)

LL
has been introduced. The expectation values of the total spin components are

Nat

Sg = ZS””*”,
p=1
Nat
Seo= S
p=1
Nat
Sg = Zsiv“ (5.100)
p=1
and thus
St =y J(5p) + () + (52) (5.101)

5.6 The coefficients cy for the case of Kramers degeneracy

In non-magnetic systems with inversion symmetry, for example in fcc copper, silver or gold
crystals, all states on the Fermi surface belonging to (kr, Fr) are twofold degenerate. In
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this case, there are two eigenfunctions ¢, (r) and ¢} (r) which are orthogonal to each other
and have opposite spin expectation values

(vilo'lvn) = = (vRlo'lg), i=wz,y,2; (5.102)

this is known as Kramers degeneracy. However, the coefficients cll(z belonging to the two
wavefunctions ¢y (r) and ¢ (r) do not always initially fulfill the above condition, since
they are calculated as eigenvectors of the KKR-matrix (see section 4.1.4) using the Lapack-
routine [78] ZGEEV, which computes the eigenvalues and, optionally, the left and/or right
eigenvectors of nonsymmetric complex matrices. Therefore, an explicit orthogonalization

is necessar
Y CQ,T
1,1 1,I\* k
2 2,1 [(Ck %k ) ( 2,¢)] 11
c c C c
2, 2,) ) :
Cx Cx

|:( 111 ¢)* Cllj
CY N ( 1,¢)]
Cx
~2,1 2,1 2,1 1,1
Cx Cx TN WA 5 Cx
= (e ") - (5.104)
(512(4) (ci,i) [( k k ) Ci-,l Cll(-,l

if (cll(’T., cll(’l)T is normalized. The orthogonality can be easily proven by multiplying

which reduces to

- 2.\ . * * .
(ci"T, ci’l) with (cll("T , cll(’l ) Note that the above operation does not conserve the norm

S 21 2\ .
and a normalization of (ck’T, ck’i) is necessary.

Although the wavefunctions /. (r) and ¢ (r) are now orthogonal, the degeneracy allows
any linear combination of the two wavefunctions. The appropriate linear combination is
determined by the particular physical problem at hand in each case. For the problem of
spin relaxation that is investigated in the present thesis, two types of linear combination
are most interesting: one that maximizes S; and one that gives Sy = S}/ = 0 for all k. The
two choices are not equivalent and correspond to different, though similar, experimental
situations. The former condition would correspond to the creation of a spin population by
acting with an external B-field along the z-axis, which is then switched off, while the latter
corresponds to the case when electrons, which are polarized exactly in the z-direction are
injected to the material from an external source, e.g. a ferromagnet.

We continue now to seek a linear combination of the degenerate coefficients ¢ and ¢,
which is constructed such that it fulfills the required conditions. To simplify the notation,
we write

11(,2 _ § ) C11(2 (5.105)
instead of 1.9t 1 I o2
o XN e [ () B0 (5.106)
wHr+xn)) TR R ()it |

and, likewise )
S = L) = e, i m: (5.107)
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for the spin expectation values (5.98) with
= % f d*rR'o'R. (5.108)
The coeflicients of the linear combination can be expressed as
d.” = filcl + g %ck (5.109)

with fi’Q7 gllf eCand
|52 b2 = 1. (5.110)

Since the phase of dll(’2 is irrelevant, one of the parameters f&’27 gll(’2, e.g. f can be chosen

to be a real number. Due to condition (5.110), we can set

Qi

fi = cos 7 and
gll( = sin% e (5.111)
resulting in
dj. = cos %c}( +sin % efct. (5.112)

The orthogonality of the cllf as well as the new coeflicients dllf
dZ’T -dl = 0pm, m,n=1,2 (5.113)

then leads to

a ax
di = -sin 7kc11( +cos 71{ ePiect . (5.114)

For simplicity, we will skip the index k in the following discussion. Nevertheless, all pa-
rameters, coefficients and spin expectation values depend on k.

An evaluation of the spin expectation value S} = dlljgid}( in terms of the old coeflicients
and spin expectation values yields

i
Sg,

2 2
(cos %) Sél + (Sin %) S& + (Sin %) (cos %) [ewclTZic2 + e’iBCQTZicl]

2 2
(cos %) S+ (sin%) S(’;Q + (sin%) (cos %) 2Re[ei6c1f2ic2]

= cosa S., +sinaRe [emc”ZiCQ] . (5.115)

In the last step, we have used eq. (5.102) as well as the double-angle formulae for trigono-
metric functions. Defining

So=ctyic? i=gxy,z (5.116)

€1,C2

in accordance with eq. (5.107), the expectation value (5.115) results in

Sy =cosaS: +sinaRe[e?S! ] i=wzy, 2 (5.117)

C1,C2
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0.4978 0.4984 0.4984

0.4989 0.4994 0.4979 0.4989 0.4995

Figure 5.1.: Total spin expectation values Sj°* for a copper fcc crystal on the Fermi sur-
face. While the left panel shows S;°* for an arbitrary reference system for each
k (i.e. the initial 'choice, taking the orthogonalized coefficients such as they
result from the eigenvalue routine), the right panel represents the total spin ex-
pectation values for linear combinations of ¢y such that the z-component S{ is
maximized.

At this point, one has to decide which condition the spin expectation values in the new
reference system should fulfill. As already indicated, the z-axis will be chosen as spin quan-
tization axis, but this choice might either be understood as

Sg, = max. (5.118)

or
S5 =S84 =0. (5.119)

In the following, both cases will be considered. We start with the first one, hence maximiz-
ing S7 . The two parameters « and 3 are then determined by the conditions

% = 0 and
O
% _ 0, (5.120)
p
which result in the two equations
- sinaS? +cosa Re[eS2 ] 0  and
sinaIm[e?SZ ] = 0. (5.121)
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Then, « and [ are given by

g = —argS?

C1,C2

a = tan™! lwl (5.122)
= 5 . .

c1

In contrast, condition (5.119) leads to

C1,C2

[7) _ iln _Sr%lsglicz*sglsfﬁq
2 S(rl Sgl,CQ - Sgl Sg;,cQ
Sz SY
a = —tan'| —2 | =—tan' | ————|. 5.123
[Re [o7s7 1] el S

The total spin expectation value Si°* is different in the two cases although the difference
is very small and not visible in a figure. However, the distribution of the spin expectation
values St on the Fermi surface for the initial coefficients ¢y differ remarkably from that of
Stet for one of the choices S* = S¥ = 0 or 5% = max.. This is illustrated in figure 5.1 for
copper. The integrated difference for copper and gold crystals can be found in table 5.1 and
will be analyzed in the next subsection. In addition, we will average the spin expectation
values over the Fermi surface and compare our results to other numerical data.

As a further test of our findings, we constructed a simple model in order to show that the
two conditions are not equivalent. This issue will be the subject of the section after the next
5.6.2.

5.6.1 Comparison of the spin-expectation value St°t of copper and gold
to other numerical data

In the previous section we derived linear combinations of the degenerate coefficients ¢;. and
¢ such that either the condition S* = max. or S = S¥ = 0 is fulfilled. Now, a quantitative
analysis of the two possible choices for copper and gold fcc crystals is presented. The results
are subsumed in table 5.1.

Apparently, the choice of 5% = max. leads to non-vanishing spin-components S* and 5Y.
While this is only a small effect for copper, lower than 1 per mille, for a gold crystal the
average of S” and SY over the Fermi surface is of the order of about 1% of the total spin ex-
pectation value S*°t. In addition, the total spin expectation value (averaged over the Fermi
surface) is affected, too; the maximization of S* leads to slightly higher values of S*°t. How-
ever, as already stated in the last section, the difference is very small and would not be visible
in a figure. In all calculations of momentum- and spin-relaxation times in this thesis which
are presented in chapter 7 for bulk systems and in chapter 9 for thin films, the second con-
dition (5.119) S* = S¥ = 0 is chosen.

Comparing the distribution of the spin expectation value for copper in the right panel of
figure 5.2 to the distribution shown in [79], a good agreement is found. For a more accurate
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ASA FP

SZ=max. S*=5Y=0 S?=max. S*=5Y=0
Cu S* 25-10% 0 2.2-1074 0
Sy 36-10* 0 2.8-10* 0

S#0.4988682 0.4988679  0.49901815 0.4990179
Stot - (0.4988685 0.4988679  0.49901835 0.4990179

Au S*  1.3-102 0 0.6-1072 0
Sy 1.3-102 0 1.0-10°2 0
S# 04678345 0.4673311  0.4782259  0.4779915
Stot(0.4684714  0.4673311  0.47846055 0.4779915

Table 5.1.: Spin expectation values S = (Sk)pg (wWith Si = 1/2 (Yi|o|¢x)) and Stot =
(S{ft )FS of copper and gold averaged over the Fermi surface for the two different
conditions S* = max. and S® = S¥ = 0. While the total spin expectations S**
for the latter condition equal the expectation value of S,, choosing the first one
leads to finite, non negligible spin expectation values of the 2 and y spin compo-
nents. For gold, a difference in the total spin expectation values between the two
possible conditions averaged over the Fermi surface of the order of 1% is found.

comparison, we introduce the parameters ay and by defined as

Nat

|ak|2 = Zf d3r¢£*(r+x“)1/1li(r+x“’) and (5.124)
p=1 Vi
Nag ‘

o> = va dBr gt (r+ xM)k(r +x"), (5.125)
p=1 H

which are often used to quantify the strength of spin-orbit coupling e.g. in [14]. The quan-
tity |bk\2 is called spin-mixing parameter or Elliott-Yafet parameter (see section 7.1.1 in
chapter 7). As one can easily prove, the relation of |a|” and |by|* to the normalization of
the wavefunction and the spin expectation value Sf is given by

la” + |b* = 1 and (5.126)

jax* = |l = 25, (5.127)
being equivalent to

|l = %+Sﬁ and (5.128)

b = E—Sﬁ. (5.129)
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0.0005 0.0009 0.0013 0.0021 0.0103 0.0168 0.0274

Figure 5.2.: Spin-mixing parameters |bi|? for copper (left) and gold (right) fcc bulk crystals after a
linear combination of the degenerate coefficients ¢, and ¢ such that the condition S* =
SY = 0 is fulfilled. While the distributions for copper and gold are qualitatively similar
to each other, the order of magnitude of the absolute values of |bk|2 differs strongly. As
expected, the effect of spin-orbit coupling is much larger for gold than for copper. To
compare, for copper, the distribution of the spin expectation value Sf = 1/2— |bk|2 after
the maximization of S is shown in figure 5.1.

Furthermore, the strength of spin-orbit coupling is often quantified by p™ [79], which is
also denoted as spin-mixing parameter and defined as

pM = (1-2|SE)ps - (5.130)

Similar to by, it should vanish in the absence of spin-orbit coupling. It is related to the
averages of |a,|” and |by|* over the Fermi surface according to

(la)pg = 1-5%  and (5.131)

() = 5 (5.132)

However, in this thesis we use the first definition of the spin-mixing parameter, i.e. by.

The distributions of |bk|2 on the Fermi surfaces of copper and gold are shown in figure 5.2;
whereas a qualitative similarity can be observed for copper and gold, the order of magnitude
of the absolute values differs strongly. As expected, the effect of spin-orbit coupling is much
larger for gold than for copper.

Furthermore, we have calculated the spin-mixing parameter <|bk|2)FS = p't /2 averaged over
the Fermi surface. The results for calculations within the atomic sphere approximation as
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ASA FP
S7=max. S*=5Y=0 S?=max. S*=5Y=0

Cu ourresults 1.13-1073 1.13-1073 9.81-10% 9.82-10%

other calc. 1.5-103
Au ourresults 3.16-1072 3.27-1072 2.15-1072 2.20-10°2
other calc. 3.0-1072

Table 5.2.: Spin-mixing parameters (|bk|2>Fs = p'/2 averaged over the Fermi surface of
copper and gold. Comparison of our results to numerical data from ref. [79].
Note that in ref. [79], data are given in p!* and are therefore twice as large as the
values specified here.

well as full-potential calculations can be found in table 5.2 together with numerical data
from [79]3; especially for gold, large differences between the full potential calculation and
that within the atomic sphere approximation can be observed. Considering this argument,
the agreement of our spin mixing parameters with those from reference [79] is reasonable.

5.6.2 Inequivalence of the conditions S* = max. and S* = S¥ =0ina
simple model

In order to demonstrate that the two conditions eq. (5.118) and eq. (5.119) do not lead to the
same result we construct a simple model system consisting of two bands E. (k) and E.(k),
where the latter one is chosen to have a lower energy. The states around each k-point are
linear combinations of the s-orbital sy and the three p-orbitals ¢,, ¢, and ¢,. Without
spin-orbit coupling, the wavefunction at k in the upper band is

|1/)0) = awd)m + bw¢y + C¢'¢z + deO N (5133)
and in the lower band
IX0) = @y Pz + by + @ + dy S0, (5.134)

respectively. Treating spin-orbit coupling as a perturbation to first order in the spirit of
Elliott [9] we obtain the perturbed states

"o X0)+2AAE(¢0|Lz|X0>¢0))

b’} = (M*E (WolLs + 1Ly |x0) o) (5:135)
o > (ol — Ly o) o)
_ —3aE \Wollz —tLy[Xo0) Yo

- 5.136

) (XO>—2§E<%|LZ|XO>¢0>) (5.136)

*Note that in ref. [79], data are given in terms of p'* and are therefore twice as large as the values specified in
table 5.2.
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with AE(k) = E. (k) - E.(k). Inserting the explicit forms of the wavefunctions |¢)y) and
[xo) and applying the momentum operators L,, L, and L, leads to

o IXO>+22EW|¢0>) 5.137
) (mﬁmnowo) e

and

(e (neic) wm)
— 2AF
) (|XO> C i) ) G138)

where the abbreviations

N = aucy — Cpay (5.139)
C = byex—cyby (5.140)
7= bpay —agby (5.141)

have been introduced. Naturally, expressions equivalent to egs. (5.137, 5.138) can be found
for |¢)*) and |¢)~) just by interchanging the two states x and 1. The two perturbed states
[x*) and [x~) (or [¢*) and |¢)~), respectively) are not normalized to 1, but they fulfill the
conditions

X)) = (xIx7) and (5.142)
XIx7) = (xXIxT)=0. (5.143)

As can be easily shown, they have the same energy.
In the following, linear combinations of [y*) and |~} are introduced, in the form

X7)

b —sin% [x*) + cos %eiﬁ x7), (5.145)

+cos g [x*) +sin %ew [x~) and (5.144)

with « and 8 determined according to eqgs. (5.121) such that the new states |Y) fulfill the
condition of .S, being maximal

B

Re[eiBSz, _
a = tan™! [M] (5.146)

z
argSy. -

S;

Here, in analogy to egs. (5.107) and (5.116) we have used the definitions of the expectation
values

e = (Xi|ai|xi) and (5.147)
St = (x*lo'Ix") fori=mz,y,z. (5.148)

In the following, we will show that these new states do not fulfill

St +tana Re[e” ST, ]=0, (5.149)
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which is equivalent to eq. (5.123), i.e., the new states do no fulfill S, = S,, = 0. The proof will
be carried out by assuming that egs. (5.146) and (5.149) are simultaneously fulfilled and by
thus ending in a contradiction.

With
) SEr
e =y ‘ Sxix (5.150)
xtx~
and
Re|eBSz, Re[ S{ - ;*,x’]
tana = [ XX ] = X , (5.151)
Sz Sz

equation (5.149) becomes

Rel|\/Sz: _-SZ, - SZ -
0=57 + [ "S’f v Refy| 5= S;’X]. (5.152)
x* XX

Multiplication with S7. yields
1 | ST - 5=\
O = SI+SZ+ + |SZ+ —|7 XX SI+ - +( XX ) SII -
x*+Px X*x z X*x z X*X
2 Sx*yx’ SX*,X’

T z 1 Z* T z XT*
SeSet s [S21, ST +8% 87 ] (5.153)

XXt

In order to demonstrate that the above equation is not fulfilled, the expectation values
S - = (XTle?x7), S5 = (xFlo*Ixt), St - = (X*Hlo*|x7) and ST = (x*[o*[x*) must
be determined explicitly. In terms of 1,  and -y the expectation values are

St =X x) = XXX (5.154)
A2 ) , .
- (355) Rebr I+ 2R,
S = (XTI = XXX (5.155)
A 2
= 1+ (505) WP - 1P - 1¢P]
= —(xlo*|x7),
St = (XTo"IxT) = XXX (5.156)

)\ 2
- 1-(555) [P+ P - 1P -2 Re )]
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and

+1x +l +x .+t

Syene = (Xo"IXT) = XXM XX (5.157)
)\ 2
(555) 2Rel¢1-2Tmya]

2AF

(525) 2Relca]
-(X7le"Ix7) -

The term Tm [1*7] = 0 because the parameters 7 and y represent expectation values of the
angular momenta [, and [, which must be real.
Inserting the results of eqgs. (5.155) to (5.158) in eq. (5.153) results in

1 Ay
S5 4 3 (S5 S5+ Sien S0 1= (515 ) 4Relrd) (5.158)

which in terms of the amplitudes a,, by, ¢, and ay, by, ¢, becomes

(2AE)24R6[ o=

A * *
(QAE) ARe[|byPalcy + |byPajcy - bybyaic), - biblayey]. (5.159)

For non-vanishing amplitudes and spin-orbit coupling parameter A # 0 the above expres-
sion does not vanishes; therefore, we have proven that even in this simple model the two
conditions S* = S¥ = 0 and 5% = max are not equivalent.

5.7 Impurity scattering within the presence of spin-orbit cou-
pling

Finally, we want to consider scattering processes at an impurity in a system with spin-orbit
coupling. In this case, both the scattering wavefunction due to the impurity

lmPT(r +R™; E) imptn RE“PTTTL(I.; E) impln Rilr,npun(r; E)

nnpi n. E Z kL impHn ‘B + kL Rimpun - B

(I‘ +R ) L (I‘, ) (1'7 )
Rzrlxzﬂn( 7 E) RT/‘ENH (T‘ E)) ( lman

(5.160)
- Z 1101 n iII) n 11!) YL’(":)
( REP™(rs B) RpP(r; E) p““)

and the wavefunction of the host system

Yl(r+ R E) T (r B) R%(r E)\ (5
(erm) B mem) (e o
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; T
are spin—dependent. In order to establish a relation between the coefficients (¢,;*'", ¢,/

and (ck s cf("L) , the spin-dependent Lippmann-Schwinger equation has to be considered

impT(r +R»: E) 1/}11(1‘ +R™; E)
nnPi(I‘ + Rn: E) 1/}1&(1' +R"; E)

+2, / d*r GM(r+R"r'+R"; E) GW(r+R" 1 +R";E)

GM(r+R"r'+R";E) GH(r+R"r' +R":E)

(AVTT(r) AVN(rI))( S (¢ 4+ R )

AVA@E) AVE() ) \pimet (e + R E))- (5.162)

The Green function has now non-zero off-diagonal elements, both the single-site term and
the back-scattering term, if spin-orbit effects in the host are taken into account, too. The
single-site term can be written as

Gs.sAM(r + Rn$ r+ Rn'; E) GsAsAN(r + ]_i{n7 r + Rn'; E)
Gssi(r+ R+ R, E) GH(r+R"r' +R"; E)
() Giesr)

Yo (7 5.163
Gy G )70 G169

= > Yi(7)

L
with

!

, Yo Yo RIS, (rs EYHS 2, (r'; E)  forr <71’
G357 (rr' E) = —iVE{ ZF £ (r: ) L,,L,( : . (5.164)
Yo Yo HI9,(r; EYRS, 2, (r's E) - forr > 1’

The back-scattering term is
GPsM(r+ R +RY;E) GPsN(r+R"r' +R";E)
GPs1(r+ R +RY;E) GPsH(r+R"1r' +R";E)
_y (R£”<r>Gi‘z¢""’<E>RE’<r'> RTL"(r)GZi'f""/(E)Ri{jl(r/))
RE ()G (EYRE () Ry ()G (E)RE ()

(5.165)

LL' oo’ LL
= Z Z Z Yyl(’f’)qu('f’)
LL! L//LIH UU

(RE{’L(T)GUJ nn’ (E)RL”’L’(T ) RL”L(T)GUJ nn' (E)RL”’L’(’J))
RE{’L(T)GUJ nn’ (E)RLHILI(T ) RL”L(T)GUJ nn' (E)RL”’L’(T,)

For the following derivation, it will be helpful to decompose the last matrix in a product of
three matrices

Z( 1 (NG (BYR, (1) R, ()G <E>RL,,,D<W>) ]
R (NG5 (BYRY (1) R, (MG (B)RY, ()
( 1o (r) R} ,Lm), (Gm (E) G%"'(E)) (R%(ﬂ) RLWU(M)

Rl () R, )\ () ol () R, () R (n)
(5.166)
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The matrix containing the difference in potential is given by

AVI(r')  AV(r') Vi () Vi (1) VIT(er) V(') p

(avner avae) = () vite) ~ (o vageo): €197
Hence, it is the difference between the system including an impurity and spin-orbit cou-
pling and the host system under the presence of spin-orbit coupling.
In order to derive the coefficients of the impurity wavefunction in terms of the coeflicients
of the host, one has to proceed like in the case of a full-potential wavefunction described in
section 4.2, but taking the two spin components into account. Inserting the orbital expan-
sions (5.160), (5.161), (5.163) and (5.165) in the Lippmann-Schwinger equation (5.162),
integrating over the spherical coordinates and using the Lippmann-Schwinger equation of
the radial wavefunction of the impurity

(RTLTILL(T;E) RTLl:LL(T;E))+
RER™ (s B) RES () ) R0 E) RYL(riE)

[ (GEHOND G (S )
S\entioorse) citoorm) 2\avil o) avi, o)
RERv (i B) RE (75 E)
(Rimp“"(r’; E) RM™W(y. )

LqL

(RE‘:‘z““mE) R?ilz“%r;fs))

LiLs

) (5.168)

LaL
as well as the expression for the A¢-matrix
ntt nt} s n
AtLlLQ(E) AtLlLQ(E) _ f r2dr Z RLZTLl(r; E) RLLiLl (T; E)
At’ll,llTLQ (E) AﬁZ?LQ (E) T RzﬁTLl (,,,; E) Rrun (’I“; E)
» AVEL(r) AVER (D (Ria (i B) R (riE)
AV () AVEL ()R (i E) REL (1 E)

LsLo

L3L1

) (5.169)

Ls LsLo

yields the simplified equation

Z (RplnL(77 E) RzllnL(r/ E)) (Ci?ll,an) _

R (s B) R (s B)) e

Z (RTLTILL(T,E) RTLllnL(T;E)) (CL’Z)

RlLTlnL(r; E) RlLllnL(r; E) cf('z

Yy (thhm RzﬂLS(r))(GE:z;’(m G%gz;’(m)

L

L
(5.170)

RﬁLg (r) PLﬁLg (r) G (E) G/ (E)

L3Lo LsLo
' (At}LL(E) At}}QL(E)) (Cﬁ?’m)

st (B sl () e

n’ LngL

o C
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The above eq. (5.170) can be reduced to

impftn tn
Cr )_(CkL)
(”” &
Gi(BY G (B (A, (B) ALY, (E)) [dmeh
+Z Z( LLQ( ) LL2( ) ( LQLS( ) L2L3( )) Cﬁsw . (5.171)

TG (B) G () J\At, (B) At (B)\G),
Ciman
which finally leads to the sought-after relation between the impurity coeflicients ( ﬁp ln)
kL
L
and the host coefficients [
kL
CI:Z B Z Z §7L7L’5LL’6LL” 0
C%:Z N n' L'L" 0 5717}’5LL’6LL"
(G (E) G ) (Atmn Atzﬁu) A F,
G (B) L (B)J\At L Aty | \agh
In a simplified matrix notation, the above result can be written as
. -1
cﬁ“m ) 10 GU(E) GN(E)\ (At At cl (5.173)
a7 o1 GU(E) GME))\Att A4 ct) :
or, skipping the spin indices, as
™ =[1-G(E)-At] " ¢ (5.174)

In analogy to the impurity coeflicients without spin-orbit coupling, section 4.2, eq. (4.68),
the latter relation can be formulated in terms of the structural Green function of the impu-
rity G (E)

o = [1+G™P(E)- At] e, (5.175)

which is used in the calculations of this thesis.

5.8 The spin-dependent scattering matrix Tlfkf,"

In the last section, we have used the Lippmann-Schwinger equation to establish a relation
between the wavefunction of an arbitrary host system under the presence of spin-orbit cou-
pling and the same system perturbed by an impurity. Therefore, these two systems differ
in their potentials AV (r), which is a 2 x 2-matrix in spin-space. Using the relations of the
previous section allows us to find the spin-dependent scattering matrix 7,77 for scattering
processes mediated by the potential difference AV (r), quantifying the scattering amplitude
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for scattering from a state characterized by k’ with spin ¢’ to another state of momentum
k and spin o. In particular, we have in mind that the Fermi surface of the host shows a
Kramers degeneracy as described in section 5.6. Then, the host states at k have to be cho-
sen by a criterion, e.g. S; = S, = 0. An additional quantum number ¢ = (1, ) indicates
then the choice of S, > 0 or S, < 0. This particular o enters in the definition of the scat-
tering matrix 7,7 . In case of absence of spin-orbit coupling in the host, o is reduced to a
pure spin quantum number. For a deeper analysis, we refer the reader to chapter 7.

Hence, the spin-dependent scattering matrix 7,77 yields

Teo = fdsr(wﬁ/’T(r;E))T(AVTT(r) AVN(r)) (wligxp,o,T(r;E))

! i 5.176
v By ) \avi ) avie) ) \gieet e ) (5.176)
n n o\ 1T
- Zf &S (RTLT’L(T;E) R%’L(“E)) i i (7)
v v D [\RYL(E) R (s B)) \

AVEI () AVER(
;(Avgi%T(r) Av;,%i(r)) w(7)

Rffff,m(y, E) Rz%’,%,tl,(r E) Ciglf;g,m )

L (RiL“},?}LT,’,ﬁ(T; E) RS (r; E)) ((Jmp-,o,m) Y (7)

KL

0 RS W TG ] W il
0 L im vr (i E) Rpp(r E)
(Avgﬁg,,,,(r) Avge;l,,,,(r)) (Rig‘,‘,l,iﬁ,’,i(r; E) R (1 E)) (c;;i‘f;f,’“)
AV (r) - AV (r) ) \RES (1 B) - REE (3 )
By defining the A-matrix (in analogy to the definition (4.73) in section 4.3) as
(A*ﬁzﬁ(r;E) A%(r;m)_ [ (thfz(r;E) Rz%TZ(r;E))
AL(r B) AL (ri E) e R (1 B) Rpip (1 B)
(AVL%u(T) AVﬁirrr(’f')) (Rii‘r’ff’ﬁ"(r;E) RiL"r’r‘?E"(/f‘;E))
AVERL(r) AV (r) ) \REPI (r E)  REPU" (1 E))’

the above relation can be simplified to

imp,oin | *
Ck,L,”

Mn tn imp,o,tn
Tlf]g,’r _ Z Z (Cli‘f/‘rT’n C]if,‘rl’n) (Aﬁ\L,(E) AﬁL/(E)) (C.er/ ) (5'177)
n LL' AVT(E) AYT(E) cﬁf‘f}”’m

5.9 Momentum- and spin-relaxation times 7 and 713

In the same way as presented for systems without spin-orbit coupling in chapter 4, section
4.5, the transition probability for scattering from a state characterized by k, ¢ into a state
with k’, o’ is given by

7 27T 712
Pge = ch|T;Z,1§’ §(Ey - Fy). (5.178)
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The inverse of the spin-conserving scattering times 7, |, 7" and the spin-flip scattering times

¥, 7/ are then determined by summation over all states k’

’ -1 ’
(rg7) = Y Py (5.179)
k!
B 277ch ASK |ryiol2
C Vegh? Jsee) e KK

The relaxation times averaged over the Fermi surface are then obtained via

L 1 fs D (o)t (5.180)

770 Vg Js(Ee) by

In accordance with reference [80] we define the momentum-relaxation time 7 by

1 1\t

and the spin-relaxation time 7 by

11\

5.10 Summary

This chapter has dealt with the spin-orbit interaction, which couples the spin magnetic mo-
ment of an electron to its orbital momentum, and is therefore — together with momentum
scattering — responsible for spin-relaxation and spin-dephasing processes.

After having given a short introduction to the theoretical concept of spin-orbit interaction,
we have shown how the spin-orbit potential is implemented within the KKR formalism;
the spin-dependent Lippmann-Schwinger equation is solved and expressions for the spin-
dependent regular wavefunctions, atomic scattering (¢-)matrices and k-dependent wave-
function coeflicients have been derived. Furthermore, we have discussed the effect of spin-
orbit coupling on the wavefunctions, especially in systems which are symmetric under spa-
tial inversion. In this case, the interplay of time- and space-inversion symmetry leads to a
two-fold degeneracy of the wavefunction on the Fermi surface, and linear combinations of
wavefunctions can be chosen such that different conditions for the spin expectation values
are fulfilled. We have calculated the wavefunctions under the conditions of .S, = max and
Sy = Sy, = 0 and have shown that these two choices are not equivalent, leading to different
expectation values of the total spin.

Apart from that, we have extended the multiple scattering theory as derived in the last chap-
ter to spin-flip scattering processes. Therefore, we have generalized the scattering matrix in
reciprocal space, Tiu, to spin-dependent scattering processes, hence 777, as well as the
relaxation times to 7y o' taking both spin-conserving and spin-flip scattering processes into
account.






CHAPTER 6

Implementation and testing of the spin-orbit
coupling

6.1 Computational details

Asillustrated in chapter 5, section 5.3.1, the calculation of the wavefunctions including spin-
orbit coupling requires the solution of the Lippmann-Schwinger equation. The Lippmann-
Schwinger equation can be either solved in a Born series by a relatively simple iteration, or,
better, by making use of the so-called Volterra method [66]. The Volterra method also im-
plies an iteration scheme, and it is already implemented to solve the Lippmann-Schwinger
equation for full-potential calculations, eq. (3.76).

In both methods each iteration step comprises integrations over products of the wave-
functions and the spin-orbit Hamiltonian'. However, for calculations within the scalar-
relativistic approximation (SRA), small numerical instabilities arising from the product of
the large spin-orbit Hamiltonian for small  with the very small value of the regular wave-
functions lead to strong fluctuations of numerical origin after a couple of iterations, and
therefore to a divergence of the Born series. This problem does not appear in the full-
potential problem without spin-orbit coupling, because the perturbation caused by the non-
spherical components of the potential vanishes close to the nucleus.

In order to solve this numerical problem and achieve convergence of the
Lippmann-Schwinger equation including spin-orbit coupling, the following trick has been
used, which is also physically motivated. We avoid the divergence of the spin-orbit Hamil-
tonian for 7 — 0 by replacing the potential inside the nucleus by its analytical form

-2 forr > Rn
Vo) - i 6.1
7-e(T) _%+%§ forr < Ry, o

!For the Born series, this is demonstrated in eq. (5.62) and (5.61).
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Figure 6.1.: Prefactor of the spin-orbit Hamiltonian 1/(2M (r)Q)%%

nuclear radii Rn num as a function of radial point index ¢,. The points are not equidis-
tant. Due to a exponential radial mesh, the point 4, = 500 is still very close to the
origin.

in atomic units for different

assuming a homogeneous charge distribution in a spherical nucleus of radius Ry. This was
already illustrated in chapter 5, section 5.2.1, and leads to a kink in the spin-orbit Hamil-
tonian as shown in figure 6.1. For r < Ry, a further divergence of the Hamiltonian is
prevented. However, tests have shown that in the SRA for many elements even the inclu-
sion of the correct nuclear radius does not lead to convergence of the Lippmann-Schwinger
equation. Therefore, a larger radius than given by eq. (5.17) is chosen; the minimal required
value of R,um n, for which the Lippmann-Schwinger equation converges depends also on
the number of radial points used for the integration. Using more radial points, lower nu-
clear radii are needed.

This numerical trick can be justified by showing that the size of the nuclear radius for not too
large radii hardly affects the resulting wavefunctions and the ¢-matrix. In order to estimate
the errors made by this approximation we have calculated

> leww et (6.2)
LT
where we have taken the ¢-matrix using 901 radial points and the minimal radius Ryym N =
1.5 Ry, which lead to convergence, as reference ¢-matrix ¢*°f.
The results are shown in figure 6.2 for a cutoff of /,,,,, = 2. All test calculations in this section
have been performed for gold in the SRA. Even for nuclear radii, which are 20 times larger
than the correct one and 353 radial points the integrated errors are still very small. This
behavior hardly changes when going to /,,.x = 3 or full potential calculations (see figure
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Figure 6.2.: Y,/ |trr — trLei, ? for different nuclear radii, ASA calculations, £ = 0.415Ryd and

Imax = 2. As reference t-matrix trLei,, the ¢-matrix for 901 radial points and the
smallest nuclear radius R,,,m N = 1.5 RN, leading to convergence of the Lippmann-
Schwinger equation, has been taken. The blue curve shows the integrated differences
Yoot — tf{, ? from the ¢-matrix which has been obtained from 353 radial points,
which is the number of points usually chosen for calculations in the atomic sphere

approximation.

6.3). Choosing a larger nuclear radius drastically reduces the number of iterations needed
to solve the Lippmann-Schwinger equation. This dependence is shown in the upper panel
of figure 6.4 for /,,,.x = 2 and ASA calculations. For a nuclear radius which is chosen to be
20 times larger than it would be according to eq. (5.17), 20 iterations are sufficient, while
the error in the ¢-matrix is still small (see figure 6.2). For all calculations performed in this
thesis, a numerical nuclear radius R, x = 10 Ry has been chosen, because deviations for
other elements than gold might be larger.

Before closing this section, we come to another aspect already mentioned at the beginning
of this section. In contrast to the non-spherical components of the potential, the spin-
orbit Hamiltonian decays fast with increasing r. Therefore, it is necessary to include the
spin-orbit Hamiltonian only within a sphere with radius rsoc;max, for which the spin-orbit
coupling is relevant. In order to check how large this radius has to be chosen, we have cal-
culated the ¢-matrix for different 750 max. The error in the t-matrix is shown in the lower
panel of figure 6.4. However, since in most cases we have included the non-spherical com-
ponents of the potential together with the spin-orbit Hamiltonian and treated them on the
same footing, this cutoff has not been used.
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curves the ¢-matrix for i, = 3Ry and 901 radial points. Bottom: The same as in the
left panel but using a logarithmic scale.

6.2 Test of the atomic scattering matrix

In order to check the accuracy of the ¢-matrix including spin-orbit coupling, we compared
the ¢-matrix for ASA calculations to the ¢-matrix calculated with a KKR-code in which the
Dirac equation is solved for spherical potentials [81]. The comparison was made after trans-
forming the ¢-matrix to the relativistic x-/i-basis, which brings the ¢-matrix into a diagonal
form if the potential is spherically symmetric. The results for platinum, gold and lead are
shown in figure 6.5. We have plotted the real as well as the imaginary part of the ¢-matrix
for the s, p and d-orbitals, thus t;(E), t,(E) and t,(E) for energies ranging from -1 to
1 Rydberg. For almost all elements and energies, a very good agreement is obtained; ex-
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Figure 6.4.: Top: Number of iterations needed to solve the Lippmann-Schwinger equation up to
the accuracy of 1077 (red curve) and 107° (blue curve) as function of the nuclear radius.
Bottom: Y |torr — tf]g, 2 as a function of rsoc max in atomic units, for which the
spin-orbit Hamiltonian Hgoc () in atomic units is included. To compare, the radius
for the ASA-spheres amounts to rasa = 3.01 a.u.. Note that a logarithmic scale has
been used.

clusively for lead differences in the imaginary part of the ¢-matrix have been found for low
energies.
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6.3 Conclusion

In the current chapter, some numerical details and problems faced in the implementation
of the spin-orbit coupling Hamiltonian have been specified. The divergence of the pref-
actor of the spin-orbit potential for small - led to strong fluctuations in the solution of
the Lippmann-Schwinger equation which has been avoided by approximating the potential
inside the nucleus by a finite-size spherical nucleus with homogeneous charge density; fur-
thermore, we have shown that the atomic scattering matrix ¢ is not affected if the radius of
the nucleus is chosen much larger than it physically is.

The chapter is closed by a comparison of the atomic scattering matrices of Pt, Au and Pb
with numerical results obtained with the Dirac equation.
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Figure 6.5.: Comparison of the real and imaginary part of the ¢-matrix for the s, p and d-orbitals

for platinum (top), gold (middle) and lead (bottom). The lines are the results obtained
with the Dirac equation [81], while the points represent the results calculated with the
newly developed code. The agreement is very good with the exception of lead at low
energies, where there are deviations in the imaginary part of the ¢-matrix.






CHAPTER 7

Spin relaxation in noble metals

Atlow temperatures, when the electron-phonon and electron-electron scattering are frozen
out, scattering at impurity atoms is the most serious source of resistivity in metals. These
scattering processes result in a rapid loss of momentum coherence, which for metals has
been found in experimental studies [7] to be typically in the order of ten femtoseconds.
Compared to this momentum relaxation time 7 — the average time a carrier loses its origi-
nal momentum due to a scattering event — electrons have a relatively persistent spin, i.e. long
spin-relaxation time 74. 77 describes the time after which a system reaches an equilibrium
spin population by exchanging energy, momentum and angular momentum with the lat-
tice, and can amount to several nanoseconds. The mobility of electrons as well as the fact
that spin coherence can survive quite long bear a promise on the ability of transferring infor-
mation by electron spins and making spintronics a viable potential technology. Therefore,
significant effort has gone into the investigation of the dominant spin-relaxation mecha-
nisms. The ultimate goal is the reduction of spin relaxation in order to keep 7} as long as
possible. In this thesis we contribute to this research by investigating spin relaxation due to
impurity scattering in the noble metals copper and gold.

Spin relaxation is caused by many different effects and mechanisms [7]. Thus, it strongly
depends on the material, specific characteristics of the sample (e.g. the sample size, the
type and the concentration of impurities) and experimental details such as the tempera-
ture or the density of excited spins. Despite of the great variety of mechanisms causing
spin-flip scattering processes, for the noble metals one mechanism appears to be domi-
nant: the Elliott-Yafet mechanism [9, 82] based on momentum scattering at impurities,
phonons and electrons. In addition, there exists a mechanism of spin-flip scattering due to
the impurity spin-orbit coupling. If structural inversion symmetry is broken and e.g. sur-
faces or semiconductors [7] are investigated, a supplementary mechanism, the so-called
D'yakonov-Perel mechanism [10] becomes important. Since the latter is absent in the in-
vestigated bulk materials, it will be discussed in chapter 9 along with spin-relaxation at
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surfaces.

In the current chapter, the effects of spin-orbit coupling due to impurity scattering in the
noble metals copper and gold will be discussed. While in the first section the predominant
spin-flip mechanisms are described, the second section deals with some numerical aspects
of the calculations. Unexpected deviations from expected symmetries are presented and
the obtained results are compared to calculations performed by other groups and to exper-
imental data.

Finally, in the third section momentum- and spin-relaxation times for 3d, 4sp, 4d, 5sp, 5d
and 6sp impurities in fcc copper and gold bulk crystals are studied systematically. Addi-
tionally, interference effects in scattering between two impurities are investigated.

7.1 Dominant mechanisms of spin relaxation in noble met-
als

As sketched in the introduction, in noble metals mainly two mechanisms account for spin
relaxation, the Elliott-Yafet mechanism and spin-flip scattering due to spin-orbit coupling
of impurities. In the following, the theoretical concepts of these two mechanisms will be
shortly presented. For more details about the Elliott-Yafet mechanism we refer to [8].

7.1.1 Elliott-Yafet mechanism

The Elliott-Yafet mechanism is the predominant source of spin-relaxation in materials with
structure inversion symmetry and comes along with momentum scattering. It is based on
the fact that in the presence of spin-orbit coupling the degenerate electronic Bloch states
Wl and W} have no pure spin character anymore. Instead, they are a linear combination of
spin up and spin down states

\I/L = [ak(r) ([1)) + b (r) (?)] elkr (7.1)
[a*k(r) ((1)) -0 (r) ((1))] ek, (7.2)

Here, ax(r) and by (r) are complex functions, having the periodicity of the lattice and W]
and Wy are chosen to be polarized along the 2-direction, such that

(Whls.ul) = —(wis.wl)  and 73)
(Uh[S.)wy) = —(wyls.|wl)=0 . (7.4)

Uy

Since in most cases the average a of ay over the whole Fermi surface is close to unity and
b <« 1, it is still reasonable to denote W] and W} as 'up' and 'down' states.

Ordinarily, spin-conserving scattering at phonons and impurities induces transitions be-
tween two states with the same spin character but a different k, hence scattering from V¢ to
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W?,. For states with non-vanishing by transitions also occur between states of opposite spin
direction, i.e. scattering from Wy to W, 7. In the following, the perturbation which causes
the scattering is denoted with § . It is assumed that the spin-orbit coupling of the impurity
is insignificant, i.e. (1 |0H| |) ~ (| [0 H| 1) ~ 0, where the notations

It) = (é) and [|) = ((1)) (7.5)

have been used. The probability of a scattering event in a first approximation is given by the
square of the expectation values

Plo = 2%|(\IJL|5H|\I!T,)2 (7.6)
= 2% (are™T (6 H| awe™ ™) + (bee™ T |6 H| bk,eik’.r)’2 or
Pl = 2%|<\I/I(|6H|\Iﬂ,)2 (7.7)
) % [ (are™m 5 H b7, e™7) + (be™T |5 H | a”yo ™)
respectively.

While the probability for spin-conserving scattering is of the order of |a|*, the probability
for spin-flip scattering is proportional to the factor |a|?|b|?> and therefore the ratio between
spin-flip and spin-conserving scattering approximately yields

PN, 2 2
LISV % N (@) . (7.8)
Plo laf \A

In the last step, the results of first-order perturbation theory have been used [9], accord-
ing to which ||/ |a| ~ £/ A, where £ corresponds to the strength of the spin-orbit coupling
entering as a perturbation parameter and A is the interband distance (see also eqs. (5.137)
and (5.138)).

The explicit values of the ratio ((¢) /A)” span a wide range. For light metals, the value of
((€)/A)? is very small (e.g. 10-10 for Li), whereas for heavy metals it might be in compari-
son very large (e.g. 1072 for Cs) or even 0.8 for Au [15].

7.1.2 Spin-flip scattering due to impurity spin-orbit coupling

Spin-flip scattering due to impurity spin-orbit coupling has been neglected in the previous
section. Naturally, the approximation breaks down if its spin-orbit coupling becomes rele-
vant. Generally, this spin-flip scattering cannot be treated independently from the Elliott-
Yafet mechanism, since every spin-flip process induced by the impurity spin-orbit coupling
can be reverted by the Elliott-Yafet mechanism and vice versa. In calculations, this inter-
ference must be considered by adding up the amplitudes of both effects and not the proba-
bilities.
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single impurity

two impurities

SOC in imp. in imp. in imp. in imp.
only and host  only and host

Cu host

(A7°7)*  51-10 2.0-1073 3.3-10% 6.7-107

(A77-7)* 5.0-10 2.0-102 3.0-1072 2.5-10°2

Au host

(A797)*  9.9-10% 4.6-104 1.3-10% 1.9-1073

(A70-7)* 7.9-103 1.0-102 2.0-1072 2.7-10°2

Table 7.1.: Mean square difference of 7" and 7,/* or 7,* and 7', averaged over the Fermi
surface for one and two nickel impurities in a copper and a gold host, full poten-
tial calculations. A797 and A7~ are defined in eqs. (7.10). In the calculation
of the scattering matrix (and therefore evidently of the relaxation times, too), all
nearest neighbours are included. Note that for a single impurity and single-site
calculations in the atomic sphere approximation, the differences become negligi-
ble. To compare the mean square errors with the absolute values of the scattering
times see table 7.2 and 7.3.

Generally, all impurities are considered to scatter independently from each other. How-
ever, correlated-scattering effects might become important if the impurity concentration
becomes high or if impurities tend to cluster. We will investigate this aspect at the end of
the current chapter, section 7.5.1.

7.2 Unexpected deviations

Before analyzing our numerical results for relaxation times due to impurity scattering, we
present some observations made during the calculation process.

From time-reversal symmetry one would intuitively expect that the k-dependent
spin-conserving anisotropic scattering times 7, and 7,"* as well as the spin-relaxation times
lel and TlﬁT as defined in chapter 5, eq. (5.180), behave according to

lel = Tﬂ( and (7.9)
L
This is because the time-reversal operation changes k to —k and the spin ¢ to —o. However,
an explicit derivation starting from the expression for 7,7, 0,0’ € (1,1) occurs to be not
trivial. Therefore, we proceed with a numerical evaluation of eq. (7.10), which, as we find,
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Figure 7.1.: Spin relaxations times 7’1? (left) and TliT (right) for a Ga impurity in fs per 1% in copper
bulk. Spin-orbit coupling is present both in the host and the impurity potential. A
small difference between the two distributions can be seen, manifesting in a light blue
'C' in the middle of the Fermi surface in the left panel or an inverted 'C' in the right
panel, respectively. After averaging the inverse of Tlll and TliT according to eq. (7.11)
and plotting 7'y as in figure 7.2, the anisotropy vanishes.

is not always fulfilled.

Especially for systems with more than one impurity the differences between 7' and 7/*
(or 7" and 7") can be quite large. To give an impression of the order of magnitude of the
deviations, we define the root mean-square errors A7°7 and A7777 as

1
1 dSk 2\ 2
Ao e "_ i ) 210
T (VBZ hox T Toe | ( )
1
1 dSk 2\ 2
Apr-o o (L DOk i ) .
’ (VBZ huk K Tk|

Exemplarily, table 7.1 gives (A7°7)* and (A79-7)* for nickel impurities embedded in a
copper and a gold host for systems with one and two impurities. In all calculations, scatter-
ing within a cluster comprising the nearest neighbours is included. Apart from that, results
are presented for two different scenarios: First, spin-orbit coupling is taken into account
in the impurity potential only and secondly, spin-orbit coupling is present in the host as
well as in the impurity potential. The deviations appear for both cases, and except for a
single impurity in a Cu host, they are approximately of the same order of magnitude. Ad-
ditionally, in figure 7.1 the distribution of 7,* and 7!’ for a single Ga impurity in copper
bulk is presented. The small anisotropy manifests in a visible light blue 'C' in the middle of
the Fermi surface in the left panel and the inverted 'C' in the right panel, which disappears
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when calculating the average spin relaxation time
Tue= (17 + 1m0, (7.11)

presented in figure 7.2.
Averaging the momentum-relaxation times 7', 7" and the spin-relaxation times 7,*, 7'
over the Fermi surface yields

o= (7.12)
TR
up to a relative numerical accuracy of about 10712
After extensive checking we act on the assumption that the deviations are not caused by a
numerical problem, since qualitatively, the same deviations appear within the frame of a
simple tight-binding model, too. The model and the tests are documented in Appendix C.
The physics which provokes the asymmetry still has to be understood.

7.3 Comparison to other numerical and experimental data

In this section we compare the obtained relaxation times for some of the calculated systems
to other calculations [13, 80, 83] and experimental data obtained with conduction electron
spin resonance (CESR) [16].

As afirst step, the distributions of the momentum relaxation time 7 and the spin relaxation
time 7y for Ni, Zn and Ga impurities in copper bulk on the Fermi surface are considered.
The results shown in figures 7.2 agree very well with the distributions shown in [80, 83].
Small deviations can be explained by differences in the methods. Although the calculations
in references [80, 83] have been performed within the KKR formalism, too, a fully rela-
tivistic approach solving the Dirac equation has been chosen there. On the other hand, in
our calculations the full potential is included, while the calculations of references [80, 83]
have been performed within the atomic sphere approximation neglecting the non-spherical
components of the potential. Furthermore, a different size of the region where charge re-
laxation is allowed has been chosen: In contrast to [80, 83], where four nearest-neighbor
shells, hence 55 atoms, around the interstitial impurity have been included in the calcula-
tions, we have restricted this region to a cluster of 13 atoms, corresponding to all nearest
neighbors. The cutoff of the orbital momentum /.« in the expansion of the wavefunctions
and the Green function as well as the lattice constant might play a role, too. These two
values are not specified in the respective references. In our calculations, we have used the
cutoff [, = 3 and the experimental lattice constants a = 3.62 A for copper and a = 4.08 A
for gold.

Examining the distributions of the momentum relaxation times for the three impurities Ni,
Ga and Zn on the Fermi surface of copper in the three figures in the left column of figure
7.2, we observe that 7y has the full symmetry of the Brillouin zone (48-fold O},), while 77y
has a reduced symmetry (C'y,, rotations around the z-axis and reflections). This is due to
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Tk I % T1 x
SOC in SOC in SOC in
imp. and host imp. only imp. and host

Ni imp.
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Figure 7.2.: Distribution of the momentum relaxation times 7y for spin-conserving scattering (left)
and spin-flip scattering 77 i (middle and right) for Ni (top), Zn (center) and Ga (bottom)
impurities in fs at a concentration of 1% impurities embedded in a fcc copper host
crystal. The three figures in the second column represent the situation of spin-orbit
coupling included in the impurity potential only while the three figures in the third
column are results for spin-orbit coupling in the host and the impurity. For 7y, only
very small differences are found if spin-orbit coupling is included in the host or not.
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impurity  SOCin SOC in other calculations [80]
type imp. only imp. and host

K 1.0-1072 1.0-1072

Ca 1.3-1072 1.3-1072

Sc 1.0-1072 1.0-1072

Ti 5.1-1073 5.1-1073

\Y 3.6-1073 3.6-1073

Cr 3.3-1073 3.3-1073

Mn 3.8-1073 3.9-1073

Fe 5.8-1073 59-1073

Co 1.3-10°2 1.3-1072

Ni 5.7-1072 5.6-102 5.7-1072
Zn 7.6-1072 7.6-1072 7.8-1072
Ga 1.7-1072 1.7-1072 1.7-1072
Ge 7.4-1072 7.5-1073 7.2-1073
As 3.3-1073 3.3-1073 4.3-1073
Se 3.6-1073 3.7-1073

Au 0.14 0.15

(ASA) 0.16 0.48

Table 7.2.: Momentum relaxation times 7 = 2 (1/7! + 1/74) in ps for 3d and 4sp impurities
in a fcc copper host, assuming an impurity concentration of 1%. All calculations
are non spin-polarized and have been performed including a cluster of 13 atoms,
corresponding to the nearest neighbors. The momentum relaxation times merely
change when spin-orbit coupling in the cluster is neglected or not. The other
calculations are done by M. Gradhand et al. [80].

the assumption that the incoming state is prepared with a spin along the z-axis.
Furthermore, differences between the three impurities Ni, Ga and Zn become obvious. The
reason for this discrepancy can be found in the different scattering properties of the three
elements: While Ni is a typical d-scatterer, Zn and Ga are sp-scatterers, among which Zn
s-scattering is dominant and for Ga scattering mostly occurs in the p-channel. For Ni, the
momentum scattering rate is observed to be lowest in [100] direction (the momentum re-
laxation time is longest). In contrast, for Zn and Ga scattering in this direction is maximal
and therefore leads to short momentum relaxation times. For Zn, momentum relaxation
times are highest in regions close to the necks, whereas Ga shows the longest momentum-
relaxation times between the necks, in the [110] directions.

Considering the spin-relaxation times for spin-orbit coupling being included in the impu-
rity potential only (second column of the same figure 7.2), the qualitative distribution of
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impurity our calculations other calc. [80] experimental
type data [16]
SOCin SOCin
imp. only imp. + host imp. only imp. + host
K 122.7 7.9
Ca 142.5 7.2
Sc 137.6 5.5
Ti 22.6 3.5
A% 24 1.7
Cr 0.59 0.63
Mn 0.29 0.32
Fe 0.26 0.29
Co 0.45 0.54
Ni 2.0 3.1 1.6 3.9 22+0.2
Zn 48.2 34.6 49 41 64+9
Ga 21.0 16.7 22 16 30+4
Ge 9.0 8.6 10 7.1 142
As 4.7 2.2 5.7 4.6 8.6+0.7
Se 2.8 1.8
Au 0.35 0.45 0.56 0.47 0.62+0.21
(ASA) 0.47

Table 7.3.: Spin relaxation times 7 = (1/7™ + 1/7+1) ™" in ps per atomic percent for 3d and
4sp impurities in fcc copper bulk, non spin-polarized calculations.

Ty is similar to that of 7y for Ni impurities. In contrast, the spin-relaxation time 77y for Zn
and Ga impurities shows a completely different behavior. Obviously, the parts of the Fermi
surface where ordinary momentum scattering is strong are not the same as for spin-flip
scattering. This is reasonable for s-scattering, since s-orbitals (I = 0) do not participate in
the spin-orbit coupling. For p-scattering, however, spin-orbit coupling effects are expected
to be stronger than in the d-channel, since p-electrons are generally located closer to the
nucleus and therefore 'feel' the nuclear potential more strongly (see chapter 5). That this
not the case also manifests in the comparison of the momentum relaxation time and the
spin-relaxation time for the whole series of 3d and 4sp impurities in figure 7.3. While the
inverse momentum-relaxation time for the 4sp impurities increases up to the maximum of
the 3d series, the spin-flip scattering rate remains very weak. This apparent paradox per-
sists, as we will see, in the case of 4d and 5sp as wells as 5d and 6sp impurities. We will see
how it is resolved in sections 7.4 and 7.5.

The distribution of the spin-relaxation time is shown in the third column of figure 7.2.
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Figure 7.3.: Inverse momentum-relaxation times 7! for spin-conserving scattering (left) and spin-
relaxation times 77! (right) in ps~! per atomic percent for a copper (upper panels) and
a gold (lower panels) host bulk crystal. The blue curves represent the scattering rate
under the presence of spin-orbit coupling in the impurity only, whereas the red curves
are lifetime calculations for spin-orbit coupling in the host and in the cluster. For both

curves scattering within a cluster including the thirteen nearest neighbours is taken into
account.

There, spin-orbit coupling is included in the whole system, thus in the impurity and the
host. Especially for the Zn and the Ga impurities, the distributions strongly differ from
those of the situation, when spin-orbit coupling effects are included in the host only. Com-
paring the latter two contributions with the spin expectation values of the copper host (see
figures 5.1 and 5.2 in chapter 5), it becomes obvious that this change is due to the spin-orbit
effects of the host. In [001] direction, where the spin expectation values are lowest, spin-
orbit coupling effects of the host are the largest and therefore spin-flip scattering in this
direction is enhanced. On the other hand, in a stripe between the necks spin-orbit coupling
of the host is lowest and the characteristics of the distribution of 7} on the Fermi surface
are determined by the properties of the impurity.

Having analyzed the distribution of the momentum- and spin-relaxation times on the Fermi
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surface exemplarily for three impurities, we continue the comparison of our results to those
of references [13], [80] and [83]. Additionally, in table 7.2 and figure 7.3 the results of dif-
ferent calculations for anisotropic momentum-relaxation times for 3d and 4sp impurities
are presented!. Obviously, for a copper host, the momentum-relaxation times hardly differ
when spin-orbit coupling is included in the copper host or not. Comparing our results with
those from reference [83], one notices that the agreement is very good for Ni, Zn, Ga and Ge
impurities, while for Au the deviation is considerable. The reason for that deviation might
be due to the high relaxation time, i.e. weak scattering. In such a case, small differences can
lead to large discrepancies. In order to check whether this is due to the difference of full
potential and atomic sphere approximation, we have repeated our calculations in the latter
approximation. As can be seen in table 7.2, this turns out not to be the reason, since our re-
sultin ASA hardly differ. As expected, for the momentum-relaxation times the treatment of
spin-orbit coupling effects in the host does not determine the momentum-relaxation time.
On the contrary, for a gold host, where spin-orbit coupling effects are much larger, a small
difference can be observed (compare left panel of figure 7.3).

Regarding the spin-relaxation times (see table 7.3 and figure 7.3), even for a copper host the
differences between the calculations with and without spin-orbit coupling in the host are
more pronounced. Especially for the early 4sp-3d elements such as K, Ca, Sc and Ti, which
are mainly s-scatterers and therefore have a very low spin-orbit coupling, spin-relaxation
times are essentially determined by the host spin-orbit coupling.

It is interesting to compare the effects of spin-orbit coupling in the host for the three ele-
ments Ni, Zn and Ga. While in the presence of spin-orbit coupling in the host, the spin-
relaxation time for a Ni impurity is increased, it is reduced for Zn and Ga impurities. Hence,
apparently for Ni impurities spin-orbit coupling effects of the host interfere destructively
with the ones of the impurity. In the picture of the Elliott-Yafet mechanism, a spin-flip in-
duced by the impurity can be reverted by a spin-flip of the host and vice versa. That this
happens for Ni impurities but not for Zn and Ga impurities, might be due to the distri-
bution of the momentum-relaxation times and the spin-orbit effects on the Fermi surface.
While for Ni impurities momentum scattering is highest in the same part of the Fermi sur-
face where the spin-orbit coupling effect of the host is maximal, favoring the interference in
those regions, for Zn and Ga impurities these two effects dominate in different parts of the
Fermi surface, and thus can be considered as non-interfering, so that the relaxation rates
are additive.

For a gold host (see the lower panels of figure 7.3), the differences in the spin-relaxation
times between calculations where spin-orbit coupling is present in the impurity only and
those where it is present also in the host, are much more pronounced. The effect of the host
is most distinct for the sp-scatterers. The maximum of the scattering rate is shifted from
Fe when the spin-orbit coupling of the host is neglected to V when spin-orbit coupling is
regarded both in the host and the impurity. The reason is that the spin-flip in a gold host
with spin-orbit coupling is largely determined by the momentum scattering (i.e. it happens
due to the Elliott-Yafet mechanism) and for V and Cr the strongest momentum relaxation

' All calculations are performed within a shell of the 13 nearest neighbors. This is assumed to be enough, since
even single-site calculations — which are not shown here — almost lead to the same results.
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is observed.

Comparing the absolute scattering rates of momentum scattering and spin-relaxation in the
two different hosts, the expected strength of the spin-orbit coupling of Aubecomes obvious:
While the momentum-relaxation rate is almost the same, the spin-relaxation rate for Au is
much larger (approximately by a factor of 4), since spin-flip processes occur more often.

7.4 Relation of T to Wigner delay times tp

We will now come back to the paradox that the spin-relaxation rate for the 4sp impurities is
very low, although the momentum scattering rate is high and the spin-orbit coupling effects
are expected to be stronger for p-electrons than for d-electrons?.

In order to explain this paradox, we use an approximative formula for the inverse spin-
relaxation time 7}

o 2vpe24m SU(1+1)
YOV 3ER 20+1

sin® [51+1/2 - 5171/2] , (7.13)

giving the spin relaxation rate in terms of the generalized phase shifts ¢;, where j = [+1/21is
the total momentum quantum number. The above formula is exact for a free electron host,
and exclusively accounts for the spin-orbit induced scattering from the impurity potential.
Hence, spin-orbit effects of the host are not included. Equation (7.13) is obtained by relating
the spin-flip scattering cross section ogr from reference [12, 84]

241 SI(1+1) .,

=—— S 0 -0 7.14
IS = 35 29051 sin® [ 04172 = 01172 (7.14)
with the spin relaxation time 77 via [85]
v
osp = — =T (7.15)
2UF(’

The difference of the phase shifts d;,1/2 — d;-1/2, entering in eq. (7.13), can be rewritten in
terms of the energy-splitting of the ({+1/2)- and the (I - 1/2)-orbital and the Wigner delay
times ¢p defined in section 4.4, eq. (4.85)

dy 1
Siv1/2 = Oaje ~ (Eppaye — EH/Q)OTEI = §AE1+1/2,H/2 tp . (7.16)

Here, it is assumed that §;,1/2(%) and 6;_1/2(E) have the same functional form, 6;(E),
but mutually displaced in the energy axis by AEj,,/5;-1/2. Calculations show this to be
approximately correct.

Using the identity sin 22 = 1/2 (1 - cos 2z), we obtain

L 2vpe2dm SU(+1)1
T Vo 3Er & 2041 2

Tt [1-cosAFEtp] . (7.17)

2For the 4d, 5sp and the 5d, 6sp impurities a similar behavior is observed as can be seen in figures 7.7 and 7.8.
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Figure 7.4.: Wigner delay time tp in atomic units (Ryd ™) for 3d and 4sp impurities in copper bulk,
calculated from s, p and d orbital momenta. The delay-times for the d-orbitals are much
larger than those for the s- and p-orbitals, for which even negative delay times have
been calculated. These negative times can be interpreted such that the first waves of a
wavepacket have already left the impurity site, while the last ones have not yet entered.

This equation allows the following physical interpretation of the spin-flip scattering process
induced by momentum scattering: The electron wavepacket enters the impurity and 'feels'
the spin-orbit induced splitting of the energy levels [ + 1/2 and [ — 1/2 due to the spin-orbit
coupling of the impurity potential; this energy splitting causes a precession of the electron
spin. The second quantity entering in eq. (7.17) is the Wigner delay time ¢p. It denotes
the time the electron requires for the (momentum) scattering process and remains at the
impurity site. Hence, if the delay-time is long, the electron is exposed to the impurity spin-
orbit coupling. The term 1 — cos AE tp, is typical for a beating effect between two states
—here !l - 1/2 and | + 1/2 — split by an energy AFE, for a time interval {p. It is obvious
that, in the presence of resonant scattering, when ¢p becomes long, the precession will be
significant.

A calculation of the Wigner delay times ¢, for the s-, p- and d-partial waves of the 3d and
4sp impurities in copper bulk, figure 7.4, shows that the delay times for the d-partial waves
are much longer than those of the s- and p-orbitals. This is because transition elements
cause resonant d-wave scattering, as is well known, and explains why spin-relaxation due to
d-scattering is much stronger compared to that of p-scattering. For a qualitative explanation



108 7. Spin relaxation in noble metals

1.4 T T T T T T T 2
-1
tp [eV] ——
12+ AE [eV] ——
3d

~ 115
2 Lr
Q
<
S 08 f T
b sd A1 >
X o,
a  06F 4d £
on
£
= 04 x
& J {05

02 F

O 1 1 1 1 + 1 1 1 0

20 30 40 50 60 70 80

impurity atomic number

Figure 7.5.: Wigner delay times ¢p in eV ™" and splitting of the two energy levels Fj /2 and E o
in eV induced by spin-orbit coupling at the Fermi level Ex. While the splittings Aw
increase with the filling of the d-shell as well as the principal quantum number, the
delay times have a peak for almost half-filled d-shells. To convert the values of ¢ty given
in eV ™! to SI-units, note that 1eV ! ~ 0.66fs.

it is sufficient to approximate the Cu host by a free electron gas and use the phase shifts §;
obtained for the spherical part of the potential. For some elements, ¢, calculated from the
s- and p-orbitals becomes negative. According to Newton [60], small negative delay times
for wave packets are possible. An interpretation is that the front part of the wave packet
already leaves the impurity while the rear part has not yet arrived. In this case, the absolute
value of the delay time is also called advancement time.

In order to attest our interpretation, we have applied this simple model to the 3d, 4d and
5d impurities in copper bulk. Therefore, we have only taken into account the splitting of
the d-partial wave, i.e. AE = (Ey,,, — Ey,, ), because for the d impurities it is expected to
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Figure 7.6.: Inverse spin relaxation times 7} ! for the 3d, 4d and 5d impurities in a copper host.
Numerical data (in ps~') are compared to those obtained within the approximation
using the Wigner delay times ¢p and the spin-orbit induced splittings of the energy
level ds 5 and d3/; shown in figure 7.5.

provide the main contribution to the scattering rate. Thus,

Tfl x sin2 [(55/2 - (53/2]

(7.18)
o<l —cosAE tp .

Whereas the splittings A E and the Wigner delay times ¢, for the 3d, 4d and 5d impurities in
copper bulk are shown in figure 7.5, the approximated results using eq. (7.18) are compared
to our numerical data in figure 7.6. The splitting of the energy levels increases both with
the filling of the d-shell as the d-wavefunctions are retracted towards the nucleus, and the
principal quantum number as the impurity atoms are heavier. In contrast, the trends of the
Wigner delay times have a peaked structure with maxima for V, Nb and Ta, which are in the
same column of the periodic table. The trends obtained for the approximated inverse spin
relaxation times 771, figure 7.6, qualitatively agree with the numerical results, although the
maximum of the three trends has shifted to impurities with a lower atomic number (from
Fe to Mn for the 3d impurities, Tc to Nb for the 4d impurities, and from Re to Ta for the
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5d impurities). This might be due to the approximations made in this model such as the
assumption of a free electron host and the use of the phase shifts of the spherical part of the
potential and not the generalized ones. However, qualitatively the model explains very well
the different behavior of the d- and the sp-scatterers and shows the general importance of
resonant scattering for spin relaxation.

7.5 Momentum- and spin-relaxation times for 3d, 4sp, 4d,
5sp, 5d and 6sp impurities in copper and gold fcc bulk

7.5.1 Scattering at single impurities

After having compared and discussed the momentum- and spin-relaxation times for the 3d
and 4sp elements in copper and gold hosts for single impurities we will take a look at the
4d, 5sp, 5d and 6sp elements (see the red curves of figures 7.7 and 7.8). Basically, the trends
for the 4d and 5d series are similar to the curves of the 3d and 4sp series: Both momentum-
and spin-flip scattering rates have a peak in the middle of the d series; additionally, mo-
mentum scattering is strong for the late sp elements while the spin-flip scattering rate is
low. For a gold host, an increase of 77! for the late elements is observed, originating from
the spin-orbit effects of the host (see the two curves in figure 7.3). This is again a manifesta-
tion of the Elliott-Yafet mechanism , i.e., momentum scattering becomes important again,
due to the strong spin mixing of the Au Fermi surface. Comparing the order of magnitude
of the three rows for the copper host, almost no difference can be noticed between the 3d
and 4d impurities, or the 4sp and 5sp impurities, respectively. However, for the 5d and
6sp elements, the spin-relaxation rate is much higher, while the momentum scattering rate
does not increase. This is due to the higher atomic numbers of these elements which yield a
higher spin-orbit coupling since Hgo o< Z. For a gold host, qualitatively the same behavior
is observed, while quantitatively the values of the spin-flip scattering rates are larger.

It is instructive to analyze the ratio 7 /7, which corresponds to the number of momentum
scattering events per spin-flip event. The results are presented in figure 7.9 for copper and
gold hosts. In a copper host, the ratio 7} /7 covers a wide range: While for some of the
sp-scatterer more than 1100 scattering events occur before one spin flips, throughout the
3d series the ratio strongly decreases, ending up with a minimum for Co; for a Co impurity,
one flip occurs approximately every 55 momentum scattering events. For the 4sp elements,
Ty /7 increases again, i.e., the spin-flip scattering rate is low in comparison to the momen-
tum scattering rate. This follows from our considerations in the last section, where we have
found, that the 4sp impurities exhibit a strong momentum scattering, but a weak spin-flip
scattering, as the s- and p-wave scattering is not resonant.

Comparing the trends for impurities of the three periods in copper, a qualitative similarity
is observed. However, quantitatively, large differences can be noticed: as one moves lower
in the periodic table, i.e. consider impurities with higher atomic numbers, the ratio 77 /7
decreases. Hence, the relative number of spin-flip scattering events rises. Again, this be-
havior is due to the spin-orbit Hamiltonian being proportional Z.
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Figure 7.7.: Inverse momentum-relaxation time 7! for spin-conserving scattering (left) and spin-

flip scattering relaxation rates 7! (right) in ps~! per 1% impurity concentration in a
copper host crystal. The spin-orbit potential has been included in the impurity potential
only. While the red curves represent calculations for single impurities, all other values
(T3ih,er/2 and T /2) have been obtained for two correlated impurities, placed at
nearest neighboring (magenta curve) and second (black curve), third (green curve) and
forth (blue curve) nearest neighboring sites. The greatest deviation from the result of a
single impurity (i.e. 73 . /2 = 77t or vk, /2~ T1!, respectively) can be observed
for two impurities being nearest neighbors. The positions of nearest neighbors, second,
third and forth nearest neighbors are demonstrated in figure 7.10.



112 7. Spin relaxation in noble metals

v s 1%

T, [ps'11%

| N I N I |
K Ca Sc Ti

Ca Sc Ti V CrMnFe Co Ni CuZn Ga Ge As Se

V CrMn Fe Co Ni Cu Zn Ga Ge As Se

s 1 1%
T s 10
s 1%

s 1 1%
-l
T, [ps"] 1%

Cs Ba La Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi

Cs Ba La Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi

Figure 7.8.: Inverse momentum relaxation time 7~ for spin-conserving scattering (left) and spin-

flip scattering relaxation rates 75! (right) in ps~' per 1% in a gold host crystal. As

for a copper host shown in figure 7.7, effects of interaction between two impurities are
studied.
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Figure 7.9.: Ratio of the spin-relaxation time versus the momentum relaxation time 7 /7, i.e. num-
ber of spin-conserving scattering processes per one spin-flip event for copper (upper
panel) and gold (lower panel). While in a copper host, 71 /7 strongly depends on the
type of impurity and especially for the light s-scatterer more than 10? scattering pro-
cesses are necessary before one spin-flip occurs, in gold maximally 30 momentum scat-
tering events per one spin-flip event take place. This reflects the dominating role of the
Au host in spin relaxation.
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Figure 7.10.: Position of the single impurity in the fcc structure as well as the position of two im-
purities at nearest neighboring sites, second, third and forth nearest neighboring sites
(from left to right).

Considering the lower panel of figure 7.9, which shows the ratio 73 /7 for impurities in a
gold host, the picture strongly differs from that of the copper host; compared to copper,
the trends throughout the three series are rather flat, the ratio 7}/7 only ranges from ap-
proximately 30 (for As, Sb, Pb) down to three scattering events per one spin-flip for Cu,
Ag, Os, Ir impurities. In contrast to the behavior within a copper host, in a gold crystal the
ratio 7 /7 is of the same order of magnitude for the impurities of the three different rows
of the periodic table. The two latter observations (the low ratio in general as well as the
rather small difference between different impurities) let us conclude that the ratio is mainly
determined by the spin-orbit coupling effects induced by the gold host (Elliott-Yafet mech-
anism); apparently, the effects of impurity spin-orbit coupling play a minor role.
Furthermore, considering the trends in figure 7.9, a kink in the curve for silver and gold
impurities in the copper host and for copper and silver impurities in the gold host are ob-
served. This immediate decrease of the 7' /7 is due to the fact, that copper, silver and gold
belong to the same column of the periodic table and therefore have a similar electron con-
figuration, yielding a very low (momentum) scattering rate. Hence, almost all scattering
processes are due to the different strength of spin-orbit coupling of the three noble metals,
scaling with the atomic number. Therefore, for these impurities a very small number of
momentum scattering processes occur before one spin flips.

After having analyzed scattering processes at single impurities we will proceed with the in-
vestigation of correlated scattering processes, which will be the subject of the next section.

7.5.2 Correlation between proximity of impurities and scattering

In the previous section the momentum and spin relaxation times at low impurity concen-
trations of 1% in copper and gold host crystals have been discussed, assuming that each
impurity scatters independently. However, if the impurity concentration increases signifi-
cantly or the impurities tend to cluster, this approximation breaks down and a correlation
between impurity positioning and scattering rates must be investigated. In the picture of
incoming and scattered waves, correlated scattering processes can be understood as follows:
If several impurities are close to each other, interference between waves scattered at these
impurities as well as multiple scattering events become possible. Such effects might lead to
changes in the momentum- and spin-relaxation times.

Therefore, we have studied momentum- and spin-relaxation times for two impurities situ-



7.6. Conclusion 115

ated at close-by sites, i.e. at nearest neighboring positions, second, third, and forth-nearest
neighboring sites (see figure 7.10). We included in our self-consistent calculations the near-
est neighboring host sites of both impurities, leading to calculations with 20 sites for two
impurities being nearest neighbors, and 22, 24 and 25 sites for 2nd, 3rd, and 4th nearest
neighbors, respectively.

The results for the correlated scattering rates per impurity concentration for two impurities
(e 7yl /2 or Tk /2) are presented in figure 7.7 for a copper host and figure 7.8 for a
gold host and compared to the scattering rates 7! and 7! for single impurities. Appar-
ently, for most elements 75} /2 ~ 77! (or T}, /2 ~ T, respectively) is valid, hence
no correlated scattering between two impurities is observed. The greatest difference can
be seen for the 3d, 4d and 5d scatterers, when impurities are placed at nearest neighboring
positions.

An explanation can be given with the help of the density of states. As typical examples for
d-scatterers and sp-scatterers, in figure 7.11 we present the density of states of Cr, Ni and
Zn impurities in a copper host for a single impurity as well as nearest neighbors, second
and third nearest neighbors. For (single) Cr and Ni impurities we observe a sharp peak in
the density of states coming from the d-state, while for the Se impurity a broader, though
less intense peak is observed. It mostly originates from a p-band. The position of the peak
relative to the Fermi level Ey (or the absolute value of the density of states at £ = Ep,
respectively) determines the scattering properties of the system including the impurities,
since only electrons at the Fermi level can participate at scattering processes. The higher
the density of states, the larger is the number of electrons which can participate in the scat-
tering process. Therefore, the Cr impurity causes a much stronger scattering than e.g. a Ni
impurity.

We focus now on the density of states for the systems with two impurities: For all three
types of impurities a splitting of the peak can be noticed, which is most pronounced for the
system, for which the two impurities are placed at nearest neighboring sites. This splitting
corresponds to a hybridization of the d-states of the two neighboring impurities for Cr and
Ni and the p-states for Se. However, the hybridization occurs mostly close to the center of
the peak. For elastic scattering processes, mainly the situation at the Fermi energy plays a
role. This explains the fact that only for the Cr impurities considerable correlation effects
can be observed, since only for Cr impurities the hybridization takes place at the Fermi
level. Although we have shown the density of states of three types of impurities only, their
behavior is typical also for the others.

7.6 Conclusion

In the current chapter a systematic study of momentum-relaxation and spin-relaxation
times for 3d, 4sp, 4d, 5sp, 5d and 6sp impurities in the noble metals copper and gold was
presented. We started giving a short introduction into the two dominant spin-relaxation
mechanisms at low temperatures, namely the Elliott-Yafet mechanism and spin-relaxation
due to impurity spin-orbit coupling. After that, some unexpected findings have been com-
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Figure 7.11.: Density of states for Cr (top), Ni (middle) and Se (bottom) impurities in copper bulk
for a single impurity (red curve), two impurities placed at nearest neighboring posi-
tions (magenta curve), second (black curve) and third (green curve) nearest neighbor
sites.

mented on. We compared some of our results for the momentum-relaxation and spin-
relaxation times to other numerical and experimental data. The agreement was quite good.
Analyzing the distribution of the momentum- and spin-relaxation times for Ni, Zn, and Ga
impurities on the Fermi surface of copper, large differences have been observed. They were
traced back to the different scattering properties of the three elements.

A comparison of the trends for the momentum-relaxation rate with that of the spin-relaxation
rate for the whole series of 3d and 4sp elements (as well 4d and 5sp, 5d and 6sp) led to the
conclusion that strong momentum scattering does not necessarily entail strong spin-flip
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scattering. Whereas for the d-scattering elements both momentum and spin relaxation are
large, for the sp-scatterers having a large momentum-relaxation rate spin relaxation is very
low. An explanation for that different behavior was given by a consideration of the Wigner
delay times; for those impurities, where resonant d-scattering is dominant, the Wigner de-
lay time occurs to be an order of magnitude longer than that for the sp-scatterers®. Hence,
electrons scattering at the 3d, 4d and 5d impurities have much more time to 'feel' the im-
purity spin-orbit coupling and therefore exhibit a much stronger spin relaxation. This has
consequences especially in a copper host, because the spin-orbit coupling of the copper host
is weak. However, for the late sp-scatterers in a gold host the spin-flip scattering rate also
increases due to the spin-orbit coupling of the gold host. Furthermore, we have shown that
the approximate formula for the spin relaxation as a function of the Wigner delay time and
the spin-orbit induced splitting of the energy-levels for the 3d, 4d and 5d impurities in the
copper host leads to results, which qualitatively agree well with our numerical data.

The trends for 3d, 4sp, 4d, 5sp, bd, and 6sp impurities qualitatively showed the same be-
havior in copper and gold hosts. However, while the ordinary momentum scattering rate
is of the same order of magnitude, spin relaxation is significantly enhanced in the case of a
gold host.

The dominating role for spin relaxation of the gold host also manifests in the ratio 77 /7.
While for copper T} /7y strongly depends on the type of the impurity (and its strength of
spin-orbit coupling), ranging from 3 to more than 10* momentum scattering processes per
one spin-flip, in gold even for the light impurities with very low spin-flip scattering rate
only 30 momentum scattering processes occur before one spin flips. For copper, a clear
minimum of the quotient is reached for the late d-scatterers, while the early s-scatterers
(especially K, Ca and Sc) exhibit the largest values of T} /7y, i.e. the lowest relative spin-flip
scattering.

Finally, a correlation between the proximity of impurities and scattering has been inves-
tigated. Significant changes in the spin-conserving and the spin-flip scattering have been
observed for the d impurities with approximately half-filled d-shells, when the two impu-
rities are nearest neighbors. An analysis of the density of states of three impurities, chosen
exemplarily, let us conclude that correlation effects are due to resonance-splitting and can
be seen only for those impurities whose d-resonance is close to the Fermi energy.

3We have demonstrated this behavior for the example of the 3d and the 4sp impurities in the copper host.






CHAPTER 8

Lifetime reduction of surface states caused by
impurity scattering in simple metals

In order to describe the dynamics of charge transport, localization and quantum informa-
tion on metal surfaces, it is of crucial importance to understand the temporal evolution
of quasiparticles (electrons and holes) in surface states, characterized by a momentum-
dependent lifetime 7. Understanding these lifetimes is quite complicated, because they
reflect the properties of the correlated many-electron system and depend on a variety of
parameters both of intrinsic and extrinsic nature. The field of research is very wide because
of the great variety of mechanisms and materials which can be investigated as well as the
number of experimental and theoretical techniques which can be employed. Therefore, in
the last years much theoretical and experimental effort has been spent for a better under-
standing, and though a lot of questions are still open, tremendous progress has been made
[23].

The lifetime of surface states is limited because the quasiparticles are scattered off the many-
particle system, loosing energy and changing their momentum. In metallic systems, mainly
three different types of scattering processes dominate (assuming the quasiparticles to be
electrons): electron-electron scattering, electron-phonon scattering and scattering of quasi-
particles at defects, impurities and grain boundaries. Which one of the three processes is
most important depends on many criteria such as the temperature, the crystal and elec-
tronic structure of the material, the characteristic of the considered surface state, and the
presence of disorder in the material, i.e. the concentration of defects and impurities.
Experimentally, surface-state lifetimes can be measured by three different techniques: Angle-
resolved photoemission and scanning tunneling microscopy and spectroscopy, that pro-
vide indirect measurements via the broadening of linewidth, and two-photon photoemis-
sion that allows a direct measurement of lifetimes in the time domain. The advantage of
scanning tunneling microscopy and spectroscopy is the possibility to avoid impurities or to
probe them on an atomic scale, whereas photoemission experiments integrate over a com-
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paratively large sample area with all its defects, impurities and other imperfections of the
surface. This might be the reason for the observed discrepancies in the linewidth of the
noble metal surface states obtained in these two experimental setups [27].

The first type of interaction, i.e. electron-electron scattering, reflects the intrinsic proper-
ties of the considered surface state. Close to the Fermi energy, electron-electron scattering
is small due to the limited phase space of the end states, whereas it becomes important at
higher energies!. An investigation of the electron-electron correlation of the (111) surface
state of noble metals with photoemission experiments can be found in [27].
Electron-phonon interaction results in elastic or almost elastic scattering, because phonons
carry relatively low energy?. The strength of phonon-scattering strongly depends on the
temperature; at low temperatures the contribution of phonons can be neglected, since they
are almost frozen. In order to estimate the contribution of electron-phonon scattering to
the total lifetime reduction of a specific material, experimental studies are done at differ-
ent temperatures but in a given temperature range where electron-phonon scattering is as-
sumed to be dominating; then, a linear dependence of the linewidth on the temperature
is assumed, which allows for an extrapolation of the phonon-contribution to a given tem-
perature [86, 87]. Lifetime reduction of the noble metal surface states due to scattering
at phonons has been both studied in photoemission spectroscopy [86, 87, 88] as well as
with scanning tunneling microscopy (STM) and spectroscopy (STS) [22, 24, 89]. A general
overview about the investigation of surface-state lifetimes with STM and STS is provided
by [90], while in [23] all theoretical and experimental investigations of the last few years are
treated. Finally, a lifetime measurement for different concentrations of Co adatoms on the
Cu (001) surface with two-photon photoemission can be found in [91].

As a consequence of the above considerations about the contributions of electron-electron
and electron-phonon scattering to lifetime reduction, we can conclude that, at low tempera-
tures and energies close to the Fermi level, both are negligible; however, scattering at defects
and impurities often is the limiting factor because the creation of a small number of surface
defects cannot be avoided. It is therefore worthwhile to provide a systematic theoretical
study of lifetime reduction due to impurity scattering, which is the topic of this chapter.
The systems investigated are the (111) surfaces of the noble metals Cu, Ag and Au, where
the surface states appear in the projected energy gap of the bulk bands. Lifetime reduction
due to scattering at 3d and 4sp impurities below, in and on top of the first surface layer are
investigated.

In the first part of the chapter we will discuss some numerical aspects of the calculation be-
fore analyzing the considered Cu, Ag and Au (111) surfaces and their corresponding Fermi
surfaces. Then, we proceed comparing surface-state lifetimes for scattering at 3d and 4sp
impurities in the surface and at adatoms for copper surfaces. The latter trend, i.e. scattering
at adatoms, is investigated in more detail before a systematic study of lifetime reduction in
Cu, Ag and Au films for different thicknesses is provided.

For the sake of completeness, trends of scattering rates at magnetic impurities will be dis-

! At the noble metal surfaces a Fermi liquid behavior is expected, hence the electron-electron scattering rate
scales as (E - Erp)’.
2The Debye temperature usually does not exceed a few hundred Kelvin, corresponding to a few tens of meV.
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Figure 8.1.: Fermi surfaces of Cu films oriented in [111] direction for 6, 10, 18 and 40 layers
(from left to right). For the calculations three 'vacuum layers' have been added
on each side. The calculations have been performed within the atomic sphere
approximation (ASA). The splitting between the two surface states (represented
by the two innermost rings) decreases with the number of layers. Absolute val-
ues for the splittings are given in table 8.1.

cussed.

Finally, for copper films, surface resistivities are investigated, being closely related to the
topic of surface-state lifetimes. Trends for different film thicknesses are compared to each
other as well as to the trends obtained for surface-state lifetimes.

8.1 Computational and numerical aspects of the calculations

Comparable calculations for residual resistivities and momentum scattering times in bulk
systems [69, 92] have been performed within the spherical potential approximation. As
demonstrated in chapter 4, the formalism as well as the computational effort in ASA is
much lower than for full potential (FP) calculations. However, at surfaces, where the sym-
metry is broken, it is reasonable that non-spherical components of the potential might play
an important role. Especially, scattering at adatoms are expected to be sensitive on the
FP/ASA treatment. Therefore, the first part of the current chapter deals with the compari-
son of surface-state lifetimes for ASA and FP calculations.

In our calculations a finite-thickness film is always considered. The situation of a half-
infinite crystal with a single surface is approximated by increasing the film thickness. Fur-
thermore, the vacuum region is described by empty atomic sites at 3 (or in some calculations
4) layers above the surface; these are called 'vacuum layers'.

8.1.1 Fermi surfaces of copper, silver and gold (111) films

Before investigating surface-state lifetimes, we shortly present the Fermi surfaces of the con-
sidered films, which are all crystallized in the fcc structure and oriented in [111] direction.
The investigated materials are the three noble metals copper, silver and gold, whose elec-



122 8. Lifetime reduction of surface states caused by impurity scattering

number of layers Ak[27/a](a.u.)] AFE[Ryd]

6 1.1-1071 4.9-1072
10 2.8-1072 1.3-1072
18 4.4-1073 2.3-1073
40 4.5-107° 2.4-107°

Table 8.1.: Splittings of the two surface states for symmetric Cu films as a function of the
number of layers in atomic units. The splitting Ak on the Fermi surface corre-
sponds to a splitting in energy given by AE(k) = (0Ex/0k) - Ak. All results
have been obtained within the atomic sphere approximation.

tronic structure and Fermi surfaces are very similar to each other. As these systems are char-
acterized by a two-dimensional periodicity, the Fermi surface consists of one-dimensional
curves that in this case forms ring-like structures. The number of rings on the Fermi surface
scales linearly with the number of layers, which can be seen in figure 8.1 for the example
of a copper (111) Fermi surface for films with 6, 10, 18 and 40 copper layers (from left to
right). The two innermost rings represent the so-called surface states which are formed in
the gap of the surface-projected band-structure due to the boundary condition of a sur-
face [93]. Surface states are localized at the atom layers close to the surface as can be seen
in figures 8.2 and 8.10 and decay exponentially into the bulk and into the vacuum. Since
in a finite film there are two surfaces, also two surface states appear. For finite films, they
form a bonding and an anti-bonding state. The coupling of these two states manifests in a
splitting between the two inner rings of the Fermi surfaces, decreasing with increasing film
thickness since the overlap of the two surface states decreases exponentially. For 40 layers,
the splitting of the two states almost vanishes. Absolute values of the splittings for copper
surfaces obtained within the atomic sphere approximation are given in table 8.1.

In figure 8.2, the charge per atom for two k-points belonging to the two different surface
states is shown as function of the layer for films with 6 (left panel) and 40 (right panel) layers
of copper’. Whereas for 6 layers the charge density of the surface states is still high in the
center of the film, it is receded to a very low value at the center of the film consisting of 40
copper layers. The highest charge density of the surface states can be observed in the first
surface layer; apart from that, it is still very high in the second surface layer as well as in the
first vacuum layer.

Considering the Fermi surfaces of silver and gold films (see figure 8.3), a peculiarity for sil-
ver can be noticed. In the case of the silver films, the bottom of the band of the surface state
is located only slightly below the Fermi energy, such that the coupling of the two surface
states for thin films pushes one of the them above the Fermi level. Therefore, for silver films
with 6 and 10 layers only one surface state appears as a ring on the Fermi surface. As it will
be shown in section 8.3, this has consequences for the resulting surface state lifetimes, too.

3The two k-points are chosen in [010] direction on the Fermi surface, but because the inner part of the Fermi
surface is isotropic, this choice does not affect the results.
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Figure 8.2.: Charge per layer at the Fermi energy Er of the two surface states as a function
of the layer index for films with six layers (left) and forty layers (right) of copper.
The two selected k-points on the innermost ring or the second inner ring, re-
spectively, are representative for the whole ring and chosen in [010] direction.
The vertical black lines in the figures indicate the position of the surfaces. Note
the different scales of the two diagrams. Whereas for the film with six copper
layers the density of states for the two surface states in the center of the film is
still large, in the case of 40 layers it is almost zero; therefore, the coupling of
the two surface states is weak and almost no splitting on the Fermi surface is
observed. The sum over all layers for each k-points equals one, due to normal-
ization of wavefunctions. £, and E., respectively, denote the innermost and
the second-innermost Fermi-ring.

8.1.2 The optical theorem

After having calculated the Fermi surfaces, we can now proceed with the investigation of
lifetime reduction due to impurity scattering. Therefore, we place impurities in the surface
layer, one layer below the surface as well as in adatom positions on top of the surface at
the fcc threefold-hollow site. To calculate the surface-state lifetimes as described in chapter
4, we use the same scheme which we have already applied to bulk systems to calculate the
momentum relaxation times 7i. The perturbed region, where charge relaxation is allowed,
generally is restricted in our calculations to a cluster of 13 sites, thus the shell of nearest
neighbors*. All scattering rates, i.e. inverse lifetimes 7', are given in units of ps per atomic
percent of impurities, adatoms or defects.

Contrary to the case of the bulk systems investigated in chapter 7, there are no numeri-
cal or experimental references to compare our results. Although in principle surface-state
lifetimes of copper, silver and gold (111) surfaces have been measured, they have not been

“In section 8.1.4, it will be shown that this choice is sufficient to obtain reasonable results.
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Figure 8.3.: Fermi surfaces of films with six layers (upper panels) and 18 layers (lower panels)
of silver (left) and gold (right), oriented in [111] direction. For the Fermi surface
of the film consisting of six layers of silver, only one surface state appears; this is
due to the localization of the surface state only slightly below the Fermi energy
and the large coupling of the two states for thin films. For 18 layers, the splitting
is much smaller and the surface state with the higher energy again appears on
the Fermi surface.

investigated under the aspect of impurity scattering. Impurity scattering has been prefer-
ably avoided.

However, another possibility to attest the numerical correctness of the results is given by the
optical theorem. According to the optical theorem (see section 4.5, eq. (4.91)), the imagi-
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nary part of the diagonal elements of the scattering matrix must obey

2Nc 2rNe ,
B LIm T = wNc dSk

- Tl = 7" 8.1
h VBZh S(Ex) h?}kr | kk| Tk ( )

Both sides of the above equation are shown in figure 8.4 for a non spin-polarized calculation
of Fe impurities in the first surface layer (left panel) and Fe adatoms (right panel) on top of
a film consisting of six layers of copper. Additionally, in the same figure results obtained
within the atomic sphere approximation (upper panels) as well as for taking the full poten-
tial (lower panels) into account are presented. For a better view, the inverse lifetimes ;! are
presented for all k-points in the irreducible part of the Fermi surface (which is 1/12 of the
full Brillouin zone for systems without spin-orbit coupling) as a function of a k-point index,
following circle by circle, starting from the innermost ring to the outer boundary of the Bril-
louin zone. Thus, the two surface states are those with the smallest indices. The agreement
of the two sides is very good, although for the two surface states in the case of Fe adatoms
calculated within full potential calculations, a small difference can be observed. To obtain
the above accuracy especially for the latter case (adatom and full potential calculations), a
meticulous convergence of numerical parameters has been necessary. For example, it oc-
curs that four vacuum layers on each side of the film are required instead of three which
lead to good results for calculations performed within the atomic sphere approximation.
Additionally, a very large number of k-points for the calculation of the structural Green
function, eq. (3.47), is required. Further comparisons of scattering rates obtained within
ASA and FP calculations follow in a later part of this section and of surface resistivities in
section 8.5.

A supplementary check of the results has been done by calculating the average of the inverse
lifetimes (7'1: 1) over the bulk states for Fe impurities in the surface layer as well as one layer
below the surface; scaling it with the number of layers IV, the average N - (71; 1) results in a
value comparable to that obtained for an Fe impurity in copper bulk.

8.1.3 Comparison of ASA and FP calculations

Now, we return to the question whether there are deviations between inverse surface-state
lifetimes 7, obtained within ASA and FP calculations. As we have seen in chapter 7, section
7.3, for impurities in bulk systems, the calculated scattering rates agree very well; however,
this might be different for systems with broken symmetry such as surfaces, where non-
spherical components of the potential become more important.

In order to compare the two calculation schemes, inverse surface-state lifetimes for the
whole series of 3d elements for adatoms and impurities in the surface of a copper film con-
sisting of 6 layers are investigated. For simplicity, only one surface state (the innermost
ring) will be considered. The results are presented in figure 8.5. In the two panels of the
left column, the scattering rates for single-site calculations are presented, while in the two
figures of the right column the shell consisting of the nearest neighbors (hence 13 atoms)
has been included. For impurities in the first surface layer (the results are shown in the
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Figure 8.4.: Scattering rates 7,.' for Fe impurities in the first surface layer (left panels) and
Fe adatoms (right panels) in/on a film of 6 layers of copper as a function of the
index of the k-point on the Fermi surface in 1/12 of the Brillouin zone, repre-
senting the irreducible part for systems without spin-orbit coupling. In order
to check the correctness of the calculations, both sides of the optical-theorem
equation are shown. The agreement is very good, only for the case of Fe adatoms
and full potential calculations a small deviation for the two surface states can
be observed. In this case, the obtained results are very sensitive to the chosen
numerical parameters, and a careful convergence has been necessary.

two upper panels), the agreement of the two different calculation schemes is very good,
both for single-site calculations and calculations where the nearest neighbors have been in-
cluded. This is not the case for adatoms as can be observed in the two lower panels of figure
8.5; a considerable deviation is visible, even when a cluster including all nearest neighbors
is taken into account. However, although a quantitative difference can be observed, the
trends are similar.

Comparing the scattering rate at impurities in the surface layer (shown in the upper panels
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Figure 8.5.: Scattering rates 7;;' for impurities in the first surface layer (upper panels) and
adatoms (lower panels) obtained within the atomic sphere approximation and
full-potential calculations. While the agreement between the two calculations
is very good for impurities in the first surface layer, for adatoms the two calcu-
lation schemes lead to qualitatively similar but quantitatively different results.
Additionally, in the left panels the comparison has been done for single-site cal-
culations, while in the right panels results for calculations are shown for which
a cluster of the nearest neighbors has been included.

of figure 8.5) to the scattering at adatoms (lower panels of the same figure), a significant
qualitative difference is evident. While the trend for impurities in the first surface layer re-
sembles that which we have found for scattering at impurities in bulk, figure 7.7 in chapter
7, the trend for the scattering rate at adatoms does not. Additionally, for the latter case a
large difference between single-site calculations (left panels) and those including nearest
neighbors (right panels) can be observed. An analysis of these aspects follows in a later part
of this chapter.

We conclude that quantitative differences between full potential calculations and calcula-
tions performed within the atomic sphere approximation are observed. However, in the
following qualitative analysis we will restrict ourselves to ASA calculations. This can be
justified by the fact that the observed trends qualitatively are the same for both calculations.



128 8. Lifetime reduction of surface states caused by impurity scattering

Or—T T T T T T T T T T T 1 T T T T T T T T T T 71T
single site —+— single site -- + --
13 atoms —>%— 13 atoms =—d—
50 25 atoms —¥— = imp + surf. layer —-%—

43 atoms —&+— y imp + surr. vacuum - - £1--

40

30

ri(l [ps'l] / at. %

N '/’+ o’
0 | | | | | | | | | | | | ? | | | 1 | | | | | | | |

Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se

Figure 8.6.: Left: Scattering rates 7,.* for adatoms in a film of 40 copper layers for different
cluster sizes (ASA calculations). While a large difference between single-site
calculations and those including nearest neighbors can be observed, larger clus-
ter sizes hardly change the obtained scattering rates. Right: Scattering rates 7, *
for adatoms on a film of 40 copper layers. Presented are single-site calculations,
calculations including the adatom with the neighboring sites ('13 atoms'), cal-
culations including the adatom and the surrounding vacuum sites only, and cal-
culations including the adatom and the surface nearest neighbors only. We ob-
serve that especially for the early 3d elements, the surrounding vacuum strongly
influences the scattering rate.

8.1.4 Convergence with cluster size

In the previous section, we have already seen that for adatoms large differences between
single-site calculations and those including a cluster of nearest neighbors are observed. The
above finding raises the question whether the cluster consisting of nearest neighbors only
is large enough to obtain converged results. Therefore, calculations including additionally
the shells of the second nearest neighbors and the third-nearest neighboring sites in the first
vacuum layer (25 atoms) and third nearest neighbors (43 atoms) are performed. The results
are presented in the left panel of figure 8.6; when including more than nearest neighbors,
scattering rates hardly change. Therefore, in the following we restrict ourselves to the shell
of nearest neighbors.

8.2 Analysis of surface-state lifetimes for adatoms

Considering the trend of the inverse surface-state lifetimes for scattering at adatoms (see
e.g. figure 8.12) it catches one's eye that the observed trend remarkably differs from the one
obtained for impurities in the first surface layer as well as from the trends for the scattering
rates at impurities in bulk systems (see chapter 7, e.g. figure 7.7). The main reason for this
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Figure 8.7.: Density of states per spin for paramagnetic (left panels) and magnetic (right panels) Ti,

Cr and Co adatoms on a copper film consisting of 40 layers of copper. In the case of
paramagnetic adatoms, for Ti (and all elements with smaller atomic numbers than Cr)
the d-resonance is above the Fermi energy, while for all elements with larger atomic
numbers than Cr the d-resonance is below Ep. For impurities in the surface, this
explains why scattering has a maximum for a Cr impurity. In contrast, for magnetic
adatoms two maxima are observed corresponding to the d-resonances of the two spin
channels crossing the Fermi energy.

different behavior is that the perturbation caused by an adatom is totally different from the
situation of an impurity in the surface layer or in a bulk lattice. While in the latter case only
a copper atom is replaced by a different, foreign atom, the addition of an adatom on top
of the surface changes the geometry of the total system. Then, the strength of scattering
depends on parameters such as the size and the delocalization of the adatom (because of
the lack of surrounding atoms in the vacuum layer) as well as on the reduced overlap with
the bulk states.
The difference between the trends for adatoms and impurities in the first surface layer is
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most striking for the first elements of the row (such as Sc, Ti, V) and the sp scatterers Ga
and As. For the latter ones, the scattering rate is maximal if they are placed in the surface
but minimal when positioned as adatoms.

In contrast, while the scattering rate for Sc, Ti and V is low for impurities in the surface
and in the bulk, the inverse scattering rate for surface states is at the same level as for the d
scatterer with half-filled d-shells. Additionally, as already stated in the previous section, for
these light elements the deviation between single-site calculations and those where nearest
neighbors are included is relatively large. Apparently, for these elements the scattering rate
cannot be explained with their density of states, which is shown (for Ti, Cr and Co adatoms)
in the left panels of figure 8.7.

However, the densities of states help to explain the results obtained for impurities in the sur-
face and — at least partly — the results of the single-site calculations. The trend calculated for
impurities in the first surface layer resembles the trend of the momentum scattering times
in bulk systems and is therefore what is expected. For the d scatterer, the scattering rate is
determined by the position (in energy) of the d-resonance relative to the Fermi energy. The
maximal scattering rate is obtained for V and Cr impurities, for which the d-resonance is
centered at the Fermi level (see figure 8.7); for the earlier elements, the peak is at higher en-
ergies, whereas for elements with higher atomic numbers the resonance is below the Fermi
energy® and the scattering rate decreases and obviously vanishes for Cu. For the sp scatterer
it increases again, according to Linde's rule [94, 95].

In order to understand the trend of 7. calculated for scattering at adatoms, we start from
the observation already made in the previous section that the single-site results remarkably
differ from those obtained within a cluster of nearest neighbors. This lead us to the ques-
tion which sites of the cluster contribute most to the scattering rate. Therefore, we have
performed calculations where we have included — apart from the adatom — the surrounding
vacuum sites only, or, the surface nearest neighbors only, respectively. The results are pre-
sented in the left panel of figure 8.6. While the surface-state scattering rates at the adatom
together with the copper atoms in the first surface layer hardly differ from the single-site
results, the inclusion of the surrounding vacuum sites leads to scattering rates which are
already close to those obtained for scattering within the whole shell consisting of all nearest
neighbors. Hence, the largest contribution arises from the surrounding vacuum potentials.
This effect is relatively large for the early 3d scatterers and low for all other elements. A
possible reason for this behavior is that these elements have a relatively large atomic radius
(which is r,; = 1.62 A for Sc, 1.45 A for Ti, 1.34 A for V) [96] and therefore extend more
into the vacuum than for example a Ga adatom with r,; = 1.22 A; apparently, the large
extent entails stronger scattering rates because of the larger overlap of the perturbed region
with the host wavefunctions.

In order to analyze and understand the single-site results for scattering at adatoms, orbital-
momentum resolved scattering rates are investigated. Therefore, we define the scattering

® Although the densities of states are shown for adatoms the qualitative picture, i.e. the position of the resonances
relative to the Fermi level does not change for impurities in the surface.
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Figure 8.8.: Angular-momentum resolved scattering rates for adatoms on a film consisting
of 40 layers of copper. The inclusion of the s, p, and the d,> channel in the
single-site scattering matrix 779, (compare eq. (8.2)) describes the total scat-
tering rate already well. For the early elements, s-scattering is dominant, while
the consideration of only the s-channel for the sp scatterers Zn-As by far over-
estimates the total scattering. This behavior can be understood by the investi-
gation of Friedel-oscillations (see figure 8.9), which verify the assumption of a
constructive interference for a Co adatom and destructive interference for Ga
and Ge adatoms.

. ’
matrix 777, as®

TZZ’ = Z AZL" (6L”L'6nn’ + Z Gllr}/l/%:rl/n At%”’L’) (82)
L” LIH
which is related to the scattering matrix 7} in reciprocal space by
Tiae = > it cor - (8.3)
nn! LL'

Then, the single-site contribution n = n’ = 0 is resolved to different L-channels. The results

are presented in figure 8.8 for 700, T390, T3° , ., Tyg and T) , ., , together with the total

®For a better understanding of expressions 8.2 and 8.3 compare the definition of Ty in section 4.3.
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single-site contribution. Due to the presence of the surface, which breaks the symmetry to
some extent, we expect that interference is possible among s, p, and d.» waves. As can be
observed, the inclusion of the s-, p.- and d.2-channel already leads to a curve similar to the
total single-site result. For the first elements of the row, scattering in the s-channel is dom-
inant, while for the sp scatterer (starting from Zn) the restriction of 7% to the s-channel
only overestimates the whole scattering rate; thus, apparently, destructive interference oc-
curs.

In order to analyze interference effects, we have calculated the Friedel oscillations for Co,
Ga and Ge adatoms, i.e. the difference of the local density of states integrated over the ASA
sphere in the vacuum on an axis parallel to the surface compared to that of the host vacuum
site, i.e. 7y (Fp) —ny*(Ey). Itis presented in figure 8.9 as function of the distance from the
adatom site. For a Co adatom, the s-, p,- (though being very small) and d,2-components of
the waves are in phase and, in agreement with the orbital-resolved scattering rate in figure
8.8, a constructive interference can be observed. In contrast, for Ga and Ge adatoms the os-
cillations in the s- and p-channel are not in phase and interfere destructively. This explains
why for these elements the high scattering observed in the s-channel does not lead to high
total scattering rates.

8.2.1 Scattering to bulk and surface states

The method used to calculate the surface-state lifetimes given in section 4.5, eq. (4.90),
allows to distinguish between scattering to bulk and to surface states. The total scattering
rate of a (surface) state characterized by a wavevector k is composed of a contribution Tf(‘“f
given by

1 _ 2rNc¢ dSkr

= Tiae|® s 8.4
Tiurf VBsz S(Er),surf fL’Uk/ | ke ‘ ( )

where the integration is performed only over the surface states, and, analogously, a contri-

bution 7, where only the bulk states of the Fermi surface are taken into account

1 2rNe dSys 2

— = " 8.5
Tf(’ulk Vezh Js(Ep)bulk Aoy Tiac (8:5)
Obviously, considering the definitions of 7y, 75! and 7%, the relation
1 1 1
?k = Tliurf + Tll()ulk (86)

is fulfilled.

The two contributions have been calculated for films consisting of 6 and 40 layers of copper
for impurities in the layer below the surface, in the surface layer as well as for adatoms
and are presented in figure 8.11. For impurities in the surface layer and below the surface,
scattering to bulk states is expected to be much larger than scattering to surface states. This
is fulfilled very well for the 3d scatterers, but not for the sp scatterers. Even in the case of
impurities below the surface, for the film with six copper layers (compare the panel at the
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Figure 8.9.: Friedel-oscillations calculated for Co, Ga and Ge adatoms. The momentum-
resolved difference of the local density of states as a function of distance to the
adatom site is calculated, i.e. n;(Ey) — n)*°( Er), with n}*°( £y ) being the den-
sity of states of the vacuum site of the host and n;(Er) the density of states,
perturbed by the adatom. While for a Co adatom the s-, p.- and d-channel os-
cillate in phase, for Ga and Ge adatoms a destructive interference of the s- and
p.-channel is observed. For Ga and Ge adatoms, d-scattering is very small and
can be neglected.
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Figure 8.10.: Charge per atom in layer for the two surface states of a copper film with six layers and
for one of the two surface states of a film with 40 copper layers. For the thinner film,
the charge in each layer is larger than for the 40 layers-film, because the number of
layers in which the surface states can penetrate is limited. This might be the reason
for which scattering rates (for scattering at adatoms) increase with decreasing number
of layers (compare figure 8.12).

left bottom of figure 8.11), the scattering rate to surface states at Ga, Ge and As impurities
is higher than the scattering rate to bulk states. Interestingly, this is opposite to the film
of 40 copper layers, where scattering to bulk states prevails. For the case of adatoms, the
two contributions behave reversed; while the scattering at 3d adatoms is clearly dominated
by scattering to other surface states, for sp-adatoms scattering to bulk states is lower than
scattering to the two other surface states.

The reason for the different behavior of the scattering in 6 and 40 layers of copper is not
tully understood. However, scattering to surface states in the thinner films might be higher
than in the thicker films, because the localization of surface wavefunctions in the vacuum,
surface and subsurface layer, where the impurity is placed, is larger in the thin films (see
figure 8.10).

Finally, while the lifetimes 7 of the bulk states scale inversely with the number of layers, the
surface-state lifetimes 7y with increasing number converge to a constant value (see figure
8.12), which is considerably smaller than the momentum scattering rate 7-! for impurities
in bulk. A possible reason for this decrease might be the delocalization of the surface state
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Figure 8.11.: Total inverse surface-state lifetimes 7_* for the innermost surface state together with
the contributions of scattering rates to bulk and surface states 1/70"* and 1/
for films with 6 layers of copper (left panels) and 40 copper layers (right panels) for

adatoms (top), impurities in the first surface layer (center) and impurities in the layer
below the surface (bottom).

mainly over three layers; the first two surface layers and the first vacuum layer. Assuming
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that in the bulk there are N atoms, among them one impurity, then the overlap of a bulk
state with the impurity is given by 1/N. In contrast, if N atoms are in the surface, the surface
state expands over a volume of 3V atoms and, therefore, has an overlap of 1/3N with the
adatom, leading to smaller scattering rates.

8.3 Surface-state lifetimes for Cu, Ag and Au films

Having analyzed the surface-state lifetimes for impurities in and on copper films, we inves-
tigate scattering rates for 3d and 4sp impurities and adatoms in/on silver and gold films.
Additionally, we compare inverse surface-state lifetimes for different numbers of layers’.
The calculated data, shown in figure 8.12, are qualitatively similar for all three hosts. Scatter-
ing rates off adatoms are largest for the first elements of the row and remain almost constant
until Mn; just as in the case of the copper film (see previous section), this should be due to
the larger atomic radius entailing a larger extent of these elements into the vacuum. Fur-
thermore, all three host materials show a clear trend that scattering at adatoms on a film of
six layers is enhanced compared to that of larger numbers of layers. Again, the reason is the
higher localization of the surface state for thin films; the surface states extend over a smaller
number of layers, entailing a larger overlap with the impurities, and, therefore higher scat-
tering rates.

Concerning scattering at impurities in the surface, the situation is more complicated. Qual-
itatively, for all three host materials a clear maximal scattering rate for the 3d elements with
half-filled shells (V, Cr) is observed as well as high inverse lifetimes for the sp scatterer.
Hence, as expected, the global trend reflects the situation of scattering at impurities in the
bulk which has been already discussed in chapter 7 and in the previous section 8.2. How-
ever, large quantitative differences among the three host materials are observed when con-
sidering the thickness-dependency as well as the comparative scattering strength of 3d and
4sp impurities. While for a copper host, the scattering rate does not depend much on the
film thickness, for silver films the thickness makes a big difference. Actually, the silver host
is expected to show a strong thickness dependence because of the relatively shallow position
of the surface state (starting below the Fermi energy). In thin films quantum-confinement
effects push one of the two surface states above F, resulting in a significant change of the
available phase space for scattering.

A comparison to other theoretical or experimental results is not possible because of the
lack of data; although the investigated surfaces and even surface states have been subject to
a lot of experiments, according to our knowledge no experiments have been performed in
which the surface-state lifetimes due to scattering at the specific impurities at the Fermi level
have been measured. However, the order of magnitude of scattering rates calculated in the
present thesis should allow for an experimental detection; to compare, in inverse photoe-
mission spectroscopy a linewidth of about 23 meV ~ 35 ps~th for Cu, 6 meV ~ 9 ps~th for
Agand 21 meV =~ 33 ps~Lh for Au for electron-electron scattering processes is measured.
A measurement for 1 % of defects should be, therefore, within the experimental resolution.

’Similar as in the previous section, for a qualitative analysis we restrict to ASA calculations.
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Figure 8.12.: Inverse surface-state lifetimes 7' for adatoms (left panels) and impurities in
the first surface layer (right panels) for Cu, Ag and Au films with different num-
ber of layers. For all three host materials, the trend for scattering at impurities
in the surface correspond to that already observed for scattering in the cor-
responding bulk metals; however, the dependency on the number of layers
highly differ for silver films. While for copper and gold films a slight increase
of 7' with increasing film thickness is observed, for silver films the inverse
scattering rate decreases. This different behavior might be related to the fact
that for silver films with 6 and 10 layers only one surface state accounts for
scattering, since the other one is above the Fermi energy. The scattering rates
for scattering at adatoms on silver and gold films show the same trend as on
copper films.
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8.4 Scattering at magnetic impurities

So far, only scattering at non-magnetic impurities and adatoms has been considered. How-
ever, above the Kondo temperature, some of the 3d impurities become magnetic and scat-
tering at the two spin channels has to be treated separately. The resulting lifetimes are shown
in figure 8.13. As adatoms, the 3d metals starting from Ti to Ni are magnetic, while for
impurities in the surface Ti and Ni are still paramagnetic. The 4sp elements are paramag-
netic. The magnetism of the 3d elements leads to a double-peak structure in the trend of the
surface-state lifetimes, which is already known e.g. for residual resistivity in bulk and origi-
nates from the offset of the d-resonance of the two spin channels, which is mutually shifted
due to the exchange interaction. This becomes obvious when considering the density of
states, shown in figure 8.7. As already stated for impurities in bulk and in the surface layer,
scattering rates become large when the d-resonance crosses the Fermi energy. However, for
magnetic impurities the d-resonance is shifted for the two spin channels, such that scatter-
ing becomes large twice, i.e. for each spin channel crossing the Fermi energy. Therefore, a
first peak of the inverse lifetimes is observed for Ti, where the d-resonance of the spin-up
channel is centered at the Fermi level, while a second peak appears for Fe/Co, where this
is the case for the spin-down channel. For Cr impurities, where scattering rates are large
in the case of paramagnetic impurities, the inverse lifetime is low since Ey is between the
d-resonances of the two spin channels.

As already mentioned, the consideration of magnetic impurities/adatoms is valid only above
the Kondo temperature. However, at high temperatures the phonon contribution becomes
important, and, scaling linearly with temperature [86], at room temperature (for not too
high impurity concentrations), dominates the reduction of lifetimes. Therefore, lifetime re-
duction caused by impurity scattering can be better observed at lower temperatures, where
most impurities are non-magnetic. The Kondo temperature varies over orders of magni-
tude, depending exponentially on the position of the d-resonance and on the hybridization.
Therefore, there is no 'unique’ temperature above which all 3d impurities become simulta-
neously magnetic. Atlow temperature, however, they should all be non-magnetic. In this
case, the non-magnetic density of states in the local-density approximation (see section
2.3) does not represent the physical density of states, except exactly at the Fermi energy E¥,
where it is probably a good approximation. This follows from the fact that, as it has been
shown in model calculations [97], the phase shift and density of states at £ in the Kondo
phase, at 7' = 0, coincide with the corresponding quantities calculated in the mean-field
approximation when the electron correlation is ignored.

8.5 Residual resistivity

Surface-state lifetimes are strongly related to the concept of surface resistivity g, defined
as the ratio of a voltage drop per unitlength to the surface current per unit width. Therefore,
Psurt 15 @ property of the material and does not (or at least should not) depend on the size
of the sample.
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Figure 8.13.: Inverse lifetimes for scattering at magnetic adatoms (fop) and impurities in the
surface layer (bottom) of a copper film of 40 layers. The magnetism of the 3d
elements (from Ti to Ni for adatoms and V to Co for impurities in the surface
layer) leads to a double-peak structure of the inverse surface-state lifetimes 7,_*
because of the offset in the density of states of the two spin channels (see figure
8.7). The first maximum is reached for Ti, when the d-resonance of the spin-
up channel crosses the Fermi level, while the second maximum corresponds
to the localization of the d-resonance of the spin down channel at E.

Surface resistivities can be calculated in analogy to residual resistivities in bulk materials
Poulk as explained in section 4.6 using the Boltzmann equation (4.94) and eq. (4.95) or
eq. (4.96), respectively. In order to attest the correctness of our calculations of surface resis-
tivities and to compare pg,,¢ with the values obtained for residual resistivities in bulk ppy,
we start with a presentation of p,y, calculated for the 3d impurities in copper bulk.
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Figure 8.14.: Residual resistivities p [¢2 cm] per one atomic percent of 3d and 4sp impurities in
copper bulk. Our results for full potential calculations (FP) are compared to numerical
results of reference [69, 92] obtained within the spherical potential approximation and
experimental results from [98, 99, 100].

8.5.1 Residual resistivity in copper bulk

In contrast to momentum relaxation times 7y, residual resistivities due to scattering at 3d
impurities in copper bulk have been measured and calculated within ab initio calculations
already 30 years ago. Therefore, in figure 8.14 we present our results of ppu[ € cm]/1%
together with numerical [69, 92] and experimental [98, 99, 100] data. The agreement of our
results with those of the references is reasonable. Whereas we have been performed full po-
tential calculations, the numerical results of [69, 92] have been obtained within a spherical
potential approximation.

Comparing the residual resistivities with the inverse momentum relaxation times 7,_! (see
figure 7.7 in section 7.5), a difference in the curves can be observed: While the resistivity of
the 4sp elements increases only to approximately half of the maximum of the 3d-metals, the
maximal inverse momentum relaxation time is of the same order for 3d and 4sp impurities.
This is caused by the different relaxation times entering in p and 7~': While 7 is the mo-
mentum relaxation time, for the calculation of p the transport relaxation time is required.
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Figure 8.15.: Comparison of surface resistivities, measured in pf) per atomic percent for
impurities in the first surface layer (fop) and on top of the surface (bottom).
All calculations have been performed for a film consisting of 6 layers of copper.
In the left panels single-site calculations are shown, while in the right panels a
cluster of 13 sites, i.e. nearest neighbors have been included in the calculations.

The difference stems from the fact that for the transport time, resulting from the Boltzmann
equation 4.94, back-scattering is far more important than forward scattering, while for the
lifetime they are equally important. The d-resonance contributes to back-scattering more
than the p-states.

8.5.2 Surface resistivity

In this section, we present surface resistivities due to scattering at 3d impurities in the first
surface layer and positioned as adatoms on copper films. In contrast to resistivities in bulk,
Psurt 18 given in €2 and not in Qm.

Similar as for the surface-state lifetimes, in a first step, we have compared the surface re-
sistivities obtained in ASA and FP calculations, respectively (see figure 8.15); furthermore,
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Figure 8.16.: Surface resistivities, measured in £2 per atomic percent for impurities in the
first surface layer (left) and on top of the surface (right), obtained within full
potential calculations. Results are shown for different film thicknesses starting
from 6 to 40 layers of copper. In contrast to the dependence on the number of
layers for the surface-state lifetimes (compare figure 8.12), only a small devia-
tion can be observed. All calculations have been performed within a cluster of
13 sites. For comparison, the surface resistivities pg,,+ have been scaled with
the number of layers, otherwise pg.t = 0 for increasing slab thickness, since
in the limit of very thick films a single impurity or adatom does not result in a
finite resistivity.

single-site results are compared to those where the nearest neighbors have been included.
Afterwards, we have considered scattering processes for 3d and 4sp impurities and adatoms
on copper surfaces for different numbers of layers, presented in figure 8.16.

Considering figure 8.15, we find similarities to the observations made for the surface-state
lifetimes, figure 8.5 in section 8.1.3; whereas the surface resistivities obtained within ASA
and full potential calculations for impurities in the first surface layer are very similar, de-
viations of the order of 10 to 15% are found for adatoms; however, even within the ASA,
the qualitative trend is correct. Contrarily, the surface resistivities calculated for adatoms
within single-site calculations lead to very poor results; this is not the case for impurities in
the first surface layer, where the agreement of calculations within a shell of nearest neigh-
bors and single-site calculations is good.

The qualitative trend for the surface resistivities due to scattering at impurities in the first
surface layer is very similar to that obtained for residual resistivities in bulk, presented in the
previous subsection, figure 8.14. We observe a peak for the 3d scatterers (with a maximum
for Cr impurities) and a high resistivity for the 4sp scatterers. Again, for the resistivities d-
scattering gains importance compared to the trend obtained for the surface-state lifetimes,
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shown e.g. in figure 8.12. The same argument as for impurities in bulk holds; whereas for the
surface-state lifetime forward- and back-scattering are equally important, for the transport
relaxation time back-scattering has much more weight. Since the d-resonance contributes
more to back-scattering than the p-states, larger resistivities are found. For the same reason,
the plateau of the early sp- and d-adatoms, observed in the surface-state scattering rate 7,_',
disappears in the resistivity, and a peak shows up for the strong d scatterers (V and Cr).
Additionally, we have studied the dependence of the surface resistivity on film thickness;
the results are presented in figure 8.16. We have calculated surface resistivities both for
adatoms (right panel) and impurities in the first surface layer (left panel) for films with 6,
18 and 40 layers of copper. In order to compare the surface resistivities for different film
thicknesses, we have scaled pg,,¢ with the number of layers; otherwise, the surface resistivity
due to single adatom or impurity, respectively, would converge to zero for increasing slab
thickness.

This scaled quantity pg,r slightly increases with increasing film thickness, but compared to
the behavior of surface-state lifetimes, figure 8.12, the dependency is rather weak. Addition-
ally, whereas for inverse surface-state lifetimes a decrease is observed, surface resistivities
behave inversely. The reason for this difference might be due to the splitting of surface
states: While for the inverse lifetimes only the scattering rate obtained for the surface state
corresponding to the innermost Fermi-ring is shown, the surface resistivity does not de-
pend on a special k-point and results from an integration over all states. Hence, also the
contribution of the surface state with lower energy enters, whose scattering rate increases
with increasing number of layers; this behavior is also related to the decrease of k| of the
innermost surface state with increasing number of layers, resulting in a shorter lifetime.
To conclude, surface resistivities are much less sensitive to parameters such as the number
of layers or the approximation of the calculation method (ASA or FP) than inverse surface-
state lifetimes. The trends for scattering at impurities in the surface and at adatoms show
some differences for the 4sp elements, but the qualitative behavior for the 3d elements is
similar. In this way, the results obtained for surface resistivities differ from the inverse
surface-state lifetimes, because the latter show a trend for scattering at adatoms which is
completely different from scattering at impurities in the surface.

8.6 Conclusion

Even though at low temperatures and energies close to the Fermi level impurity scattering
at noble metal surfaces is assumed to provide the dominating contribution to the scattering
rate, this effect has not been studied systematically in earlier works. In this chapter, surface-
state lifetimes due to scattering at 3d and 4sp impurities below, in, and on top of the first
surface layer of (111) copper, silver and gold films have been investigated.

While the calculated inverse lifetimes for scattering at impurities below and in the surfaces
show basically the main characteristics which have already been observed for scattering
at impurities in bulk materials, we have found unexpected results especially for scattering
at adatoms. In contrast to all other results, the trend found for scattering at 3d- and 4sp-
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adatoms on Cu, Agand Au surfaces does not directly reflect the position of the 3d-resonance
relative to the Fermi level, or, at least, this does not seem to be the dominating criterion.
An analysis has revealed that the extent of the adatom into the surrounding vacuum plays
a great role; the extent into the vacuum is related to the atomic radius, which is relatively
large for the first elements of the row, and, therefore explains the high scattering rates for
these adatoms.

Furthermore, an angular-momentum resolved study of the single-site scattering rates for
adatoms has been presented, allowing for a scattering in specific L-channels of the single-
site 7-matrix 779, only. While a constructive interference of the s- and the d-channel is
observed for the 3d elements, for the 4sp scatterers the s- and the p,-channel interfere de-
structively. The results are fortified and confirmed by a calculation of Friedel-oscillations
for Co, Ga and Ge adatoms.

The applied method allows to distinguish between scattering to bulk and to surface states,
and the contributions of the total inverse surface-state lifetimes for impurities below the
surface, in and on top of the surface have been presented separately for different num-
bers of layers. As expected, scattering at adatoms leads to especially high contributions
to other surface states, whereas scattering at impurities below the surface mostly occurs to
bulk states. However, the dependency on layer thickness as well as differences observed for
3d and 4sp impurities is not obvious and still needs to be understood.

A comparison of inverse surface-state lifetimes for Cu, Ag and Au films shows trends very
similar to each other, with the dominant features described in detail for copper films. How-
ever, when considering the dependency on film thickness, differences for silver films are
revealed. This discrepancy might be due to the interplay of the position of the bottom of
the surface band relative to the Fermi level and the large splitting of the two surface states
for thin films. For silver, the bottom of the surface band is by far closest to the Fermi energy
compared to copper and gold films. Therefore, for thin silver films only one surface state is
present at the Fermi level.

Furthermore, we have calculated surface-state lifetimes for magnetic impurities. The ob-
tained trend shows the double-peak structure caused by the d-resonances of the two spin
channels crossing the Fermi level.

Finally, residual resistivities in copper bulk and surface resistivities for impurities in the sur-
face layer and on top of the surface for copper films are presented. The resulting trends are
compared to those obtained for the surface-state lifetimes. The most important difference
is the observation that the surface resistivity (normalized to the number of layers) hardly
depends on the film thickness, whereas the inverse surface-state lifetimes remarkably dif-
fer for distinct thicknesses. The reason for this behavior probably is the different nature of
the investigated quantities: While the inverse lifetime depends on k, and especially for thin
films differs for the two surface states, where the splitting is large, the surface resistivity is
integrated over all states.

Further investigations of surface-state lifetimes including spin-orbit coupling effects will be
presented in chapter 9.



CHAPTER 9

Effects of spin-orbit coupling in noble metal thin
films

In the last two chapters we have investigated spin-orbit coupling effects in copper and gold
fcc bulk crystals, chapter 7, and surface-state lifetimes for fcc copper, silver and gold (111)
films without spin-orbit coupling, chapter 8. Both effects are induced by impurity scatter-
ing. Now, we will combine these two aspects and finally investigate effects of spin-orbit
coupling in noble metal films. In doing so, we will consider two different scenarios, en-
tailing different mechanisms of spin relaxation; first, we will consider symmetric films, in
which — analogously to bulk crystals — all k-points on the Fermi surface are two-fold de-
generate. Then, the Elliott-Yafet mechanism as well as impurity spin-orbit coupling induce
spin relaxation. Secondly, films without inversion symmetry will be considered. The lack
of structural inversion symmetry lifts the spin degeneracy, leading to a splitting of bands,
i.e. a splitting of rings on the Fermi surface. This type of splitting is a general phenomenon
observed in the bulk of semiconductors, asymmetric semiconductor heterostructures, or
metal surface states. Depending on details of the band structure, it is known as Rashba
[101, 102] or Dresselhaus [103] splitting. In its presence, another mechanism of spin relax-
ation takes effect, the D'yakonov-Perel' mechanism [10]. This mechanism is rather char-
acterized by spin dephasing than spin relaxation, since it is caused by precession around a
local spin axis together with ordinary momentum scattering.

In the first part of this chapter we will give an introduction to the above-mentioned theo-
retical concepts. Then, we present results obtained for gold and copper films. We consider
that the epitaxial growth direction of the films is along the z-axis, which is also taken as
the spin quantization axis of the system. We start with the investigation of symmetric (111)
and (001) films with different film thicknesses and calculate the corresponding spin-mixing
parameter. Furthermore, spin-flip scattering processes due to scattering at self-adatoms are
studied, and results for spin-conserving and spin-flip scattering lifetimes are presented.
Afterwards, asymmetric copper and gold (111) and (001) films will be investigated; their
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symmetry has been broken by covering them with one layer of Zn. For both surface orien-
tations and different film thicknesses, spin-orbit fields are calculated and compared to each
other.

The chapter ends with a summary of the most important results.

9.1 Spin-orbit coupling effects in systems without structural
inversion symmetry

9.1.1 The Rashba effect

We consider systems without internal or external magnetic field. For such systems, disre-
garding the question whether space-inversion is given or not, the time-reversal transfor-
mation does not alter the physical properties of the system. Since time reversal reverts the
direction of motion (i.e. k to —k) as well as the spin (i.e. o to —¢), the energy of a spin-
up particle with momentum k has the same energy as a spin-down particle moving in the
opposite direction (with wave vector —k)

El=E' . (9.1)

This property is also known as Kramers degeneracy [104]. For systems invariant under
space inversion, additionally £ = £% , o =1, | is valid and, therefore, all bands are twofold
degenerate!. In contrast, in systems without structure inversion symmetry, where no origin
of coordinate system can be found such that V' (r) = V(-r) for all r, this degeneracy is lifted;
the presence of a non-centrosymmetric potential implicates a potential gradient or electric
field E(r). This becomes clear when considering the Taylor expansion of the potential V' (r)

V(r)=V(0)+cE0) r+.... (9.2)

Hence, in lowest order, the inversion asymmetry can be characterized by an electric field
E(r). A moving electron with an effective mass m* propagating with a velocity v = 1/m* k
will experience this field Lorentz-transformed in its local frame as a magnetic field

1 1
B=-vxE=——kxE, (9.3)
¢ cm

coupling to the electron spin. Multiplying this field with the spin (i.e. the Pauli-matrices)
yields the expression

Hp =aro-(kxE), (9.4)
which equals the spin-orbit Hamiltonian of eq. (5.10) and is called the Rashba or Bychkov-
Rashba Hamiltonian [101, 102].
We will rewrite the Rashba Hamiltonian in terms of the so-called spin-orbit field (k) [8]

Hy - ga Q(K) . ©.5)

!'This is the case for the bulk crystals considered in chapter 7 and the symmetric films studied in a later part of
the current chapter.
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The direction of (k) at each k defines the spin quantization axis, while its absolute value
determines the strength of the splitting. Of course, the spin-orbit fields (k) are material-
specific and depend on the spin-orbit coupling strength, the band gap, the proximity to the
surface and other parameters. We will present spin-orbit fields for Cu and Au surfaces in
section 9.3.

The effect is present in different structures. First, it appears in bulk semiconductors of the
zinc-blende type [103, 105], where the two atoms in the unit cell are not equivalent and,
therefore, inversion symmetry is not fulfilled. Then, the spin-orbit field at and close to the
conduction-band minimum can be written as [8]

ah?
\/2m* E,

where E, is the band gap of the semiconductor and « is a material-dependent parameter
(e.g., for GaAs a = 0.07). The corresponding Hamiltonian Hp = 2/2 o - Qp(k) is known
as Dresselhaus Hamiltonian and leads to a spin splitting proportional to k3.

Secondly, the Rashba Hamiltonian allows to describe the splittings appearing in a two-
dimensional electron gas. This is realized e.g. in asymmetric quantum well heterostructures
[106, 107] as well as in the surface states of metallic and semi-metallic systems [108], e.g. Ag,
Au [109] and Bi (111) surfaces or surface alloys [108]. Choosing the z-axis in direction of
growth of the heterostructure (or perpendicular to the surface, respectively) and adding up
the kinetic energy, the full Hamiltonian takes the form

Qp(k) = (ko (K2 - K2) €n + ky (K2 - k2) e, + k. (K2 - k2)e.] (9.6)

Htot = Hkin + HR

p

= 2,,3*+Cm(0xpn)|z
Pi

= —+ 2Py — OyPaz) - 9.7
S+ an (020, = ,p2) 97)

This form allows for an analytic solution. Assuming the k-vector to be oriented in the plane

of the two-dimensional electron gas and k| = & (cos ¢,sin ¢, 0), the eigenstates can be
written as a product of plane waves and two-component spinors
kv (jeie?
M (9.8)
I 21 /2 \ xeid/2
The corresponding eigenenergies are
ki
o
EkH - 2m* +ag (0 X kH)‘Z
ki
= +aglk
]
1
= (ky = ksoc)” — Asoc (9.9

2m*
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with ksoc = m*ag and Agoc = m*ad /2. Apparently, for all k| except the high-symmetry
state & = 0, the two states are split and have a difference in energy

AEkﬂ,l = 2aR ‘k”| . (9.10)

In addition, due to the presence of structure inversion asymmetry and the spin-orbit in-
teraction, the origin of the parabola, described by the first term of eq. (9.9) is lowered in
energy by Agoc. The orientation axis of the spin is given by the expectation values of the
Pauli matrices o
sin ¢
28[! = (Wl o i) = & [ —coso | (9.11)
0

hence depends on the direction of k| only and not on its absolute value. Apart from that,
the spins of the two electrons are — for all k — oriented opposite to each other. The result-
ing spin-structure on the Fermi surface will be shown in figure 9.12 in section 9.3 at the
example of the spin-split surface state of copper (111). The above analysis of the Rashba-
Hamiltonian is known and can be found e.g. in [102].

Before finishing this section and coming to the spin dephasing mechanism induced by the
Rashba spin-splitting of bands, we will briefly comment on the order of magnitude of the
observed splitting for different structures. Interestingly, the splitting found for metallic
or semimetallic surface states can be much larger than for semiconductor heterostructures.
First, this is the consequence of higher Rashba parameters, e.g. for a GaAs/InAs heterostruc-
ture ag = 0.09 eVA [110] compared to ag = 0.33 eVA [109] for a Au (111) surface state.
Secondly, one has to take into account that the splitting is proportional to k — for Au, £ is
determined by the Fermi surface (see section 9.3) and leads to a splitting of the order of
0.1eV, while in semiconductor heterostructures, the states of the conduction band that are
relevant for electronic transport are much closer to the center of the Brillouin zone; there-
fore, the average k is much smaller. More information about the Rashba effect at metal
surfaces can be found in [108]. A more detailed general overview is given in [74].

9.1.2 The D'yakonov-Perel' mechanism

In chapter 7 we have seen that in case of the Elliott-Yafet spin-flip mechanism present in
systems with structure inversion symmetry, the increase of momentum scattering yields an
enhancement of spin relaxation and therefore shorter spin-relaxation times. In contrast, in
systems without structure inversion symmetry, the D'yakonov-Perel' mechanism [10] leads
to the inverse effect. Le., enhanced momentum scattering results in longer spin-relaxation
times. In the following we will show that this is a consequence of the form of the Rashba
spin splitting derived in the last section. We will follow arguments presented in [8, 111].

The spin-orbit field 2(k), which can be interpreted as an internal magnetic field, provokes
a k-dependent precession around the direction of £2(k) with frequency |Q2(k)|. In order to
illustrate the above statements, we consider a system which can be described by the Rashba
Hamiltonian eq. (9.5) and assume a wave packet ¢ at time ¢ = 0, characterized by a wave
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vector k with a spin S(0) oriented in an arbitrary direction. If the spin does not point in
the same direction as the spin-orbit field £2(k), it will be partly projected to the 1 and the |
eigenfunction, i.e. ¥(0) = a|1) + b|l). Then, after a time ¢ the wavefunction has evolved to

b(t) = st [ Fa ) + e T 0|1 (9.12)

The Rashba term in the Hamiltonian has caused a difference in phase of the two eigen-
states 1] and v}, of the order of d¢) = Qt. As a consequence, the spin expectation value
S(t) =1/2(¥(t)|o|¥(t)) becomes time-dependent, and the spin of the electron precesses
around the direction of the spin-orbit field (k) with frequency §2 = |Q2(k)|. Of course,
this happens only if the energy spread of the wave packet is larger than the spin-splitting
he.

Assuming that this condition is fulfilled, D'yakonov and Perel' considered a scattering event
at time ¢, from state k to state k’. The scattered electron is assumed not to change its spin
expectation value S(¢;) during scattering and, arriving at k', it starts to precess around
the local precession axis Q2(k’), which in general differs from Q (k). After a certain time ¢,
longer than the momentum-relaxation time? 7,,, the electron has experienced a few random
scattering events followed by precession around different axes and its original spin orienta-
tion axis is lost. Hence, the interplay of momentum scattering and precession rather leads
to spin dephasing than spin relaxation.

In the following, a relation between the momentum-relaxation time 7, and the spin de-
phasing time 7, will be established. The alternation of scattering and precession can be
described as a spin precession around a fluctuating magnetic field, whose magnitude and
direction change randomly after the average time step of 7,,. Hence, the spin phase follows
a random walk and the total accumulated spin angle d¢ after time ¢ is both proportional to
the number of random-walk steps /N = /t/7, as well as to the change in phase at each
step (Q) 7,

56 = (), o () /7, . (9.13)

Here, analogously to the definition of 7, the quantity (€2) is defined as an average of the
local spin-orbit fields (€2(k)) over all possible wave vectors k.
Defining the spin-relaxation time as the time where d¢ ~ 1, the result

1

T =~
’ <Q)27p

(9.14)

is obtained. The important conclusion of the above estimate for the spin dephasing time 75
is that it behaves inversely proportional to the momentum-relaxation time 7,; the higher
the momentum scattering rate 7,1, the longer the initial spin is retained. From a physical
point of view, this corresponds to the concept of motional narrowing. If the momentum
relaxation time is short, the electron spin does not have the time to precess in any particular
direction, and the random changes in 'force' cancel each other.

2defined as the inverse of the average momentum scattering rate Py, averaged over all k and k’
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Figure 9.1.: Distribution of the spin-flip parameter |bk|2 on the Fermi surfaces for copper (top) and
gold (bottom) (111) films with six (left), eight (middle) and ten (right) layers. Whereas
for the six-layer films |by|” is largest in some of the bulk states, for the films consisting
of eight and ten layers the two surface states show the largest spin-mixing parameter.
The maximal values of |by|* increase with film thickness. This tendency is also found,
when the average of |bk|2 over the Fermi surface of the three films is compared. The
averages are specified in table 9.1. Note that the distributions of |bk|2 are presented on
a logarithmic scale. While the qualitative behavior of the copper and the gold films is
very similar, as expected higher spin-mixing parameter are found for the gold slabs.

9.2 Symmetric films

9.2.1 The Elliott-Yafet spin-mixing parameter |b|2

We will start our presentation of spin-orbit coupling effects on surfaces of symmetric films
and consider fcc copper and gold (111) and (001) films. The two orientations differ in one



9.2. Symmetric films 151

important aspect: Whereas at (111) surfaces the formation of surface states takes place be-
cause of the band-gap in L-direction of the bulk band structure, at (001) surfaces no such
surface states exist at Ep. As we will see, this changes the physics.

Due to the inversion symmetry, all states on the Fermi surface are twofold degenerate; so
we expect the Elliott-Yafet mechanism (as explained in section 7.1.1) to induce spin relax-
ation. In analogy to the situation in fcc bulk, see section 5.6, the degeneracy at each k-point
leads to an arbitrary choice of the spin orientation axis, being different for each k on the
Fermi surface. Therefore, a common spin quantization axis has to be chosen, and a linear
combination of the degenerate wavefunctions corresponding to this axis must be calculated.
We choose the z-axis, the direction perpendicular to the surface, as spin orientation axis.
The spin-orbit coupling provokes that the wavefunctions are a linear combination of up and
down states as explained in section 7.1.1.

In order to estimate the effect of spin-orbit coupling on the Fermi surface, we have calcu-
lated the parameter |ay|” and |by|” as defined in eq. (5.125), corresponding to the real-space
integrals of the two spin-components of the wavefunction. Furthermore, its averages \a|2
and |b|° over the Fermi surfaces are determined.

The distribution of |b|” on the Fermi surface for (111) films are presented in the upper pan-
els of figure 9.1 for copper and in the lower panels of the same figure for gold. The Fermi
surfaces are similar to those of the films without spin-orbit coupling, presented in chapter 8.
The two innermost rings correspond to the two surface states; the splitting between them is
mostly caused by the coupling between the surface states belonging to the two film surfaces
and therefore strongly depends on the film thickness. However, as we have included spin-
orbit coupling in our calculations, the Rashba effect also leads to a splitting which adds up
to the splitting caused by the finite thickness. Evidently, for thin films the latter one is much
larger and totally covers the effect of the spin-orbit coupling. However, for sufficiently thick
films, the splitting induced by the hybridization of the two surface states converges to zero
and the Rashba splitting prevails. Since the calculation of the Fermi surface for thick films
is numerically very expensive, we have chosen another way to determine the size of the
Rashba splitting. It can be estimated by considering asymmetric films, which are the sub-
ject of the next section.

Considering the distribution of the spin-mixing parameter |bk|2 on the Fermi surface of the
(111) films (figure 9.1), a similarity for copper and gold can be observed: Whereas for the
films with six layers, the Elliott-Yafet parameter is largest for some bulk states in the outer
regions of the Fermi surfaces, for the films with eight and ten layers spin-mixing is highest
for the two surface states. Furthermore, an increase of the maximal obtained value of |bk|2
with film thickness can be observed. This trend is also found when the average |b|* of [y |”
over the whole Fermi surface is considered. The averages of the spin-mixing parameter for
all films (copper and gold, different thicknesses, both orientations) are listed in table 9.1.
Comparing the values obtained for the [111] orientation to those obtained in Cu and Au
bulk given in table 5.2, large differences are observed. At the surface, the Elliott-Yafet pa-
rameter is remarkably larger than for the bulk materials. For gold, the ratio is about 1.5, and
for copper, the enhancement of [b|” is even much more pronounced, being approximately
7. Obviously, the effect of spin-orbit coupling is enhanced by the break of symmetry due
to the surface geometry and the formation of surface states. Considering the distribution
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jal®  Jof?

Cu (111) 6layers 0.999 1.41-1073
8layers 0.999 1.49-1073
10 layers 0.998 1.69-1073

(001) 6layers 0.997 2.94-1073
8layers  0.998 2.03-1073

Au (111) 6layers 0.968 3.23-1072
8layers  0.966 3.41-1072
10 layers 0.964 3.59-1072

(001) 6layers 0.964 3.51-1072
8layers 0.722 0.278

Table 9.1.: Elliott-Yafet parameters |a|” and |b|* averaged over the Fermi surfaces for copper
and gold (111) and (001) films. While their distributions |ak|2 and |bk\2 on the
Fermi surface strongly differ for the various thicknesses, the averages are very
similar. In all cases, an increase with thickness can be observed. Furthermore,
the spin-mixing parameters obtained for the (001) surfaces are much larger than
those of the (111) surfaces. This is due to the anti-crossings, occurring at the
boundaries of the Brillouin zone for the (001) geometry and leading to spin hot
spots.

of |bk\2 on the Fermi surfaces, this is (at least for the films with eight and ten layers) ob-
vious, because the spin-mixing parameter are largest for the surface states. Although we
have found an increase of |b|° with increasing film thickness, we do not necessarily expect a
further increase for thicker films; there might be an oscillatory effect, converging to a value
of |b|” lower than that calculated for the 10-layer films, since eventually the bulk value has
to be reached in the limit of large thickness.

We will now turn to the (001) surfaces. Contrary to the (111) surfaces, at these surfaces
there exist no surface states, see figure 9.2. Therefore, lower spin-mixing parameters might
be expected. Interestingly, a different effect occurs, yielding locally very large spin-flip pa-
rameters, which are actually much larger than for the (111) surfaces: At the edge of the
Brillouin-zone, anti-crossings of bands occur, leading to wavefunctions with a large contri-
bution of both spins. These points are so-called spin hot spots, which have been predicted
for all polyvalent metals in [14]. The effect is observed for copper as well as for gold (001)
surfaces for both thicknesses, though the maximal values of [958 indicating the strength
of the effect, strongly differ. This might be an artefact of the accuracy of the calculation —
especially for copper, the k-points on the Fermi surface with high |by|* are very localized
and the k-points on the Fermi surface are calculated on a discrete mesh, which might not
exactly coincide with those k for which |bk|2 is maximized. Of course, these spin hot-spots
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Figure 9.2.: Elliott-Yafet parameter |bi|* on the Fermi surfaces for copper (top) and gold (bottom)
(001) films with six (left) and eight (right) layers. In both cases, |by|” is small and almost
constant for all states apart from a few 'hot spots' at the edge of the Brillouin zone,
which are encircled and marked with an arrow for the copper films. In these regions,
anti-crossings of bands lead to states with high contributions of spin-up and spin-down
components and therefore large by. The hot spots are most pronounced for the Au (001)
film with 8 layers. Note that for the color code a logarithmic scale has been used. The
averages of |bk|2 over the whole Fermi surface are given in table 9.1.

enhance the Elliott-Yafet parameters |b|” averaged over the Fermi surface (see table 9.1); for
copper, for the (001) films they are approximately twice as large as for the (111) films, while
for gold, they reach values which are almost ten times larger.

After having discussed the Elliott-Yafet spin-mixing parameter, we will go on with the in-
vestigation of scattering at adatoms on these surfaces, i.e. spin-conserving and spin-flip life-
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7-bulk Tsurf T leulk Tlsurf Jﬁ1

Cu 6layers 0.822 3.13-1072 0.104 394.2 158 58.3
8layers  0.709 3.77-10"2 0.145 381.0 64 368
10layers 0.660 4.34-10"2 0.169 462.6 2.8  20.0

Au 6layers 0.579 3.36-10"2 0.108 8.2 1.36  2.98
8layers  0.525 4.09-10"2 0.144 10.0 038 191
10 layers 0.541 4.96-10"2 0.183 116 0.16 1.2

Table 9.2.: Momentum-relaxation 7 and spin-relaxation times 77 in ps per one atomic per-
cent induced by scattering at adatoms on copper and gold (111) films. In addi-
tion to the averages over the whole Fermi surface, averages over the two surface
and the bulk states are given. Whereas the momentum-relaxation times increase
with increasing film thickness, for the spin-relaxation times 7} a strong decrease
is observed. All values are obtained by averaging over the scattering rates, i.e. 7, *
and Tl‘k1 and not over the times 7, and 7 i themselves.

times. This will be the topic of the next section.

9.2.2 Spin-flip and spin-conserving lifetimes due to scattering at adatoms

In chapter 8, we have investigated surface-state lifetimes due to scattering at impurities
and adatoms at noble metal (111) surfaces. There, the effect of spin-orbit coupling was
neglected. In this section, we take spin-orbit coupling into account and calculate spin-
conserving and spin-flip lifetimes. We restrict our calculations to copper and gold (111) and
(001) films, considering scattering processes at copper adatoms for copper films and gold
adatoms for gold films. Because of the degeneracy of the wavefunctions at each k-point,
spin-conserving T}11,, Ty, as well as spin-flip 7}, Ti1}, scattering matrix elements can be
calculated for all k, k’ on the Fermi surface. Integration over k’ then yields the momentum-
dependent spin-conserving lifetimes TIIT, Tlil and the spin-flip lifetimes lel and TliT, respec-
tively. In analogy to the definitions in section 5.9, we present the inverse momentum-
relaxation time 7 1, the average of the inverse spin-conserving relaxation times TliT and
74, and the inverse spin-relaxation time

1 1
Tl — 4 — | 9.15
et ©.15)

The distributions of 7,_ Land 17| on the Fermi surfaces for (111) films (with 6 and 8 layers)
are shown in figures 9.3 and 9.4, Qualitatively, the distributions for 10 layers are very sim-
ilar to these, and are therefore omitted. Spin-conserving and spin-flip scattering rates are
highest for the surface states (note the logarithmic scale of the color code) close to the cen-
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leulk/Tbulk Tlsurf/,rsurf jﬁ1 /7_

Cu 6layers 425 505 558
8layers 537 169 259
10 layers 2738 65 119

Au 6layers 14.2 40.5 27.7
8layers 19.1 9.3 13.5
10 layers 21.5 3.3 6.4

Table 9.3.: Ratio of the spin-relaxation 7} and the momentum-relaxation times 7, specified
for the average over the complete Fermi surface as well as over the bulk and the
surface states.

ter of the Brillouin zone. However, a quantitative analysis reveals differences for the three
film thicknesses both for copper and gold films; therefore, we have calculated the averages
of the scattering rates 7,_' and Ty » over the two surface states, the bulk states as well as over
the total Fermi surface, yielding 70Uk, 75w, 7 and TPulk, 75wt and 77, respectively. The
results are shown in table 9.2. Whereas the momentum-relaxation times averaged over the
full Fermi surface increase with film thickness?, the spin-relaxation times 77  strongly de-
crease. This trend is observed both for copper as well as gold surfaces. As expected, the spin
relaxation times for gold are much shorter than for copper because of the stronger spin-orbit
coupling. An analysis of the averages of 7'  over the bulk and the surface states reveals that
the strong decrease of the spin-relaxation time with increasing film thickness is mainly due
to the distinct spin-relaxation times averaged over the surface states; the stronger interac-
tion of the two surface states for the films with six layers leads to a reduction of spin-flip
scattering. It would be worth to investigate this trend for thicker films. As already stated
for the spin-mixing parameter, the trends found for 77 and 7 for the three film thicknesses
do not necessarily continue for thicker films, because oscillatory effects might occur. The
origin of such an oscillatory behavior might be due to the finite size and the formation of
quantum-well states in the film. In order to analyze such a behavior, thicker films have to
be investigated.

Considering the ratio 77/7, i.e. the number of scattering processes per one spin-flip event,
given in table 9.3, the inverse behavior of 7 and 7} as a function of layer thickness results in
a strong variation of ratios; the addition of two supplementary layers yields a reduction of
T /7 by a factor of two. This behavior is observed both for the copper and the gold films,
although the calculated values for gold are much smaller than those for copper. A direct
comparison of 77 /7 with the values for impurities in copper and gold bulk is not possible,
since — of course — the investigation of copper 'impurities’ in copper, or gold in gold, does

*Note that the inverse of the relaxation times, i.e. the scattering rates 7;.* and T} |, are averaged over the Fermi
surface and not the lifetimes themselves.



156 9. Effects of spin-orbit coupling in noble metal thin films

0.0016 0.0070 0.0318 0.1436

8 layers

/

5

Figure 9.3.: Distribution of the spin-conserving 7' and spin-flip 17 L scattering rates in
[ps~t/at.%] on the Fermi surfaces for (111) copper films with six (top) and eight (bot-
tom) layers. The color code is given on a logarithmic scale. Scattering rates are highest
for the surface states and decrease towards the outer boundary of the Brillouin zone.

not lead to any scattering. However, it is worthy to make a general comparison of the order
of magnitude found for impurities in bulk, presented in figure 7.9. For copper bulk, ratios
in the range of 55 (for Ni impurities) up to 103 for the light impurities have been found,
while in a gold host a much smaller range, from about 3 to 30 scattering processes per one
spin-flip event have been calculated. Hence, the ratios obtained for scattering at adatoms
are relatively large, even for the thicker films, where lower ratios have been found. How-
ever, as found in chapter 8, scattering at adatoms is different from impurity scattering, and
therefore other mechanisms are dominant; the perturbation caused by an adatom is much
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Figure 9.4.: Distribution of the spin-conserving 7! and spin-flip 77! scattering rate in
[ps~!/at.%] on the Fermi surfaces for (111) gold films with six (fop) and eight (bot-
tom) layers. Similar as for the copper films, figure 9.3, for both film thicknesses, 7y and
Tk are shortest for the surface states and decrease towards the outer boundary of the
Brillouin zone. Whereas the order of magnitude of the spin-conserving and spin-flip
scattering rates are the same for both metals, the spin-flip scattering rates 7}, are much
higher for gold than for copper. A logarithmic color scale has been used.

stronger than that in the case, where merely a host atom is replaced by the impurity. Note
that the lowest ratios 7} /7 in bulk were obtained for resonant scattering, while a self-adatom
(Cu or Au) does not produce resonant scattering.

Before analyzing the scattering rates for the (001) films, we return to the distributions of 7
and 71 x on the Fermi surface and consider the symmetry; without spin-orbit coupling, the
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Figure 9.5.: Inverse spin-relaxation times 7} . in ps™! per atomic percent for the innermost surface
state of the copper film (left) and the two surface states of the gold film (right) with 6
layers, which have been already shown with lower resolution in figure 9.3 and figure 9.4,
respectively. The higher resolution reveals the reduction of symmetry due to spin-orbit
coupling. Whereas the irreducible part of the Brillouin zone for 7, amounts to 1/12 of
the full Brillouin zone, it is reduced to 1/6 for 7T} x.

irreducible part of the Fermi surface is 1/12 of the full Brillouin zone. This is also what has
been found when considering 7. Spin-orbit coupling reduces this symmetry by a factor of
two. As it is a small effect, it is only very weakly visible for some of the bulk states of the
gold films in figure 9.4. However, it is present in all states. We only demonstrate it for one
of the surface states of a copper 6-layer film and the two surface states of the 6-layer gold
films, presenting these states in a higher resolution in figure 9.5.

After having analyzed momentum- and spin-relaxation times for scattering at adatoms on
the top of (111) surfaces, we will investigate the same quantities for (001) surfaces. As we
have already discussed in the previous section, the absence of surface states strongly changes
the physics of the two systems. Distributions of 7,_' and 77} on the Fermi surfaces are pre-
sented in figure 9.6 for copper and in figure 9.7 for gold films. For the (001) films, large
differences in the distributions of 7y and 7} i are observed*; while momentum-relaxation
rates are largest for the states close to the center of the Brillouin zone, the k-points on the
Fermi surface with highest spin relaxation are found to be at the spin hot spots already de-
tected by their high values of |bk|2, situated close to the boundaries of the Brillouin zone. In

“This difference is much more pronounced for the copper films than for the gold films.
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Figure 9.6.: Distribution of the inverse spin-conserving 7;;' and spin-flip lifetimes 7. on the
Fermi surfaces for copper (001) films with six (top) and eight (bottom) layers. ‘Whereas
the momentum scattering rates for spin-conserving scattering are largest for the states
close to the center of the Brillouin zone, spin-flip scattering rates are largest for some
points at the outer boundaries of the Brillouin zone. For the 6 layer-film, these points
are encircled and marked with an arrow.

addition, for the 8 layer-films, relatively large spin-relaxation rates are found for the state
closest to the center of the Brillouin zone, presumably because it is the one most extending
into the vacuum, i.e., having the largest overlap with the adatoms.

The spin hot spots make the numerical treatment of the (001) films difficult, because of the
strongly varying values in a small interval of k. A high resolution and an exact tracing
of the bands in these regions of the Fermi surface is necessary but not yet possible with
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T T1 T1 /7'

Cu (111) 6layers 0.104 583 558
8layers 0.145 36.8 259
10 layers 0.168 20.0 119

(100) 6layers 0.097 126.7 1306
8layers 0.185 281.3 1521

Au (111) 6layers 0.108 2.98  27.7
8layers 0.144 1.91 135
10 layers 0.183 1.2 6.4

(100) 6layers 0.093 2.65 285
8layers  0.041 0.095 2.3

Table 9.4.: Spin-conserving scattering times 7 and spin-relaxation times 77 in ps per atomic
percent of adatom concentration averaged over the Fermi surfaces for copper and
gold (111) and (001) films. Whereas the momentum-relaxation times for copper
and gold are of the same order of magnitude, strong differences are observed for
T;. Except for the (001) gold films, the momentum-relaxation times increase
with increasing thickness. For the copper films, the spin-relaxation times for the
[001] orientation are much longer than for [111].

the currently existing code. Therefore, the distributions of the scattering rates 7,_! and 77 ;.
2

might be not very accurate, because they are already the result of the integration of |Tlflf,'
over the Fermi surface. Evidently, the same holds for the averages 7} and 7.

Although not visible in the distributions of 7,_! and 77}, the spin-orbit coupling leads to
a reduction of symmetry for the spin relaxation time, just as in the case of the (111) films.
Whereas the inverse momentum-relaxation time 7,_* exhibits an eightfold symmetry on the
Fermi surface, the spin-relaxation scattering rate 7} merely obeys a fourfold symmetry.
Despite possible numerical inaccuracies for the (001) films, we will compare the averages
of the spin-relaxation and momentum-relaxation times for the different orientations. The
momentum-relaxation times for the (001) films are larger than for the (111) films. This be-
havior becomes reasonable when considering the contributions of 7,* for the (111) surface
states, table 9.2, which dominate the whole effect.

Comparing the spin-relaxation times for the two surface orientations, differences between
the copper and the gold films are observed. Whereas we find much longer spin relaxation
times for the copper (001) than for the (111) films, 7} of the gold films of the two surface
orientations is in the same order of magnitude for the 6-layer film and much shorter for the
8-layer (001) than for the (111) film. For copper, the increase of spin-relaxation times can
be explained by the lack of surface states, for which high spin-relaxation rates have been
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Figure 9.7.: Distribution of the spin-conserving and spin-flip scattering rates 7" (top) and 7,1
(bottom) on the Fermi surfaces due to scattering at adatoms on gold (001) films. Results
for films with six (top) and eight (bottom) layers are presented. Whereas momentum-
scattering rates are largest in the center of the Brillouin zone, k-points with large spin-
flip scattering rates are found for a small number of k-points situated close to the
boundary of the Brillouin zone and also in the center of the Brillouin zone. Concerning
this aspect, the behavior of T} L differs from that of the copper (001) films, for which
high spin-flip scattering rates have been found exclusively at the boundary.

found. In contrary, for the gold films this lack is compensated by the spin-flip scattering
induced by the strong spin hot spots and relatively high spin-flip scattering rates for the
states close to the center of the Brillouin zone. An investigation of thicker films would be

interesting.
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9.3 Asymmetric films

9.3.1 Spin-orbit fields of ultrathin Cu and Au (111) and (001) films

In this section we will discuss effects of spin-orbit coupling for asymmetric films. In exper-
iment, ultrathin films are frequently deposited on a substrate, while their surface remains
free. In this situation, the wavefunction of the film are subject to asymmetric boundary
conditions which break the inversion symmetry. The details of the resulting band structure
depend of course on the exact nature of the substrate, but the general qualitative features do
not. Therefore we choose here one layer of Zn as as symmetry-breaking 'substrate' in order
to study these features.
We investigate copper and gold (111) and (001) films with 5, 7 and 9 layers to which one
layer of Zn has been attached on one side. The break of symmetry results in the lifting of the
degeneracy of all states, and hence a splitting of all rings on the Fermi surface. However,
the splitting is usually too small to easily resolve it visually; hence, as before, the number of
visible rings on the Fermi is the same as what one would expect in the degenerate case as
can be seen in the left columns of the figures 9.8, 9.9, 9.10 and 9.11. The color code visual-
izes the absolute value of the asymmetry-induced splitting A £'(k) of the Fermi surface; its
values are given in mRyd and are calculated with the help of the Fermi velocity vy via the
relation
O0Ex
AE(R) = Ak (9.16)
= hUkAk .

Note that in figures 9.8 to 9.11 a logarithmic scale of the color-code has been used. The
splitting AFE (k) corresponds to the absolute value of the spin-orbit fields (k) presented
in the right columns of the four figures; the direction of £2(k) is determined by the spin ex-
pectation value S(k). In particular, the spin expectation values of the two split states point
in opposite directions; considering the Rashba-Hamiltonian eq. (9.5), it becomes clear that
the spin-orbit field (k) must point in the same direction as the spin-expecatation value
of the state with the higher energy — a magnetic dipole m = —1/2 (o) - up tends to orient
parallel to a magnetic field to reduce its energy.

On the right panels of figures 9.8 to 9.11, the direction of the spin-orbit fields £2(k) is shown,
while a color-code is used to show its magnitude [Q2(k)|. For legibility reasons, in the right
panel the k-points are not chosen as dense, thus the color-codes are slightly different.

The figures 9.8 and 9.9 display the spin-orbit fields on the Fermi surfaces of the (111) and
(001) copper and gold films. In analogy to the symmetric films, the innermost state is a
surface state which decays exponentially in the film, but, in contrast to the symmetric sur-
faces, the asymmetry leads to the suppression of the second surface state originating from
the second surface of the film. The splitting of the surface state therefore corresponds to the
Rashba splitting purely induced by spin-orbit coupling. As expected from the theoretical
considerations in section 9.1.1, the z-component of the spin expectation values vanishes for
these two states and the spin is oriented perpendicular to the k-vector on the Fermi surface.
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Figure 9.8.: Spin-orbit fields €2(k) in mRyd of Cu (111) films consisting of 5, 7 and 9 layers and
an additional layer of Zn. In the left column, the splitting in energy of the split states
on the Fermi surface is demonstrated, corresponding to |€2(k)|. Note the logarithmic
scale of the color code. Furthermore, the direction of £2(k) is visualized in the right
column; the length of the arrows is chosen to be the same for all k. The largest fields are
found for some states close to the boundary of the Brillouin zone. Apart from that, the
Rashba-splitting of the surface states leads to high (absolute) values of (k). Note that
the absolute scale of the left and the right panels slightly differs; for a better visualization,
the k-point set was chosen less dense in the right panel.



164 9. Effects of spin-orbit coupling in noble metal thin films

5 layers Au + 1 layer Zn

Figure 9.9.: The same figure as in figure 9.8 but for gold (111) films with an additional layer of Zn.
Similar as for the copper films, strong fields are found for the surface states as well as
for some states in outer parts of the Brillouin zone. The maximal calculated values of
|2(k)| are approximately four times larger than those obtained for copper.
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AE[mRyd] AFE[meV]

Cu 5Cu+1Zn 241 32.79
7Cu+1Zn 2.23 30.34
9Cu+1Zn 2.15 29.25

Au 5Au+1Zn 8.53 116.1
7Au+1Zn 9.99 135.9
9Au+1Zn 10.33 140.5

Table 9.5.: Splitting of the surface states for copper and gold (111) films. In order to break the
inversion symmetry, one layer of Zn has been added on one side of the film. A E hasbeen
determined for the k-points in the direction of k,,. However, the isotropic nature of the
Fermi surface close to center of the Brillouin zone yields the splitting to be independent
of the direction chosen for its determination.

This is shown in figure 9.12 at the example of the film with 7 layers of copper and one layer
of Zn; S, and S, are presented as a function of the angle in the k,-k,-plane, starting from
the k,-axis in clockwise direction. The picture is the same for the surface states of all copper
and gold films.

The exact values of the Rashba-splittings are given in table 9.5, calculated at kg = (0, k) for
the kr with smallest absolute value |kp|, i.e., the innermost ring®. The calculated Rashba-
splitting of gold, table 9.5, agrees very well with experimental results obtained within angle-
resolved photoemission spectroscopy; splittings between 110 meV [109] and 150 meV have
been measured. For copper, the splitting is approximately four times smaller than for gold,
and therefore probably at the edge of the resolution of photoemission spectroscopy; at 30
K, a bandwidth of about 30 meV has been measured [86], which is expected to be due to
phonon-scattering. Of course, the origin of the broadening in experiment cannot be iden-
tified exactly and might be a mixture of different effects.

We will continue the investigation of the spin-orbit fields presented in figure 9.8 and 9.9.
Although we observe relatively strong fields for the surface state, the largest splittings AE =
|€©2(k)| are found for some k-points close to the outer boundaries of the Brillouin zone. The
reason for this strong increase towards the boundary of the Fermi surface still has to be
understood. Whereas the splitting of the surface state, i.e. the Rashba-splitting, is expected
to remain almost constant with varying film thickness, the splitting of the bulk states is
expected to decrease, since in the limit of very thick films the boundary condition should
play a minor role and the inversion-symmetric bulk result should be recovered. However,
it is difficult to deduce this from our data; the positions of the rings on the Fermi surface
strongly change with varying film thickness, which makes a direct comparison difficult. An

Because the surface band is practically isotropic in k, the Rashba-splitting is almost constant on the whole
ring.
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Figure 9.10.: The same figure as in figure 9.8 but for copper (001) films with 5 and 7 layers and an
additional layer of Zn. Largest fields are observed for some states in the outer parts of
the Brillouin zone, originating from the Zn layer.

investigation of thicker films probably would be helpful for a better analysis.

Considering the direction of the spin-orbit fields, as expected we find them to be in the plane
of the Fermi surface for the surface states; however, departing from the center of the Fermi
surface, the z-component gains importance, but there are no states which completely point
out of plane. The z-component is always smaller than the parallel components. A compar-
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Figure 9.11.: The same figure as in figure 9.10 but for gold (001) films with 5 and 7 layers and an
additional layer of Zn. The spin-orbit fields are slightly larger than those found for the
gold (111) films. The states with a dark blue color in the left panels show a very large
splitting, but are not included in the calculation of (k). They do not contribute to
the D'yakonov-Perel' mechanism of spin dephasing, because the necessary condition
of the splitting to be smaller than the energy spread of the wave packet is not fulfilled.
We have attributed to them the minimal obtained value of |€2(k)| for visualization
purposes. These states are not shown in the right panels.
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ison of the directions of £2(k) reveals a difference between the gold and the copper (111)
films; while for the copper films all spin-orbit fields of neighboring rings point in a simi-
lar direction, for gold this is not the case; there are rings among the bulk-like states whose
spin-orbit fields point in the opposite direction compared to the neighboring ones.

For the copper film consisting of 9 layers, fluctuations of the direction on one of the rings
are observed. These are probably of numerical origin, because the absolute values of 2(k)
at these k-points are very small and therefore can be neglected.

So far, we have studied the spin-orbit fields at the Fermi surfaces of the (111) films. Now,
we proceed with the (001) case. The results are presented in figure 9.10 for films with 5
and 7 layers of copper and one layer of Zn, and figure 9.11 for gold films also covered by
one layer of Zn. One important difference compared to the spin-orbit fields of the (111)
films is the lack of surface states, for which [€2(k)| was relatively large. Both for copper and
gold, |Q2(k)| is small for the states close to the center of the Brillouin zone, decreases when
going to larger |k|, but strongly increases again when approaching the outer boundaries of
the Brillouin zone. Considering [€2(k)| for the copper (001) films, maximal values are ob-
served for states, which do not appear in the Fermi surfaces of the symmetric films and
must therefore originate from the layer of Zn. A calculation of the layer-resolved density
at some k-points of these bands has confirmed this assumption, because these states have
been found to be located at the Zn layer. In order to exclude that the large splitting is due
to the spin-orbit coupling of the Zn atoms, we have repeated our calculations neglecting
the spin-orbit coupling of Zn and found similar results. These states are also present in the
Fermi surfaces of the gold films, they are shown in the left panels of figure 9.11 in dark blue.
They exhibit a much larger splitting than for the copper films of the order of 40 mRyd, due
to the stronger spin-orbit coupling for gold. The splittings are so large, that we do not show
|€2(k)| for these k-points and just attributed to them the minimum value of |Q2(k)| for vi-
sualization purposes. Therefore, they are missing in the right panels. The neglect of these
states in the calculation of (k) is justified regarding that the D'yakonov-Perel' mechanism
of spin dephasing only takes place, if the energy spread of the wave packet is larger than the
splitting A E. This condition cannot be fulfilled for these k-points.

Comparing the direction of the spin-orbit fields of the (001) surfaces to thoses of the (111)
surfaces, a similarity can be detected; most states tend to point in the k,-k,-plane, although
spin-orbit fields with a non-vanishing z-component can be found especially for the states
in the regions close to the boundaries of the Brillouin zone.

9.3.2 Estimate of D'yakonov-Perel spin-dephasing times

We can now use the spin-orbit fields calculated in the last subsection to roughly estimate
values of the D'yakonov-Perel' spin-dephasing times 75 with formula (9.14). Therefore, the
spin-orbit fields are averaged over the Fermi surfaces, in which the states in the outer part of
the Fermi surface, originating from the Zn layer has been neglected. The localization of the
states on the Zn layer has been checked by calculating the layer-resolved density of states
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Figure 9.12.: Spin expectation values S, and S, of the Rashba-split surface states of a film consisting
of 7 layers of Cu and one layer of Zn as function of the angle ¢ that describes the
deviation from the ky-axis in clockwise direction. Whereas in the left panel the spin
expectation value of the innermost surface state which is higher in energy is shown, in
the right panel S, and .S, of the lower-lying Rashba-split surface state are presented.
The expectation values of the two states are opposite to each other. As expected, the
expectation value S, vanishes for the surface states; this is not the case for the bulk
states as can be seen from figure 9.8.

p.(Er) integrated over the unit cell, hence
2
pulBe) = [ dr @)l (9.17)

Contrary, the scattering times 7 has been obtained by averaging the momentum-relaxation
times 7,_* over the Fermi surfaces for the corresponding symmetric films without spin-orbit
coupling. This is in the spirit of the D'yakonov-Perel theory of spin dephasing, since the
momentum-scattering time is separated from the spin-orbit induced splitting. The results
are presented in table 9.6 for the (111) surfaces and in table 9.7 for the (001) surfaces. For
the (111) surfaces, we have additionally calculated the spin-dephasing times which are pro-
voked by the splitting of the surface state only. Since this splitting is largest (if Zn states
are excluded), the spin-dephasing times T5™" are much smaller than the total times T5. As
expected, the spin-dephasing times for the gold films are much smaller than for the copper
films, because of the much stronger spin-orbit coupling, i.e. larger spin-orbit fields. This
difference is much more pronounced for the (111) than for the (001) films.

Generally, we can state that the spin-dephasing times are much shorter than the momentum-
and spin-relaxation times, calculated in section 9.2; the D'yakonov-Perel mechanism of spin
dephasing is very efficient for these thin films. Considering the dependence on impurity
concentration, the spin-dephasing time behaves inversely from the spin-relaxation time;
while 77 decreases with raising concentration, 75 decreases. The ratio of the spin-dephasing
versus the spin-relaxation time can be estimated using eq. (9.14) together with the Elliott-
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7[ps] Q[mRyd] Qwf[mRyd] 7T5[ps] 5wt [ps]
Cu 5layers (+1Zn) 0.623 0.665 2.41 8.48-103  0.648-1073
7 layers (+ 1Zn) 0.882 0.528 2.26 9.53-103  0.756-1073
9layers (+1Zn) 1.026 0.400 2.15 14.3-1073 1.241-10°3
Au S5layers (+1Zn) 0.492 2.69 8.58 0.658-107% 6.47-107°
7 layers (+1Zn) 0.745 2.13 10.03 0.694-10"3 3.12-10°°
9layers (+1Zn) 0.934 1.57 10.37 1.015-103 2.33-10°°

Table 9.6.: Spin-dephasing times 75 in ps per one atomic percent induced by adatoms on the
Cu and Au (111) surfaces. While 7 is the average of the momentum-scattering
times over all states of the Fermi surfaces for symmetric films, the spin-orbit
fields €2 are averaged over the Fermi surfaces of the asymmetric films, covered
by one layer of Zn. Additionally, the averages of the spin-orbit fields over the
surface states only Q°f are given; they yield spin-dephasing times 75" which
are understood to be exclusively induced by the Rashba splitting of the surface
states.

Yafet theory, according to which T} ~ 7/ [b|®, hence
L Q)
_~ (9.18)
Lo

Since neither the spin-orbit field (€2) nor the Elliott-Yafet parameter || depends on the im-
purity concentration ¢ and 7 ~ 1/c, the ratio T} /T is expected to be proportional to 1/c2.
Furthermore, analyzing the dependence of 7 on film thickness, for all considered films an
increase of 7 and a decrease of the spin-orbit field €2 with raising film thickness can be ob-
served; except of the Cu (001) films this behavior leads to an increase of the spin-dephasing
time as a function of film thickness. For the (001) Cu films, which are obviously not follow-
ing this behavior, the increase of 7 'wins' over the decrease of €2.

Comparing the spin-dephasing times for the (001) surfaces with that of the (111) surfaces
we find very similar values of 75 for the thinnest Cu films; for Au, the spin-dephasing times
for the (001) surfaces are approximately twice as large as those found for the (111) films.
However, the spin-dephasing times calculated here are understood to be only a rough esti-
mate; for accurate results, a kinetic equation has to be solved.

9.4 Conclusion

In this chapter spin-orbit coupling effects on noble metal surfaces of finite films have been
investigated. We presented calculations both for symmetric and antisymmetric (111) and
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7[ps] Q[mRyd] Ts[ps]

Cu 5layers (+1Zn) 0.600 0.67 8.68-1073
7layers (+1Zn) 0.793 0.63 7.45-1073
Au S5layers (+1Zn) 0.480 1.917 1.33-1073
7layers (+ 1 Zn) 0.657 1.498 1.59-1073

Table 9.7.: Spin-dephasing times 75 in ps per one atomic percent induced by adatoms on the
Cuand Au (001) surfaces. Similar as for the (111) surfaces, 7 is the average of the
momentum-scattering time of all states on the Fermi surfaces for the symmetric
films, while the spin-orbit fields 2 are averaged over the Fermi surfaces for the
asymmetric films, covered by one layer of Zn.

(001) films. Whereas for the symmetric films similar mechanisms of spin relaxation as in
the investigated bulk materials occur, see chapter 7, in the case of systems without structure-
inversion symmetry different mechanisms yield to spin-relaxation. Therefore, in the first
part of this chapter we discussed the special form of the spin-orbit Hamiltonian for systems
without structure-inversion symmetry and its consequences on the bandstructure. The in-
terplay of spin-orbit coupling and the lack of inversion symmetry leads to the Rashba effect,
i.e. the splitting of (surface) states. As a consequence, spin dephasing via the D'yakonov-
Perel' mechanism occurs. In contrast to the Elliott-Yafet mechanism, present in systems
which are invariant under inversion, the D'yakonov-Perel' mechanism predicts long spin-
relaxation times when large momentum-scattering rates are obtained. Spin dephasing is
caused by a precession of the spin around a local magnetic field, the spin-orbit field 2(k),
arising by the spin-orbit induced (energy)-splitting of states.

Before discussing our numerical results for the asymmetric films, we present calculations
for symmetric films, for which, similar to the investigated bulk systems in chapter 7, all
states k on the Fermi surface are two-fold degenerate. For copper and gold films oriented
in [111] and [001] direction, the Elliott-Yafet parameter |bk|2 as well as its averages over the
Fermi surface [b|” have been calculated. We have found strong differences between the two
surface orientations. Largest spin-mixing parameter have been found for the two surface
states. In contrast, for the (001) surfaces, where surface states are lacking, we have calculated
extraordinary high values of |by|* for some states k of the Fermi surface, close to the outer
boundary of the Brillouin zone. These k-points, called spin hot spots, are due to band anti-
crossings, and for the gold films values up to |by|* ~ 0.5 have been found. The Elliott- Yafet
parameters are strongly enhanced compared to the values obtained for the bulk materials.
The enhancement is much larger for copper, where it amounts to a factor of about 7, than
for gold, for which the ratio |bsg|” / [byui|* ~ 1.5 for the (111) surfaces. For the (001) sur-
faces, approximately two times larger values are obtained than for the (111) surfaces.
Furthermore, for the symmetric films we have considered scattering processes at self-adatoms,
i.e. Cu adatoms on top of copper films, and gold adatoms on gold. We have calculated both
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spin-conserving as well as spin-flip lifetimes. Whereas the momentum-relaxation times
for the copper and gold films slightly increase with increasing film thickness, the spin-flip
lifetimes 77 exhibit a strong decay. Of course, the spin-flip lifetimes calculated for gold
are much shorter than those on copper. The ratios 77/, i.e. the number of spin-conserving
scattering events per one spin-flip process, strongly decrease with increasing film thickness;
obviously, for the thinner films, spin-flip scattering is disadvantaged by the large hybridiza-
tion of the two surface states from the two sides of the film. However, the trend found for
the calculated film thicknesses will not necessarily continue for thicker films.

The calculation of spin-conserving and spin-flip lifetimes for the (001) films has been oc-
curred to be numerically difficult, since the precise integration over the Fermi surface re-
quires a dense mesh of k-points; the reason are anti-crossings of bands, yielding very local-
ized spin hot spots.

For both surface orientations a reduction of symmetry by a factor of two is found for the
spin-relaxation times 77, while the full symmetry is kept for the distribution of 7. Hence,
for the (111) surfaces, the 12-fold symmetry of the Brillouin zone for 7 is lowered to a 6-
fold symmetry for 7} i, and for the (001) surfaces, a 4-fold symmetry for 77 i instead of a
8-fold symmetry of 7y could be verified.

A comparison of the lifetimes averaged over the Fermi surfaces of the two orientations for
copper reveals much longer spin-relaxation times for the surfaces oriented in [001] direc-
tion. The reason for that is the lack of surface states that results in high scattering. For the
gold films, deviating results for the two thicknesses are obtained due to the appearance of
spin hot spots.

In the second part of this chapter we have investigated effects of spin-orbit coupling occur-
ring for copper and gold films, where an asymmetry is introduced by covering them with
one layer of Zn. The break of symmetry results in a splitting of states, lifting the degeneracy
of all k-points on the Fermi surface. For the (111) surface state, the splitting corresponds to
the Rashba-effect; the corresponding spin-orbit fields 2y for the surface states are in-plane.
In contrast, for the bulk-like states all three components of 2 are not negligible, although
the z-component (out of plane) is smaller than the in-plane components. The value of the
Rashba-splitting calculated for the Au (111) surface states agrees very well with experimen-
tal data; the Rashba-splitting of copper is four times smaller and so far could not be resolved
in photoemission spectroscopy.

High absolute values of spin-orbit fields €2y are found for the (111) surface states and for
some states at the outer boundaries of the Brillouin zone, both for the copper and the gold
films. These states have their origin in the Zn layer.

In (001) films, the lack of surface states leads to small values of €2y for the states close to the
center of the Brillouin zone. Highest fields are found for states at the outer border of the Bril-
louin zone. For the gold (001) films, some of the states exhibit giant splittings. These states
have not been taken into account in the calculation of spin-orbit fields, since the splittings
are too large to account for the D'yakonov-Perel' mechanism of spin-dephasing. Further-
more, a calculation of a layer-resolved density of states has revealed that they are located at
the Zn layer just as in the (111) films.

We expected the splitting of the bulk states to decrease with increasing layer thickness, even-
tually vanishing as the sample becomes bulk-like at large thickness. Whether this is the case
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could not be clearly deduced from our results, since relatively strong changes of the position
of the states on the Fermi surface are observed. An investigation of thicker films would be
interesting.

Finally, we have provided rough estimates of spin-dephasing times 75 for (111) and (001)
films. Therefore, we have averaged the spin-orbit fields over the Fermi surfaces, exclud-
ing states which are localized at the Zn layer. On the other hand, the average momentum-
relaxation times have been obtained by averaging the scattering rates 7,_! induced by scatter-
ing at self-adatoms on symmetric films. We found very small spin-dephasing times, much
smaller than momentum- and spin-relaxation times. An accurate calculation of the spin-
dephasing times remains for future work.






CHAPTER 10

Conclusion

In this thesis, we pursued three main goals: First, we systematically investigated momentum-
and spin-relaxation times due to impurity scattering in the noble metals copper and gold.
Secondly, we studied extensively the lifetime reduction of surface-states induced by scatter-
ing at adatoms and impurities in the first and second surface layers of the (111) surfaces of
copper, silver and gold. Finally, the third aim of this work was to combine the two previous
aspects and investigate the effects of spin-orbit coupling on scattering at the noble-metal
surfaces copper and gold.

In all our calculations we used the KKR-Green function method for electronic structure cal-
culations, which is particularly suited for the numerical treatment of scattering processes
because of its multiple scattering ansatz.

Spin relaxation in copper and gold bulk

The first step on our way to calculate momentum- and spin-relaxation times was the inte-
gration of spin-orbit coupling in the KKR-formalism and its implementation in the code.
We calculated the spin expectation values and spin-mixing parameters on the Fermi sur-
faces and solved the problems occurring for degenerate states. We showed that the resulting
spin-mixing parameter for copper and gold agree well with those given in the literature.

In order to obtain momentum- and spin-relaxation times, the Lippmann-Schwinger equa-
tion for impurity scattering including spin-orbit coupling was solved and the scattering ma-
trix in momentum space was calculated.

The inversion symmetry of the fcc bulk metals copper and gold leads to a degeneracy of all
k-points on the Fermi surface. Therefore, spin relaxation is induced by the Elliott-Yafet
mechanism and impurity spin-orbit coupling. We have provided a systematic study of
momentum- and spin-relaxation times induced by scattering at the 3d, 4sp, 4d, 5sp and
5d impurities in copper and gold hosts. The influence of the spin-orbit coupling in the
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host has been investigated, showing that the spin-orbit induced effects are large for a gold
host and small for a copper host. In addition, this finding helped to explain why simi-
lar momentum-relaxation but deviating spin-relaxation rates for copper and gold hosts are
found. The spin-relaxation times for the gold host are much shorter than those calculated
for the copper host.

Furthermore, strong qualitative differences between the trends for momentum- and spin-
relaxation times have been found. While momentum-relaxation rates are high for the d
and the sp impurities, the trends for spin-relaxation rates exhibit only a maximum for the
d impurities, and not for the sp scatterers. This behavior is much more pronounced for
the copper host than for the gold host, since the spin-relaxation rates in gold are highly
influenced by the spin-orbit coupling of the gold host. The different behavior of the spin-
conserving and spin-flip scattering rates for the d and sp scatterers could be explained with
the help of a simple model, relating the spin-relaxation rates to the Wigner delay times, ac-
counting for the time the wavepacket requires for the scattering process. Larger delay times
are found for the d scatterers, while short times for the s and p impurities have been ob-
tained. Hence, we concluded that resonant scattering is very important for spin relaxation,
as the electrons spend much more time at the d-resonance than at the sp impurities and
therefore are exposed a much longer time to the impurity spin-orbit coupling.

When investigating the ratio of spin-relaxation and momentum-relaxation times, i.e. the
number of momentum-scattering processes per one spin-flip we find large differences be-
tween the copper and the gold host. Whereas in the copper host ratios between 10* for light
impurities and 3 for the chemically similar elements Ag and Au have been found, in gold
we observe ratios within a much smaller range, reaching from 30 to 3. Thus, for gold the
spin-orbit coupling effects of the host prevails - spin-relaxation is dominated by the Elliott-
Yafet mechanism.

The investigation of correlated scattering by impurity dimers completes the study of spin-
relaxation in bulk materials. We showed that correlated scattering effects are important
only for the d impurities situated at nearest neighboring sites. For these, scattering times
are enhanced up to a factor of 1.5 compared to scattering at independent impurities.

Lifetime reduction of surface states

The second goal of this thesis was to study the reduction of surface-state lifetimes induced
by scattering at adatoms and impurities in and below the first surface layer of copper, silver
and gold (111) films. Therefore, the spin-conserving scattering matrix in momentum-space
was calculated for all states on the Fermi surface. Integration over the Fermi surface then
yields the surface-state lifetimes and the momentum-relaxation times for the bulk states.
The analysis of the scattering rates at the 3d and the 4sp impurities in and on a copper film
showed that scattering at adatoms qualitatively strongly differ from scattering at impurities
in and below the surface. The perturbation caused by an adatom is much stronger than that
which is caused by replacing a copper atom by another element. Furthermore, the extent of
the adatom into the surrounding vacuum plays a big role.

In order to understand the trend observed for the scattering rates at adatoms, we have made
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an orbital-momentum resolved calculation. We found that for the d scatterers a constructive
interference of the s- and the d-channel takes place, whereas for the sp scatterers the s- and
the p-channel interfere destructively. This ansatz could be confirmed by a calculation of the
Friedel oscillations.

The dependence of the surface-state lifetime on the film thickness has also been examined.
The surface-state lifetimes of the innermost surface state decrease with increasing number
of layers, which is mostly due to an energy shift of the states at the two surfaces, as well as due
to the reduction of the overlap of the surface states with the impurity for larger thicknesses,
when the state can penetrate more into the bulk.

However, in the calculation of surface resistivities, which also have been extracted from the
scattering matrix, this effect is hardly seen, because this quantity entails a further averaging
over all states, surface- and bulk-like states.

To complete the picture, surface-state lifetimes induced by scattering at magnetic adatoms
on the copper film have been studied. As expected, we observed a double-peak structure
as the impurity atomic number is varied, which is due to the split d-resonance crossing the
Fermi level.

Spin-orbit induced effects on copper and gold thin films

The third goal of this thesis was the investigation of spin-orbit induced effects occurring in
copper and gold films with different surface orientations. We have considered symmetric
thin films as well as thin films where the inversion symmetry was broken by replacing one
layer of Cu/Au by one layer of Zn. The prevailing spin-relaxation mechanisms are com-
pletely different for these two kinds of systems; whereas in the symmetric systems all states
are twofold degenerate (similar as in the bulk samples) and therefore spin relaxation via the
Elliott-Yafet mechanism takes place, the break of symmetry for the asymmetric slabs lifts the
degeneracy and leads to a splitting of all states on the Fermi surface; then, the D'yakonov-
Perel' mechanism leads to spin dephasing.

For the symmetric films, we started with the discussion of the Elliott-Yafet parameter. For
all film thicknesses and both surface orientations ((001) and (111)) we have calculated spin-
flip parameter which are enhanced compared to the values that we have found for the bulk
systems. Whereas for the (111) surfaces largest parameters have been found for the surface
states, anticrossings of bands on the Fermi surfaces of the (001) films lead to spin hot spots
close to the Brillouin zone edge and very large values of |b°. This effect is much larger for
the gold than for the copper films.

Furthermore, the study of momentum- and spin-relaxation times due to scattering at adatoms
on top of the (111) surfaces revealed a strong dependence on film thickness; whereas
momentum-relaxation times increase with film thickness, spin-relaxation times show a
strong decrease. This behavior has been found for copper and for the gold films. Consid-
ering scattering rates at adatoms on (001) surfaces, we found strong differences for copper
and gold. For the copper films, the lack of the surface states for this surface orientation re-
sults in much longer spin-relaxation times. In contrast, the strong spin hot spots appearing
on the Fermi surfaces of the gold films compensate the lack of surface states.
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In asymmetric films, the splitting of states caused by the lack of inversion symmetry together
with spin-orbit coupling lead to the formation of local effective magnetic fields, the so-called
spin-orbit fields. Spin dephasing is obtained by precession of the electron spin around these
local spin-orbit fields together with momentum scattering, resulting in a change of the pre-
cession axis after each scattering event. We have calculated the spin-orbit fields for copper
and gold (001) and (111) films. We found a Rashba-splitting of the surface states which
agrees with experiment and previous calculations. In addition, we found significant con-
tributions from the bulk-like states for both orientations, especially in the vicinity of the
Zn-like states.



APPENDIX A

Some details on the KKR-formalism

A.1 Derivation of the Dyson equation for an arbitrary refer-
ence system

In order to derive the Dyson equation for an arbitrary reference system, we start from the
algebraic Dyson equation (3.47)
GUL(E)=glb(EY+ Y gltn(EVupm Gl (E) (A1)
nNLIILNI
where the g7, (E) represent the free space structure constants. In matrix notation, the
above equation can be rewritten as

G(E) = g(E) + g(E)t(E)G(E). (A.2)

Since this equation is valid for an arbitrary V(r), i.e. t(E), the same holds for a reference
system of potentials with V™*f(r) (to be given in detail below) placed at the lattice sites of
the crystal

G(E) = g(E) + g(E)t*(B)G™(E). (A.3)
Equations (A.1) and (A.3) can be rewritten as
g(E)" =G(E)" -(E) (A4)
and
g(E) " = (G™(E)) " - (D), (A.5)

respectively. Combination leads then to

(G(E)) ™ = (G"™(B) ™ - (¢(E) - t“/(E)), (A.6)
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and a simple transformation to the sought-after Dyson equation
G(FE) = G*'(E) + G*'(E)At(F)G(FE), (A7)

with
At(E) =t(E) - t°{(E). (A.8)

A.2 Practical calculation of the band structure

To obtain the band structure £/(k), i.e. the solution of eq. (4.45) or (4.49), respectively, the
problem is transformed to an eigenvalue problem. Therefore, in a first step eq. (4.49) is
rewritten as

I’ _1 rl,L/ J// l
> [oue (A(m) -Gt s B | At () <0 a9)

w' \L'L"

separating the scattering properties of a single atomic potential described by At% , ,(E) from
the structure described by the lattice site R and the structural Green function G}7" (k; E).
Interpreting the vector Ath,, (E) cﬁ’L, as an eigenvector of the system belonging to the

eigenvalue
Ak, Ex) =0, (A.10)

eq. (A.9) can be reformulated as
(AtTHE) - G*(k; B)) At(E)ck = Ak, Bx) At(E)ck. (A.11)

The matrix (At~ (F) - G* (k; E)) is the so-called KKR-matrix, since it contains all infor-
mation about the band structure £(k) of the system.

In order to calculate the band structure, it is sufficient to determine the eigenvalues A (k, Ey )
of the KKR-matrix and then search the pairs (k, £') for which one of the eigenvalues be-
comes zero.

A realization of this method for systems without spin-orbit coupling was realized by P.
Zahn [70]. In his implementation, the non-hermitian KKR-matrix [At~1(E) - G* (k; E)]
is transformed to a hermitian matrix in order to obtain real eigenvalues. Then, the recip-
rocal space vector k is kept constant while the energy is varied. For each energy point the
eigenvalues \(k; E') are calculated and the number of negative (or positive) eigenvalues is
counted - whenever one of the eigenvalues changes its sign, the number changes and a point
of the band structure is obtained. For more information about the transformation of the
KKR-matrix and other calculational details see [70].

However, the procedure becomes complicated for brute-force application whenever compli-
cated structures such as band crossings occur. In this case, it might be that two eigenvalues
change their sign, but the number of positive and negative eigenvalues stays the same (see
figure A.1).

Additionally, for systems including spin-orbit coupling and/or taking the non-spherical
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Figure A.1.: Eigenvalues of the KKR-matrix of Au bulk, full potential calculation without spin-orbit
coupling, as a function of reciprocal space vectors k in 111-direction. Top left: Real and
imaginary part of the eigenvalues at E fixed to E = -3.83¢V. The crossing of bands
leads to the intersection with the x-axis of two eigenvalues in one interval [k, k + Ak].
Additionally, at k£ ~ 0.365, the real part of A becomes zero while the imaginary part
does not. Top right: Real and imaginary part of exact and extrapolated eigenvalues.
Bottom: Real and imaginary part of exact and extrapolated eigenvalues restricted to
small eigenvalues. The extrapolated eigenvalues agree very well for intervals, in which
the run of the curve is almost linear, for more complex curves a small deviation can be
seen.

contributions of the potential into account (full potential calculation) the transformation is
which transforms the ¢-matrix to a hermitian matrix is not obvious. Hence, the eigenvalues
are complex and both the real part and the imaginary part must be zero!.

The above reasons make it necessary to modify the method for band structure calculation
in order to overcome the above-mentioned problems. We developed a new, more gen-

"The real and the imaginary part of A\ might have exclusive zeros as can be seen in figure A.1.
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eral scheme to calculate the points (k, £) fulfilling the condition A(k, Ey) = 0, which is
sketched in the following:

We start by calculating the eigenvalues A(k, F) for a given pair of (k, E), keep the energy
E constant while varying the reciprocal space vector k. To obtain the eigenvalues at the
next k-point (k + Ak) there are two possibilities: Either the eigenvalues can be calculated
directly by diagonalizing the KKR-matrix or first order perturbation theory can be used to
extrapolate the eigenvalues at (k+ Ak, F') from the eigenvalues calculated at (k, E). Doing
both, every eigenvalue at the new k-point (k+Ak, E) calculated exactly can be traced back
to the corresponding eigenvalue at k (by virtue of the extrapolation) and all crossings of the
eigenvalues with the z-axis can be easily identified.

For the second method, i.e. the extrapolation from k to k + Ak we expand G*(k; F) for
small Ak around k writing

G* (k+ Ak; B) ~ G* (k; E) + Ak - viG* (k; E). (A.12)

In the following it must be distinguished whether one of the eigenvalues at (k, F') is de-
generate or not. We will first discuss the procedure for the non-degenerate case, and then
continue with degenerate eigenvalues. First order perturbation theory for non-hermitian
matrices is used as developed in [112, 113]. The left and right eigenvectors of the KKR-
matrix (At~1(E) - G" (k; E)) corresponding to A(k, E') = 0 are defined as

(AH(E) -G (k E)) |¢/\,k> =0 (A.13)

or

(or] (AH(E) -G (K E)) =0, (A.14)
respectively. The right eigenvector is related to the coeflicients ¢ following
|pax) = At(E)cy. (A.15)

The projector P, i of the right and the left eigenvector is then calculated as

P = |oxxc)(da]- (A.16)

According to the perturbation theory for non-hermitian matrices developed in [112, 113],
the extrapolated eigenvalues at k + Ak for non-degenerate eigenvalues \ are given by

A.17
i (A.17)
where the derivative dG"(k; E)/dk is calculated in the direction of Ak.

If the eigenvalue ) is n-times degenerate, there are n linearly independent right and left
eigenvectors

Ak + AK) = A(K) + |AK| Tr [pk,kw] ,

’(ﬁé\yk),((&)\_’k‘ 5 1= 1, n. (A.18)
In this case, a generalized matrix of the product of the ith right eigenvector and the jth left
eigenvector can be defined

Pi\];k = WAk)( ~j)'\‘k|' (A.19)
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Analogously to perturbation theory for non-degenerate eigenvalues for hermitian matrices

(for example see [114]) and the above result for non-hermitian matrices, the first order cor-

rection of the eigenvalues Ay are obtained by calculating the eigenvalues /' of the quadratic

n times n-matrix

dG* (k; E)
dk

Finally, we obtain for the eigenvalues at k + Ak

Tr [P;{k ] , i,j=1n. (A.20)

Mk + Ak) ~ M(Kk) +|Ak| N, i=1,n. (A21)

Since the eigenvalues in general are complex (because of the non-hermiticity of the KKR-
matrix), in a first step we look for the roots of the imaginary part and then check whether
the real part is zero or not. If both the imaginary and the real part of the eigenvalue shows a
zero-crossing, i.e. change their sign in the interval [k, k + Ak], alinear extrapolation allows
to estimate the k-vector K., for which the condition A = 0 is fulfilled.

For the case of non-degenerate eigenvalues k., is given by

ImAy ) Ak
Im [ Tr [Py 22 ] [AK]

kcross i k - (A22)

whereas for n-times degenerate eigenvalues the degeneracy might be lifted and maximally
n different crossing points k.,.ss can be obtained

Im\, Ak

kcrosswk_ir'i | =
Im\; |AK| !

1,m. (A.23)
In order to obtain a sufficient accuracy the cluster of reference atoms for the calculation of
G" (k; E) has to be chosen large. Otherwise the crossing of the real and the imaginary part
with the x-axis differ considerably as is demonstrated in figure A.2 and table A.1. In table
A.1, the real part of the eigenvalue at the zero point of the imaginary part as a function of
the numbers of atoms in the cluster of the reference system for the example of gold at the
Fermi energy in [100] direction is specified. We see that the accuracy strongly increases
with the cluster size, while the value of the calculated k,oss shows only a small deviation.

Finally, in figure A.2 we show an example of a band structure calculation for gold bulk with-
out spin-orbit coupling as well as including spin-orbit coupling. While important changes
can be seen in the band structure for energies below the Fermi level, the value of the Fermi
wave vector K.,ss = Kk in the [100] direction stays almost the same.

A.2.1 The Fermi surface

The calculation scheme of the Fermi surface is very similar to the band structure calculation
as explained in the last section; the energy is fixed to £ = E'» while the k vector is varied.
Whenever one of the eigenvalues of the matrix (At~!(E) - G*(k; E)) becomes zero, one
point of the Fermi surface is obtained.
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Figure A.2.: Top: Eigenvalues of the KKR-matrix of Au bulk without spin-orbit coupling, as a func-
tion of reciprocal space vectors k in [100] direction at the Fermi energy for different
sizes of the cluster of the reference system. If the cluster size is chosen too small, (left
panel, 55 atoms in the cluster) the real and the imaginary part of the eigenvalues do
not cross the z-axis simultaneously. A large cluster size is necessary (right panel, 249
atoms) to obtain a good accuracy. Bottom: band structure for Au bulk without spin-
orbit coupling as well as including spin-orbit coupling in [111] (left panel) and [100]
(right panel) direction. Spin-orbit coupling lifts the degeneracy of some bands, and,
in the [111] direction leads to an anticrossing of bands. However, at the Fermi level
almost no difference can be detected.

Once the k-vectors ky obeying eq. (4.49) are found, the corresponding eigenvectors | ¢ -0 k. ) =
At (E)AYY, can be determined, which allow to obtain the coefficients ¢}#. In order to
identify the full wavefunctions )y (r) at the Fermi surface, the regular solutions R (r; E)
of the Schrodinger equation have to be calculated by solving the Schrodinger equation as
described in chapter 3, section 3.2 or 3.4, respectively.
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number of atoms in reference cluster Re A(Keross, Br)  Keross[ 27/a]

55 1.1-1073 0.887397
79 2.5-10™ 0.887114
135 7.3-107° 0.887036
249 4.2-1077 0.887025

Table A.1.: Real part of the eigenvalue A(Keyoss, Er) at the zero point of the imaginary part of
A(Keross, Er) asafunction of the numbers of atoms in the cluster of the reference system
for the example of fcc gold at the Fermi energy in [100] direction. The accuracy strongly
increases with the cluster size, while the value of the calculated kc;oss shows only a small
deviation.

A.3 The radial Lippmann-Schwinger equation for
non-spherical potential

The aim of this section is to derive the Lippmann-Schwinger equation for the non-spherical
wavefunction-components R} (r; E) of a system characterized by V'™ (r), which in the
following are to be understood as perturbation to a system characterized by V' (r) with cor-
responding components R;,; (; E'). The relations are not only valid for the impurity prob-
lem; they hold for two arbitrary systems with AV (r) = VimP(r) -V (r). However, since we
will apply them to the case of an impurity in a host, we address all variables of the perturbed
system with 'imp".

We start the derivation from the radial Lippmann-Schwinger equation valid for the radial
wave functions Rime( r; E), expressing it in terms of the radial wavefunction R (r; £') and
the Green function G(r,r’; E') of the host system and the difference in potential AV (r)

RI™(r; ) = R(r; E) + f d*r' G(r,v'; EYAV (¢ )RI™(r'; E) . (A.24)

Using the expansions

RM™(r;E) = ZRiL",‘E(r;E)YLf(r‘), (A.25)
Rp(r;E) = iRLIL("';E)Yy(’r‘), (A.26)
G(r,v';E) = g:GLLr(m*’;E)YL(f)YL,(f’) and (A.27)

AV(Y) = LELL:’AVL(W)YL(?’), (A.28)
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the above equation results in
S RL (3 E)Yy(F) = 3 R (r; B)Yu () +
iz iz

/dgr' > Y (P)Grpn(r,r's E)Ypn(7')

L/LII
Z AVLIH (7‘/)YL/// (’I:,) Z Rlllf,l,},),L(T,7 E)YLHH (’f’l), (A29)
LNI LH/I

which can be simplified to
S RIP(rs )Y (7) = > Ry (r; E) Y (7)+
7 7

f TIQdT, Z }/'Ll(f)GLILH(T7 ’f‘,; E)AVLHLHH(’IJ)RE?,BL(T; E) (A30)

LILITLr

The linear independence of the spherical harmonics finally leads to

RiLn,lg(r;E):RL/L(T;E)Jrfr'QdT’ Z GL/LN(T,T’;E)AVLHLW(T')R?,?L(T;E)

Lm
(A.31)
q.e.d..
Before closing the section, we will shortly express the scattering matrix Atz (FE) in terms
of the Ry (r; E). The scattering matrix Aty (F) is defined as

Atp(E) = f &*r Ry (r)AV (r) R (r) (A.32)
and thus
Mtu(E) = [ 'S R (0)Yur () 3 AV (0)¥in () 3 Bt (1) io (7)
- / r2dr S Ryop(r) AV ()RS, (). (A.33)
LT

A.4 The At}-Matrix
In this section it has to be proven that
A} (E) = / rdr R (r; E)AV™(r)R}'(r; E), (A.34)

by tracing this equation back to the definition of the atomic scattering matrices ¢/'( £) and
;" (E), thus to the definition

At (E) =t} (E) -t (E). (A.35)
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We proceed following Zeller [64]. Using the definition AV"(r) = V"(r) - V" (r) and the
property Gj(r,r'; E) = Gi(r',r; E), the radial Lippmann-Schwinger equations

R"(r;E) = jl(r;E)+/T’er’Gf(r,r';E)V""(r’)er""(r’;E)

Gi(r; E) +/7”2d7” R (r's BV (PG (v, 7 E)  (A.36)

and

R} (r;E) =5(r; E) + f r2dr’ G (r,r"s E)V(r" )R (r'; E), (A.37)
eq. (A.34) can be rewritten as
AtY(E) =
f r2dr [jl(r; E)+ f r2dr! R (i BYVS (7 ) GE(r 7 E)] V() RP (r E)

—fTQdT R (r; E)V(1) [jl(r;E) +fr'2dr’ Gi(r, r’;E)V"(r’)RZ”(T’;E)].

(A.38)
From that follows
At(E) :fr2dr (s YV ()R (1 E)
+[7"2d7’ [T'er’ Ry (r's E)VE (r) G (r',r E)V™(r) R (1 E)
(A.39)

—/Terjl(r;E)Vr’"(r)R;’"(r;E)
—/TQdT [T'er’ R (r; EYVY™(r)Gy (r,r"; )YV ()R} (1, E) .

The second and the forth term cancel; the first and the third term are just the atomic scat-
tering matrices t7'(E£) and ;" (E),

frzdr a(r; EYV*(r)R}(r; E) —erdr Ji(r EYVor(r)R)"™ (r; E)
() -t (E), (A.40)

At (E)

q.e.d.

A.5 Impurity scattering

In this section, we derive the relation of the impurity-wavefunction coefficients ,;>" to the
coefficients c}!; of the host crystal. As described in chapter 4, section 4.2, we start from the
Lippmann-Schwinger-equation 4.54

UP(r+ R E) =
Yk(r+RYE)+ ) f &Pr' G(r+R" 1 + R E)AVY ()™ (r' + R™)  (A.41)
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and insert the expansions of the wavefunctions as well as the Green function in terms of
spherical harmonics Y7, (7).

A.5.1 Atomic sphere approximation
In the atomic sphere approximation, the expansion in orbital components is

Y (r+ R E) = chmP“leP”(r;E)YL(f), (A42)

and

G(I‘ i Rn o+ Rn'.E) _
ZG@ nn(7 e E)YL(T)YL(fJ)énn’ + Z R® (r;E)GETIL;,(E)R’!L’,(r,;E), (A43)

LL’

where the first term is the solution of the homogeneous system (see e.g. section 3.3, eq. (3.44))
with

—ivVER/(r; E)H(r"; E) forr <r’
Gi(r,r's E) = N_ (i BYIL B) for < (A44)
~iVER,(r'; EYH,(r; E) forr > 1
The difference in potential is given by
AV™(r) = AV™(r) = VImPnr(r) = Vi(r) . (A.45)

Inserting the three eqs. (A.42), (A.43) and (A.45) in the Lippmann-Schwinger equation
eq. (A.41), the latter equation yields

Z AP R (1 E)YL(F) = Y. e R (ry B) YL (7)
L
+ Zfddr'[z G (ry 1" E)YL(R) YL (7)) 0 AV (r’)z A R o R (' B)Y ()
n’ L

+ 3 Ry E)YL(#)GPL(E)RY (s E)Y (7)) AV (') Y e cAmen’ pEne’ (0 BYY (7 |.
LL' L"
(A.46)

Integration over the angles d€)’ leads to

chmanlmpn(r; E)Y.(F) = ZcﬁLRf(r; E)YL(7)
o3 [ZG“% P YY) AV (1) B (1 )

+ 3 Ry (r E)YL(F)GEL (B)RE (r's E)AV™ (7)™ Ry™™ (1 E) |, (A.47)

LL
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or
ZL: o [R?“M(’r; E) - / r2dr’ G (r, 1" B)AV™ (') R (1 E)] Vo)
) ZL: e R (r: E)YL(7)
+ ; LZL:, Ry (r; B)YL(R) Gt (E)emem
f PR R (s EYAVY () R (5 B
(A.48)
respectively.

For the next step, we need the Lippmann-Schwinger equation of the radial wavefunction,
which we write in the form

Ri(r; E) = R™"(r; E) - f r2dr’ G (r 'y EYAVE () R™ ™ (r E) . (A49)

The right-hand side of eq. (A.49) is just the term in brackets of eq. (A.48). Replacing this
by R}(r; E), we obtain

e B (s E)YL(7) = 3 iy By (13 E)YL(7)
T L

+ 35 Rp(r; E)YL (PG (B / r2dr R (', E)AV™ (X' )R (1, E)
w LL'
(A.50)
Using the At-matrix, eqs. (A.34) and (A.35), the latter equation (A.50) further simplifies to
DA Ry (r E)Yi(F) =
L

S R E)YYL(7) + 3 S RE (s B)YL (F) G (E) ALY (B)eh™ . (A51)
L n' LL'

The above equation is fulfilled, if each coefficient satisfies

G =t 2 Y GEL(E)ALY (B)agt™ (A.52)
n' L'
or
S S (Spp0n — GEE(E)ALY (B)) o™ = gy, (A.53)
n' L'

respectively. Therefore, we finally obtain the sought-after expression for the impurity coef-
ficients

-1
Cicnipyn = Z (5LL’5nn’ - ZZ,/(E)AtIn’,(E))] CﬁlL" (A'54)

n L'
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A.5.2 Full potential

Dealing with the full potential entails a more cumbersome derivation of the relation be-
tween the perturbed and the unperturbed coeflicients cﬂp’” and ¢}, , although the deriva-
tion leads to a very similar expression as obtained in the atomic sphere approximation. The
enhanced complexity is due to the fact that scattering from one orbital with angular mo-
mentum L to another orbital characterized by L’ is no longer forbidden; therefore, we end
up with a non-spherical atomic scattering ¢-matrix ¢ 1,1/, corresponding to the expansion of
the potential in L and L' (V.(1)).

Hence, inserting the expression for the wavefunctions

Un(r+R") =Y Y (r E)Y (7)), (A.55)
LT

the potential
AV (r) = Y AV (") YL (7) (A.56)
7

and the Green function
G(r+R",r' +R"; F)
=—iVEY Ri(rs; EYH} (rs; B) + Y. Ry (v; E)GYY.(E) Ry (x'; E)
L

n’ LL'
=~iVE S Rp(re; E)Yo (i) Hpuy (s E)Yiu(75)

LLILH
3 Yl )Ry (r; EYGEL(E)Rywy (r's E)YLm(7)
nl LL!L/ILH/
(A.57)
into the Lippmann-Schwinger equation
PP (r+ R E) =ty (r + R E)
+> f &Pr' G(r+ R + R E)AV™ (£ )™ (r' + R™), (A.58)

which provides the basis for the derivation results in

> a "R (B E)Yp(7) = 3 i R (r )Y (7)

LL LL
N / Er' S Yo ()G (ror' EYYin (7)) S AV (7)Y (7)
L/LN L/H
>l R (5 B)Yion ()
LH/IL

£ f B S S R B)Y o ()G (B) Ry (11 E)Y o (77
TL, LILNI LIIL//II
S AV (P Y (1) 3 0 RIS (1 BYY o (7).
2, 24
(A.59)
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In analogy to the previous section A.5.1, eq. (A.44), we have used the abbreviation

G (' E) = —=iVE ZRL/L(n,E)HLuL(n,E) (A.60)

As already mentioned in chapter 4, in a first step the integration over the solid angles
dQ) is performed; the integral over the three spherical harmonics Y7/ (#), Y~ (7') and
Y (77) (or Ym (7#), Yimn (77) and Ymm (77) for the second summand) yields the Gaunt
coethicients C'pr iy (o Cro g i, respectively). Combining them with the potential
AV} (r) brings us to the definition of the potential AV}, (r)

ZCLL’L”AV (’I’) AV, LL’(,’J)' (A61)

"

With these simplifications, the Lippmann-Schwinger equation (A.59) results in

ZYU(T)ZC““D" Rpp"(riE) = ZYU(T)ZCkLRyL(r E)

DRAG [ P2 G (s B)AVE ()P R (11 B

LLI’L/II’
(A.62)
RO f 2dr Ry (7 )G (B R o (17 E)
A
S AV o ()0 BB (17 )

L

Since the spherical harmonics are linearly independent, the sum over L’ and the multipli-
cation with Y7/ (#) can be left out, and we obtain

Z Jimp, anErlEn(r; E) — ZCﬁLRz’L(T; E)
L

. f P2r S G (s B AV (5P RS (1 E)
LLIILINI

N Z f 2dr! R, (13 )G, (E) R o (175 E)

LLIIL!HLIIH

. s ’
S AV L (PSP RERT (7' E) . (A.63)

L

Similar as in the previous section A.5.1, we rewrite the Lippmann-Schwinger equation for

imp,n

the radial wavefunctions R},7"(r; E'), the regular solutions of the Schrédinger equation,
(see Appendix A.3, eq. (A.31)) as

Ry (r:E) = R™" (1, E) - f P2r Y G (s B) AV (7 ) RIS (' E) |
o
(A.64)
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It can be used to subsume the term on the left-hand side of eq. (A.63) with the term on the
right-hand side containing the single-site Green function, yielding

ci?ip’n (i E) = ZCkLRL'L(T E)

N Z f 2 dr! R2 (7 BYGE s (BY R (' E)

LL//LII/L//II
S AV L (1 Yelmpn’ pimbn’ (11 ) . (A.65)

L

The last term on the right-hand side contains the atomic scattering matrix
At = f 7208 S R (17 EYAV o () RIS (03 ED) (A.66)
LHIL//IIII

and hence equation (A.65) becomes
ElianL’L(T E) = Z(‘ AT

SN RE (s B)YGE i (B) A 6507 (AL67)

n' L LU'L!'"

The above equation is satisfied, if each summand of the sum over L fulfills

amen— o eSS G (B) AL A (A.68)
7LI LILN

A.6 Calculation of the Green function G' . L‘,”"”, at By

Although the impurity Green function G2 is well behaved at real energy B, its cal-
culation via the Dyson equation becomes problematic, as the host Green function has a
branch cut at real Er. A way out of this problem is to exploit the fact, that the Green func-
tion is analytic for imaginary energies.

The Green function at the (real) Fermi energy can be expanded in a Taylor series according
to

G™P(Ey) » G™(Ep +il') + (—i0)G™ (Ey +il) + %(—z‘F)ZGimP"(EF +il). (A.69)

For its evaluation we need the first and the second derivative of GG at the complex energy
Ep +iI'. A numerical approximation of the first derivation is given by

Gmp (B + 4T + 2) - G By +iT - 2)

Gimpr(EF + ZF) N .
z

(A.70)

>The Green function either of the unperturbed or the perturbed system is needed to calculate the impurity
coefficients c""p as well as the scattering matrix Ty and consequently the lifetime 7y.
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and of the second derivative by

GP(Ep +il + 2) - 2G"P(Ep +41') + G(Ep + 1T - 2)

G™"(Ep +il') » ;
z

(A.71)

At this point, the analycity of the Green function is required, because under this condition
it does not matter whether z is a real or a complex number. Choosing z to be real, the
two derivatives (and the Green function itself, too) can be calculated just with the Green
function at the three energies Ey +il', By +il" + z and Ep +iI" - z (lying on a line parallel
to the real energy axis).






APPENDIX B

Evaluation of LL - S in terms of real spherical
harmonics

In order to calculate the action of the three orbital-momentum operators L,, L_ and L,
on real spherical harmonics Y7,(7), the results of egs. (5.33), (5.35) and (5.36), namely the
action of the above operators on the basis set of complex spherical harmonics ), (), as well
as the transformations from one basis set to the other (egs. (5.38) and (5.39)) are required.
In matrix notation, these transformations become

|§/}m> = ZUmm’ D)lm’> or (Bl)

|yl7”> = ZUrTnm’

}/lm’) > (Bz)

respectively, where the matrices U and Ut are given by

i (-1

7 0 0 O] 1 s
i G

0 7 0 > 0

U= 0 0 [ETI Y 0 0 (B.3)

L (71)#1

0 7 0 7 ( 0)l

1 -1

7 0 0 0 NG

195
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and ) )
0 i 7 0
gio| o 0 w1 - 0 o0 | (B.4)
0o Lo g L Gt
(1% f 0 f !
V2 V2

These transformation matrices can be used to transform a matrix M from the basis set of
complex spherical harmonics (M, ) to that of real spherical harmonics (MY ) following

Z (YEm| ylml ) (ylm1| ]\;[ D)lmg> (ylm2| Yim’ )

ubMS U

mim=""mima~ m'ms

Z (UT)mlm ]\/17?117712 (UT)mzm’ : (BS)

mi,m2

]\4R <}/lm| AA/[ |}/lm’>

mm’ ~

Ny

We can now apply the three angular momentum operators L, L, and L_ on the real spher-
ical harmonics. Starting with L., we obtain

LzY;ﬁm = [Lzylrm - (_1)mLzylm] (B6)

[=mVi—m = m(=1)"Vim]

Sl sl

1
-mi —= [Vi-m + (=1)"Vim
\/i[yl, ( ) yl ]
= i Y,
and

[Lzyl,—m + (_l)mLzylm] (B7)

[=mimm +m(=1)" V]

Sl =Sl

m 1
= - -m -1m m
; \/5[371, (=1)"Yim]

= miY .
Therefore, the matrix (Y,,,| L.| Y}, ) becomes

<}/lm|Lz|Y’m’> =—im 611’5m,—m’) (B8)
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or, in matrix notation

0 0 il
i(l-1) 0
(Yim|Lz|Y2m’) = 0 . (B9)
0 —i(i-1)
_Zl O eee 0

Application of the raising operator for m > 2 leads to

L+Yl,—m = [ +yl -m (_l)mL+ylm]

Sl %\“&\“

[\/l(l + 1) +m(=m+ DV = (D)™ I +1) =m(m + 1)), m+1]

V2
m+1 _ 7(m+1)i
ey G S S )
\/l(l+1)+m( m+1)[ lema1 + Y}_m,l]+

Vi+1)- m(m+1>[ -

[\/l(l+1)+m( m+1)(\/_Yl el ¥ ! Yl,m_l)

1
2%‘7(7’”1)] . (B.10)

For m = —1, we obtain

{

LY, = — L, +L.Y
11 7 [Lidia Vi-1]
- é 0+ )Y+ I+ 1) = [ 2_535 2] (B.11)
form=0
LYo = Lo
= I+ D)V
-1
= [(l+1 Yii+iY 1), B.12
VI )[\/5(1,1 21,1)] (B.12)
form=1
1
L.Y,y, = — |[L.Y,_1-L.,
I 7 (LD V1]
I(1+1)Yi0 i

= T’+ W(+1)- [ 12—53/27,2] (B.13)
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B. Evaluation of L - S in terms of real spherical harmonics

and, finally, for m > 2

L.Yim

Sl =Sl Sl

[L+yl,—m + (7]-)mL+ylm:|

(VI 1)+ m(=m+ 1)V er + (1)1 1) = m(m + 1)V |

[\/l(l +1)+m(-m+1) (
+(—1)m\/l(l +1)=m(m+1) (

1

V/2i

1
l-m+1 T \/iyi,ml)

(_1)m+1
V2

1
= \/l(l +1)+m(-m+1) [2— l-m+1 + %Y},m_l] +

1

5 lym+1 — 2

\/l(l+1)—m(m+1)[—1Y i

Thus, the matrix takes the form

(Y| L [Yir) =

0
V2l

2

0

S o

O N

V21

2

0

0
VA2
2

Y;,’HH»l +

V2

l,—(m+1):|-
0o -2
41-2

3 0
41-2

3 0
R

(_1)—(m+1)2‘

Yz,-(m+1))]

(B.14)

01\»@0

(B.15)
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For the lowering operator we obtain analogously, setting m > 2,

LY, = \;5 (L-Yim = (=1)"L Vi ]
- [\/1(1 #1) +m(=m = 1)y = ()" I+ 1) = m(m = 1)V
= [\/l(l+1)+m( m- 1)(\/_3/_m1+¢1§ylm+1)
(T D - 1)'(( i+ )]
- VI = m{m D)3+ S|
\/l(l+1) m(m 1)[ Im-1" ; l,—m+1] > (B16)
LY = ji [L-Yi1-L-Yi1]
- % 10+ 1Yo+ /1[0 +1) - [ Yl 2], (B.17)
LY,y = L)y
NI
= \/l(l+1)[\}§(yl,1—iyz,—1)] (B.18)
LY - %[L,yl,,l—L,yu]
-1
= VI Y+ VITD) - [ z-iyl 2] (B.19)
and
L—Y;,m = % [L—yl,—m+(_1)mL—ylm]
1

[\/l(l +1)+m(-m-D)Y o + (—1)m\/l(l +1)=m(m- 1)yl,m,1]

[\/l(l+1)+m( m- 1)(\/_3/_m1+¢1§ylm+1)

+ m + m(m — i +7(_1)_(_m+1)i
()T 1)~ 1)( D i+ E Ym)]

NITDHE m(m+1)[ Vi + yl,mﬂ]+

I+ 1) =m(m=1) [—%Ylm,l - % l,,mﬂ] . (B.20)
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Similar to the raising operator, the matrix of the lowering operator (Y},,,|L_|Y},,,/} in terms
of real spherical harmonics finally becomes

(Yim|L—|}/lm’) =
0o 2 9 0 -
V2 0 4-2 ) 0 V21
2 2 2 2
0 0
0 K z(gm 0
i/I(1+1) 0 G2
V2 V2
1(1+1)
0 73 0
0 - 0
/2l V4l - V2l
221 0 é 2 42 2 0 _72
0 2 0 2L
(B.21)

However, it would not be necessary to evaluate the matrix (Ylm|L,|Ylmr) as we did, since
the raising and the lowering operator are adjunct to each other, i.e.

Lt = L. and (B.22)

Lt = L,. (B.23)
Hence, as can be verified easily considering eq. (B.15) and eq. (B.21), the equality
L.|Yim) (B.24)

(Vinl - [V} = Yoo

holds.



APPENDIX C

Tight-binding formalism for spin-flip scattering
due to spin-orbit coupling

The results for the momentum and spin-relaxation times caused by scattering at impurities
as presented in chapter 7 led to quite unexpected results, as they do not fulfill the previously
expected symmetry properties. We assumed previously that 77%" equals 777~ for reasons
of time-inversion symmetry. As shown in chapter 7, section 7.2 at the example of a Nickel
impurity in copper bulk (see table 7.1) this is not the case if non-spherical contributions of
the potential are taken into account or if more than one impurity is considered. Therefore,
a simple tight-binding model for spin-flip scattering due to spin-orbit coupling was devel-
oped in order to examine the symmetry properties of 77%" and to test whether the results
calculated with the KKR program are correct.

In the first section, the basic ideas of the formalism will be presented, while in the second
section some results obtained within this model are discussed.

C.1 Basicideas

C.1.1 The spin-orbit Hamiltonian in the tight-binding formalism and its
eigenstates

In real space, the basis functions |c LR are characterized by the spin index o, the lattice
site R and the angular momentum L. In order to keep the formalism as simple as possible
we restrict our consideration to s and p orbitals, thus choose L € (s, p, py, p2)-

The total Hamiltonian is composed of an atomic part [, and the hopping part Hy,qp,

H = Hy + Hyop. (C.1)

201
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In real space, the atomic part of the Hamiltonian at each lattice point R is

Hy(R) =) |[0LR) (s LR|ep
’ (C2)

+

1
— Z (fLLrUJI |O'LR> (O'IL/R| + £LLIJUr |U/L/R> (JLR|),

2 LL'oo’

where {100 =& (L-S); 1/, is the on-site matrix element of the spin-orbit Hamiltonian
and the parameter £ determines the magnitude of the spin-orbit coupling.
For simplicity, we confine ourselves to simple cubic crystal structures and nearest neighbor
hopping

Hhop = 500’ Z Z try |ULR> <U’LIR’, >

RLR'L'

(C.3)

thus the sum over R’ comprises the nearest neighbors only. ¢ is the hopping matrix
element which quantifies the hopping from the orbital L at lattice site R to L’ at the neigh-
boring site R’.

A change of representation to k-space makes it useful to define Bloch functions

o LK) = kR |;LR) , (C.4)

e
=Y
where NV is the number of atoms in the crystal and the Bloch functions are orthonormal

<O’Lk |0”L,k,) = 5LL’500’6kk’- (CS)

It is easy to show that the Hamiltonian is diagonal in k

HITM = (o Lk| H |0’ L'K') = HS,(K)Oac (C.6)
with the definition
Hy7(K) = (o Lk| H|o'L'k) = HIpy+ 0,0 > *Rtp 0 (C7)
R’eNN

The eigenfunctions are expanded as
vy = LZ cro(k) (oLk)) (C.8)
- Y0 Y e R o LR)
N s R
-3 akR% e () 7 LR)

They can be found by solving the eigenvalue problem

H(k)hx = et . (C.9)
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The above equation can be transformed to an equation for the coefficients ¢, (k)

S H7S () cpor (k) = excro(k) . (C.10)
Lo’

In reciprocal space, the Green function G(k; z) of the system can then be found either via
inversion or via the spectral representation

G(k;z) = (z-H(k))™" (C.11)
; 7|1/}7j>_<ink| with zeC.

Fourier transformation of G(k; z) to real space leads to
1 . . ,
G(R.R:2) = — f &k G (k; 2)e* RR) (C.12)
BZ

and
oo (R,R/; 2) = Vifd% (o'L'R|G(k; 2) [0 LR) . (C.13)
BZ

The Green function is required for the calculation of the scattering matrix 7" as will be shown
in the next section. Furthermore, the Green function will be useful for calculating the den-
sity of states

p(R;z2) = —llm Tr G(R,R; 2) (C.14)
i

where the trace denotes a summation over the diagonal elements of the matrix
G99.(R,R; 2).

C.1.2 Impurity scattering

In order to construct an impurity Hamiltonian and at the same time keep things as simple
as possible, we assume that only the on-site Hamiltonian changes, but the hopping stays the
same

AH=H™ - H=H" - H,. (C.15)

For example, A H might be caused by a difference in the spin-orbit coupling parameter £
or a different on-site element e, L € (s, py, py, D2)-

The Green function G'"™P of the system including the impurity can be found via the Dyson
equation

G™ - G+GAHG™ (C.16)
[1-GAH]"-G.

It is sufficient to include the matrix elements of G at the impurity site only, if solely these
elements of G'"™P are to be found. This scheme can be easily generalized to more than one
impurity, just the matrices AH and G™P become larger.
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€s €p fLS tss tspa tppa tppfr

00 3.0 05 -15 05 =20 05

Table C.1.: Parameters for the TB-problem.

The Green function G™P is needed for calculating the scattering matrix 7’; the relation
between the two quantities can be found from the Lippmann-Schwinger equation for a
scattered state ¢/°5** (which is not an eigenstate of H) in the presence of an impurity

nk
Uie = Yt U (C.17)
= Y+ G AH P
= Yu+GAH(1+ Gi"‘pAH) Pk
= wnk"'GT’l/)nk;
hence
T=AH+AHG™ AH . (C.18)

Finally, the transition amplitude 7,77, yields

( ZRTW)Z:R’) (C.19)
Y eI crpor (K) -

RLoR'L'c’

’
o0
Tkk'

The spin- and momentum relaxation times 77°’, o, 0" € (1, ) are then found by integrating
Tgg over the Fermi surface

A g (C.20)
dSk’ ’
- ool
| im

C.2 Test results

For test purposes, we choose the TB-parameters as specified in table C.1, which lead to a
bandstructure shown in figure C.1. The hopping ¢-matrix ¢,/ is derived from these within
the Slater-Koster-scheme [115].

The red curve reflects the situation of a spin-orbit coupling parameter of £ = 0.5, while the
black dots show the bandstructure of the system without spin-orbit coupling.

For the following calculations, spin-orbit coupling is chosen to be non-zero in the impurity
only, and the spin-orbit parameter £ in the impurity Hamiltonian is set to £ = 0.5. The
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energy [arb. units]

10 . .

X N L
k-points

Figure C.1.: Bandstructure of the TB-system. The black dots represent the bandstructure of the
system without spin-orbit coupling, while the red points reflect the situation of a spin-

orbit coupling parameter of £ = 0.5.

momentum- and spin-relaxation times or the scattering matrix 727", respectively, are cal-
culated at £ = —6.0. At this energy, the k-points at the Fermi surface are not degenerate

and the Fermi surface is almost spherical.

Single impurity
The simplest case is a single impurity at the origin

0
R1: 0
0

Then, the momentum- and spin-relaxation times behave as

, ,

wo = 1Y and
’ !

™o o= 197 thus

oo’ oo

' = Ty

(C.21)

(C.22)
(C.23)
(C.24)
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The first equation must be valid because the system is invariant under space inversion sym-
metry. The second equality is expected because of time-reversal symmetry, which flips the
spin (thus changes o to —o) and reverts the momentum k to —k, while the third equivalence
follows from the two upper ones.

Two impurities

Also in the case of two impurities situated at

0 1
R1 =10 and R2 =10 5 (CZS)
0 0

the system is invariant under space inversion!, which manifests in
! !
™o =7 . (C.26)

In contrast, our calculations show that the second equality (C.23) is not valid any more,
hence
2% #1797 (C27)

The relative difference which is almost independent of the choice of the absolute value of
the spin-orbit coupling parameter € is

|T£T—Tff( ~ 0.1% (C.28)
|7'11l—7_l[(| ~ 1%, (C.29)

where we have chosen a representative k-point k = (0, 1.34,0.77) on the Fermi surface for
which this large deviation is found. However, the averages over the Fermi surface fulfill

o= H and (C.30)
o= 4 (C.31)

up to the numerical accuracy of about 1072,

Three impurities
When placing three impurities at the positions

0 1 0
R1 =10 5 R2 =10 and R3 =|11. (C32)
0 0

"This is valid for arbitrary positions of the impurities when an appropriate center is chosen.
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k; k,

it 0.106798 0.112749
™ 0.106888 0.1126949
e 0.106811 0.1126480
i 0.106827 0.1126653
i 8.509927-10-% 7.88453-1077
™ 8.496228 - 10-°  7.82864 - 1077
e 8.453999-107%  7.882741-1075
T 8.498709-107% 7.912631- 1075

Table C.2.: Lifetimes at k; = (0,1.29,0.83) and ko = (1.19,0.43,0.85), two representative
k-points on the Fermi surface with large deviations for three impurities.

the system is not invariant under space inversion any more and we find

T (C.33)
and

7'111 # Tlﬁl . (C.34)

Analogously to the case of two impurities we also find
27 #7100 . (C.35)

In table C.2 the values of 7% are given at two k-points. The average over the Fermi surface
is — as for two impurities — gives

o= i and (C.36)

A ) (C.37)

up to a numerical accuracy of about 10-9.
A refinement of the mesh chosen for the k-integration over the Fermi surface did not change
these results significantly.

C.3 Conclusion

The momentum- and spin-relaxation times calculated for the cases of two and three impu-
rities demonstrate that the expected equivalence of 77%" and 77~ on the Fermi surface due
to time-reversal symmetry is not fulfilled. Thus, within this simple tight-binding model, the
same behavior of 777" as within the KKR formalism is found. The reasons of this symme-
try breaking are still to be understood. However, the results obtained in this simple model
allows us to trust in the results of the much more complicated KKR formalism.
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