000185503 001__ 185503
000185503 005__ 20240711085637.0
000185503 0247_ $$2doi$$a10.1016/j.jpowsour.2014.10.188
000185503 0247_ $$2ISSN$$a0378-7753
000185503 0247_ $$2ISSN$$a1873-2755
000185503 0247_ $$2WOS$$aWOS:000348088400113
000185503 037__ $$aFZJ-2014-06930
000185503 082__ $$a620
000185503 1001_ $$0P:(DE-HGF)0$$aThe, D.$$b0
000185503 245__ $$aMicrostructural comparison of solid oxide electrolyser cells operated for 6100 h and 9000 h
000185503 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2015
000185503 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1418826561_24696
000185503 3367_ $$2DataCite$$aOutput Types/Journal article
000185503 3367_ $$00$$2EndNote$$aJournal Article
000185503 3367_ $$2BibTeX$$aARTICLE
000185503 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000185503 3367_ $$2DRIVER$$aarticle
000185503 520__ $$aSolid oxide electrolyser cells (SOEC) operated for 6100 h and 9000 h with a current density of −0.75 and −1 A/cm2, respectively, were analyzed and compared with a non-operated cell. The cathode-supported cells consisted of an 8 μm thick Ni/8YSZ cermet as hydrogen cathode, a 10 μm thick 8YSZ electrolyte, a screen-printed Ce0.8Gd0.2O1.9 diffusion barrier with a thickness of 5 μm and a 30 μm thick La0.58Sr0.4Co0.2Fe0.8O3 layer as oxygen anode.The cells were investigated by various electron microscopy as well as microanalytical techniques. The post-test analyses showed several degradation phenomena such as formation of nano-sized pores at grain boundaries, formation of SrZrO3 at the interface electrolyte/anode and agglomeration of nickel particles in the cathode. Comparisons of the operated cells with the non-operated cell indicate that nickel depletion in the cathode is responsible for a loss of performance since this depletion leads to a significant enlargement of electrolyte thickness. Analysis of these cells leads to the conclusion that two mass transport processes in the electrolyte caused by different driving forces are the main reason of the cell performance loss: at the cathode side, the electrical potential gradient appears to govern the formation of pores, while at the anode side, formation of SrZrO3 generates a chemical potential gradient causing the cations to migrate against the direction of the electric field.
000185503 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000185503 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000185503 7001_ $$0P:(DE-HGF)0$$aGrieshammer, S.$$b1
000185503 7001_ $$0P:(DE-HGF)0$$aSchroeder, M.$$b2$$eCorresponding Author
000185503 7001_ $$0P:(DE-HGF)0$$aMartin, M.$$b3
000185503 7001_ $$0P:(DE-Juel1)145807$$aAl Daroukh, M.$$b4
000185503 7001_ $$0P:(DE-Juel1)129667$$aTietz, F.$$b5
000185503 7001_ $$0P:(DE-HGF)0$$aSchefold, J.$$b6
000185503 7001_ $$0P:(DE-HGF)0$$aBrisse, A.$$b7
000185503 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2014.10.188$$gVol. 275, p. 901 - 911$$p901 - 911$$tJournal of power sources$$v275$$x0378-7753$$y2015
000185503 8564_ $$uhttps://juser.fz-juelich.de/record/185503/files/FZJ-2014-06930.pdf$$yRestricted
000185503 909CO $$ooai:juser.fz-juelich.de:185503$$pVDB
000185503 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000185503 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000185503 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000185503 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000185503 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000185503 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000185503 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000185503 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000185503 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000185503 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000185503 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000185503 9141_ $$y2015
000185503 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)164329$$aRheinisch-Westfälische Technische Hochschule$$b2$$kRWTH
000185503 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145807$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000185503 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000185503 9130_ $$0G:(DE-HGF)POF2-123$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vFuel Cells$$x0
000185503 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000185503 920__ $$lyes
000185503 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000185503 980__ $$ajournal
000185503 980__ $$aVDB
000185503 980__ $$aI:(DE-Juel1)IEK-1-20101013
000185503 980__ $$aUNRESTRICTED
000185503 981__ $$aI:(DE-Juel1)IMD-2-20101013