001     185503
005     20240711085637.0
024 7 _ |2 doi
|a 10.1016/j.jpowsour.2014.10.188
024 7 _ |2 ISSN
|a 0378-7753
024 7 _ |2 ISSN
|a 1873-2755
024 7 _ |2 WOS
|a WOS:000348088400113
037 _ _ |a FZJ-2014-06930
082 _ _ |a 620
100 1 _ |0 P:(DE-HGF)0
|a The, D.
|b 0
245 _ _ |a Microstructural comparison of solid oxide electrolyser cells operated for 6100 h and 9000 h
260 _ _ |a New York, NY [u.a.]
|b Elsevier
|c 2015
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1418826561_24696
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a Solid oxide electrolyser cells (SOEC) operated for 6100 h and 9000 h with a current density of −0.75 and −1 A/cm2, respectively, were analyzed and compared with a non-operated cell. The cathode-supported cells consisted of an 8 μm thick Ni/8YSZ cermet as hydrogen cathode, a 10 μm thick 8YSZ electrolyte, a screen-printed Ce0.8Gd0.2O1.9 diffusion barrier with a thickness of 5 μm and a 30 μm thick La0.58Sr0.4Co0.2Fe0.8O3 layer as oxygen anode.The cells were investigated by various electron microscopy as well as microanalytical techniques. The post-test analyses showed several degradation phenomena such as formation of nano-sized pores at grain boundaries, formation of SrZrO3 at the interface electrolyte/anode and agglomeration of nickel particles in the cathode. Comparisons of the operated cells with the non-operated cell indicate that nickel depletion in the cathode is responsible for a loss of performance since this depletion leads to a significant enlargement of electrolyte thickness. Analysis of these cells leads to the conclusion that two mass transport processes in the electrolyte caused by different driving forces are the main reason of the cell performance loss: at the cathode side, the electrical potential gradient appears to govern the formation of pores, while at the anode side, formation of SrZrO3 generates a chemical potential gradient causing the cations to migrate against the direction of the electric field.
536 _ _ |0 G:(DE-HGF)POF3-134
|a 134 - Electrolysis and Hydrogen (POF3-134)
|c POF3-134
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-HGF)0
|a Grieshammer, S.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Schroeder, M.
|b 2
|e Corresponding Author
700 1 _ |0 P:(DE-HGF)0
|a Martin, M.
|b 3
700 1 _ |0 P:(DE-Juel1)145807
|a Al Daroukh, M.
|b 4
700 1 _ |0 P:(DE-Juel1)129667
|a Tietz, F.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Schefold, J.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Brisse, A.
|b 7
773 _ _ |0 PERI:(DE-600)1491915-1
|a 10.1016/j.jpowsour.2014.10.188
|g Vol. 275, p. 901 - 911
|p 901 - 911
|t Journal of power sources
|v 275
|x 0378-7753
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/185503/files/FZJ-2014-06930.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:185503
|p VDB
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-Juel1)164329
|a Rheinisch-Westfälische Technische Hochschule
|b 2
|k RWTH
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145807
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129667
|a Forschungszentrum Jülich GmbH
|b 5
|k FZJ
913 0 _ |0 G:(DE-HGF)POF2-123
|1 G:(DE-HGF)POF2-120
|2 G:(DE-HGF)POF2-100
|a DE-HGF
|b Energie
|l Rationelle Energieumwandlung und -nutzung
|v Fuel Cells
|x 0
913 1 _ |0 G:(DE-HGF)POF3-134
|1 G:(DE-HGF)POF3-130
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|v Electrolysis and Hydrogen
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21