000185571 001__ 185571
000185571 005__ 20221109161711.0
000185571 037__ $$aFZJ-2014-06997
000185571 041__ $$aEnglish
000185571 1001_ $$0P:(DE-Juel1)144723$$aDi Napoli, Edoardo$$b0$$eCorresponding Author$$ufzj
000185571 1112_ $$a25th Umbrella Symposium$$cAachen$$d2011-12-13 - 2011-12-15$$wGermany
000185571 245__ $$aEstimating the number of eigenvalues in a interval using the eigenproblem resolvent
000185571 260__ $$c2011
000185571 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1418813274_22426$$xInvited
000185571 3367_ $$033$$2EndNote$$aConference Paper
000185571 3367_ $$2DataCite$$aOther
000185571 3367_ $$2ORCID$$aLECTURE_SPEECH
000185571 3367_ $$2DRIVER$$aconferenceObject
000185571 3367_ $$2BibTeX$$aINPROCEEDINGS
000185571 520__ $$aSymmetric generalized eigenvalue problems arise in many applications in chemistry physics and engineering. In several cases only a small fraction of the eigenpairs, usually located in a interval at one of the extremities of the spectrum, is required. Obtaining previous knowledge of the number of eigenvalues within the interval boudaries is often beneficial. For instance, for those iterative methods where a projector is used in conjunction with a Rayleigh-Ritz quotient this is an essential ingredient for reducing the number of iterations and increasing the accuracy. We present a potentially inexpensive technique to estimate the number of eigenvalues in a generic interval based on numerical manipulations of the eigenproblem resolvent.
000185571 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000185571 536__ $$0G:(DE-Juel1)SDLQM$$aSimulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)$$cSDLQM$$fSimulation and Data Laboratory Quantum Materials (SDLQM)$$x2
000185571 773__ $$y2011
000185571 909CO $$ooai:juser.fz-juelich.de:185571$$pVDB
000185571 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144723$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000185571 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000185571 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000185571 9141_ $$y2014
000185571 920__ $$lno
000185571 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000185571 980__ $$aconf
000185571 980__ $$aVDB
000185571 980__ $$aI:(DE-Juel1)JSC-20090406
000185571 980__ $$aUNRESTRICTED