001     185582
005     20210129214657.0
024 7 _ |a 10.1103/PhysRevLett.113.247001
|2 doi
024 7 _ |a 0031-9007
|2 ISSN
024 7 _ |a 1079-7114
|2 ISSN
024 7 _ |a 2128/8177
|2 Handle
024 7 _ |a WOS:000346049700010
|2 WOS
024 7 _ |a altmetric:2414118
|2 altmetric
037 _ _ |a FZJ-2014-07008
082 _ _ |a 550
100 1 _ |a Vool, U.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Non-Poissonian Quantum Jumps of a Fluxonium Qubit due to Quasiparticle Excitations
260 _ _ |a College Park, Md.
|c 2014
|b APS
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 185582
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a As the energy relaxation time of superconducting qubits steadily improves, nonequilibrium quasiparticle excitations above the superconducting gap emerge as an increasingly relevant limit for qubit coherence. We measure fluctuations in the number of quasiparticle excitations by continuously monitoring the spontaneous quantum jumps between the states of a fluxonium qubit, in conditions where relaxation is dominated by quasiparticle loss. Resolution on the scale of a single quasiparticle is obtained by performing quantum nondemolition projective measurements within a time interval much shorter than T1, using a quantum-limited amplifier (Josephson parametric converter). The quantum jump statistics switches between the expected Poisson distribution and a non-Poissonian one, indicating large relative fluctuations in the quasiparticle population, on time scales varying from seconds to hours. This dynamics can be modified controllably by injecting quasiparticles or by seeding quasiparticle-trapping vortices by cooling down in a magnetic field.
536 _ _ |a 424 - Exploratory materials and phenomena (POF2-424)
|0 G:(DE-HGF)POF2-424
|c POF2-424
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Pop, I. M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Sliwa, K.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Abdo, B.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wang, C.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Brecht, T.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gao, Y. Y.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Shankar, S.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Hatridge, M.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Catelani, G.
|0 P:(DE-Juel1)151130
|b 9
|u fzj
700 1 _ |a Mirrahimi, M.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Frunzio, L.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Schoelkopf, R. J.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Glazman, L. I.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Devoret, M. H.
|0 P:(DE-HGF)0
|b 14
773 _ _ |a 10.1103/PhysRevLett.113.247001
|g Vol. 113, no. 24, p. 247001
|0 PERI:(DE-600)1472655-5
|n 24
|p 247001
|t Physical review letters
|v 113
|y 2014
|x 1079-7114
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/185582/files/FZJ-2014-07008.pdf
856 4 _ |u https://juser.fz-juelich.de/record/185582/files/FZJ-2014-07008.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/185582/files/FZJ-2014-07008.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/185582/files/FZJ-2014-07008.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:185582
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)151130
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-424
|2 G:(DE-HGF)POF2-400
|v Exploratory materials and phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21