000185586 001__ 185586
000185586 005__ 20240712100843.0
000185586 0247_ $$2doi$$a10.5194/acp-14-11525-2014
000185586 0247_ $$2ISSN$$a1680-7316
000185586 0247_ $$2ISSN$$a1680-7324
000185586 0247_ $$2Handle$$a2128/8178
000185586 0247_ $$2WOS$$aWOS:000344165800032
000185586 037__ $$aFZJ-2014-07012
000185586 082__ $$a550
000185586 1001_ $$0P:(DE-HGF)0$$aWoiwode, W.$$b0$$eCorresponding Author
000185586 245__ $$aDenitrification by large NAT particles: the impact of reduced settling velocities and hints on particle characteristics
000185586 260__ $$aKatlenburg-Lindau$$bEGU$$c2014
000185586 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s185586
000185586 3367_ $$2DataCite$$aOutput Types/Journal article
000185586 3367_ $$00$$2EndNote$$aJournal Article
000185586 3367_ $$2BibTeX$$aARTICLE
000185586 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000185586 3367_ $$2DRIVER$$aarticle
000185586 520__ $$aVertical redistribution of HNO3 through large HNO3-containing particles associated with polar stratospheric clouds (PSCs) plays an important role in the chemistry of the Arctic winter stratosphere. During the RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions) campaign, apparently very large NAT (nitric acid trihydrate) particles were observed by the airborne in situ probe FSSP-100 (Molleker et al., 2014). Our analysis shows that the FSSP-100 observations associated with the flight on 25 January 2010 cannot easily be explained assuming compact spherical NAT particles due to much too short growing time at temperatures below the existence temperature of NAT (TNAT). State-of-the-art simulations using CLaMS (Chemical Lagrangian Model of the Stratosphere; Grooß et al., 2014) suggest considerably smaller particles. We consider the hypothesis that the simulation reproduces the NAT particle masses in a realistic way, but that real NAT particles may have larger apparent sizes compared to compact spherical particles, e.g. due to non-compact morphology or aspheric shape. Our study focuses on the consequence that such particles would have reduced settling velocities compared to compact spheres, altering the vertical redistribution of HNO3. Utilising CLaMS simulations, we investigate the impact of reduced settling velocities of NAT particles on vertical HNO3 redistribution and compare the results with observations of gas-phase HNO3 by the airborne Fourier transform spectrometer MIPAS-STR associated with two RECONCILE flights. The MIPAS-STR observations confirm conditions consistent with denitrification by NAT particles for the flight on 25 January 2010 and show good agreement with the simulations within the limitations of the comparison. Best agreement is found if settling velocities between 100 and 50% relative to compact spherical particles are considered (slight preference for the 70% scenario). In contrast, relative settling velocities of 30% result in too weak vertical HNO3 redistribution. Sensitivity simulations considering temperature biases of ±1 K and multiplying the simulated nucleation rates by factors of 0.5 and 2.0 affect the comparisons to a similar extent, but result in no effective improvement compared to the reference scenario. Our results show that an accurate knowledge of the settling velocities of NAT particles is important for quantitative simulations of vertical HNO3 redistribution.
000185586 536__ $$0G:(DE-HGF)POF2-234$$a234 - Composition and Dynamics of the Upper Troposphere and Stratosphere (POF2-234)$$cPOF2-234$$fPOF II$$x0
000185586 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000185586 7001_ $$0P:(DE-Juel1)129122$$aGrooß, J.-U.$$b1$$ufzj
000185586 7001_ $$0P:(DE-HGF)0$$aOelhaf, H.$$b2
000185586 7001_ $$0P:(DE-HGF)0$$aMolleker, S.$$b3
000185586 7001_ $$0P:(DE-HGF)0$$aBorrmann, S.$$b4
000185586 7001_ $$0P:(DE-HGF)0$$aEbersoldt, A.$$b5
000185586 7001_ $$0P:(DE-HGF)0$$aFrey, W.$$b6
000185586 7001_ $$0P:(DE-HGF)0$$aGulde, T.$$b7
000185586 7001_ $$0P:(DE-HGF)0$$aKhaykin, S.$$b8
000185586 7001_ $$0P:(DE-HGF)0$$aMaucher, G.$$b9
000185586 7001_ $$0P:(DE-HGF)0$$aPiesch, C.$$b10
000185586 7001_ $$0P:(DE-HGF)0$$aOrphal, J.$$b11
000185586 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-14-11525-2014$$gVol. 14, no. 20, p. 11525 - 11544$$n20$$p11525 - 11544$$tAtmospheric chemistry and physics$$v14$$x1680-7324$$y2014
000185586 8564_ $$uwww.atmos-chem-phys.net/14/11525/2014/
000185586 8564_ $$uhttps://juser.fz-juelich.de/record/185586/files/FZJ-2014-07012.pdf$$yOpenAccess
000185586 8564_ $$uhttps://juser.fz-juelich.de/record/185586/files/FZJ-2014-07012.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000185586 8564_ $$uhttps://juser.fz-juelich.de/record/185586/files/FZJ-2014-07012.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000185586 8564_ $$uhttps://juser.fz-juelich.de/record/185586/files/FZJ-2014-07012.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000185586 909CO $$ooai:juser.fz-juelich.de:185586$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000185586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129122$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000185586 9132_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000185586 9131_ $$0G:(DE-HGF)POF2-234$$1G:(DE-HGF)POF2-230$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and Dynamics of the Upper Troposphere and Stratosphere$$x0
000185586 9141_ $$y2014
000185586 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000185586 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000185586 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000185586 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000185586 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000185586 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000185586 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000185586 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000185586 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000185586 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000185586 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000185586 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000185586 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000185586 9801_ $$aFullTexts
000185586 980__ $$ajournal
000185586 980__ $$aVDB
000185586 980__ $$aUNRESTRICTED
000185586 980__ $$aFullTexts
000185586 980__ $$aI:(DE-Juel1)IEK-7-20101013
000185586 981__ $$aI:(DE-Juel1)ICE-4-20101013