000185591 001__ 185591
000185591 005__ 20240712100848.0
000185591 0247_ $$2doi$$a10.5194/acp-14-12319-2014
000185591 0247_ $$2ISSN$$a1680-7316
000185591 0247_ $$2ISSN$$a1680-7324
000185591 0247_ $$2Handle$$a2128/8176
000185591 0247_ $$2WOS$$aWOS:000345290700021
000185591 037__ $$aFZJ-2014-07017
000185591 082__ $$a550
000185591 1001_ $$0P:(DE-HGF)0$$aWeigel, R.$$b0$$eCorresponding Author
000185591 245__ $$aEnhancements of the refractory submicron aerosol fraction in the Arctic polar vortex: feature or exception?
000185591 260__ $$aKatlenburg-Lindau$$bEGU$$c2014
000185591 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s185591
000185591 3367_ $$2DataCite$$aOutput Types/Journal article
000185591 3367_ $$00$$2EndNote$$aJournal Article
000185591 3367_ $$2BibTeX$$aARTICLE
000185591 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000185591 3367_ $$2DRIVER$$aarticle
000185591 520__ $$aIn situ measurements with a four-channel stratospheric condensation particle counter (CPC) were conducted at up to 20 km altitude on board the aircraft M-55 Geophysica from Kiruna, Sweden, in January through March (EUPLEX 2003, RECONCILE 2010) and in December (ESSenCe 2011). During all campaigns air masses from the upper stratosphere and mesosphere were subsiding inside the Arctic winter vortex, thus initializing a transport of refractory aerosol into the lower stratosphere (Θ < 500 K). The strength and extent of this downward transport varied between the years depending on the dynamical evolution of the vortex. Inside the vortex and at potential temperatures Θ ≥ 450 K around 11 submicron particles per cm3 were generally detected. Up to 8 of these 11 particles per cm3 were found to contain thermo-stable (at 250 °C) residuals with diameters of 10 nm to about 1 μm. Particle mixing ratios (150 mg−1) and fractions of non-volatile particles (75% of totally detected particles) exhibited highest values in air masses having the lowest content of nitrous oxide (70 nmol mol−1 of N2O). This indicates that refractory aerosol originates from the upper stratosphere or the mesosphere. Derived from the mixing ratio of the simultaneously measured long-lived tracer N2O, an empirical index serves to differentiate probed air masses according to their origin: inside the vortex, the vortex edge region, or outside the vortex. Previously observed high fractions of refractory submicron aerosol in the 2003 Arctic vortex were ascribed to unusually strong subsidence during that winter. However, measurements under perturbed vortex conditions in 2010 and during early winter in December 2011 revealed similarly high values. Thus, the abundance of refractory aerosol in the lower stratosphere within the Arctic vortices appears to be a regular feature rather than the exception. During December, the import from aloft into the lower stratosphere appears to be developing; thereafter the abundance of refractory aerosol inside the vortex reaches its highest levels in March. The correlations of refractory aerosol with N2O suggest that, apart from mean subsidence, diabatic dispersion inside the vortex significantly contributes to the transport of particles to the Arctic lower stratosphere. A measurement-based estimate of the total mass of refractory aerosol inside the vortex is provided for each campaign. Based on the derived increase of particle mass in the lower stratospheric vortex (100–67 hPa pressure altitude) by a factor of 4.5 between early and late winter, we estimate the total mass of mesospheric particles deposited over the winter 2009/2010 in the entire Arctic vortex to range between 77 × 103 and 375 × 106 kg. This estimate is compared with the expected atmospheric influx of meteoritic material (110 ± 55 × 103 kg per day). Such estimates at present still hold considerable uncertainties, which are discussed in this article. Nevertheless, the results enable placing constraints on the shape of the so far unknown size distribution of refractory aerosol within the vortex.
000185591 536__ $$0G:(DE-HGF)POF2-234$$a234 - Composition and Dynamics of the Upper Troposphere and Stratosphere (POF2-234)$$cPOF2-234$$fPOF II$$x0
000185591 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000185591 7001_ $$0P:(DE-HGF)0$$aVolk, C. M.$$b1
000185591 7001_ $$0P:(DE-HGF)0$$aKandler, K.$$b2
000185591 7001_ $$0P:(DE-HGF)0$$aHösen, E.$$b3
000185591 7001_ $$0P:(DE-Juel1)129123$$aGünther, G.$$b4$$ufzj
000185591 7001_ $$0P:(DE-Juel1)129164$$aVogel, B.$$b5$$ufzj
000185591 7001_ $$0P:(DE-Juel1)129122$$aGrooß, J.-U.$$b6$$ufzj
000185591 7001_ $$0P:(DE-HGF)0$$aKhaykin, S.$$b7
000185591 7001_ $$0P:(DE-HGF)0$$aBelyaev, G. V.$$b8
000185591 7001_ $$0P:(DE-HGF)0$$aBorrmann, S.$$b9
000185591 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-14-12319-2014$$gVol. 14, no. 22, p. 12319 - 12342$$n22$$p12319 - 12342$$tAtmospheric chemistry and physics$$v14$$x1680-7324$$y2014
000185591 8564_ $$uwww.atmos-chem-phys.net/14/12319/2014/
000185591 8564_ $$uhttps://juser.fz-juelich.de/record/185591/files/FZJ-2014-07017.pdf$$yOpenAccess
000185591 8564_ $$uhttps://juser.fz-juelich.de/record/185591/files/FZJ-2014-07017.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000185591 8564_ $$uhttps://juser.fz-juelich.de/record/185591/files/FZJ-2014-07017.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000185591 8564_ $$uhttps://juser.fz-juelich.de/record/185591/files/FZJ-2014-07017.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000185591 909CO $$ooai:juser.fz-juelich.de:185591$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000185591 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129123$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000185591 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129164$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000185591 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129122$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000185591 9132_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000185591 9131_ $$0G:(DE-HGF)POF2-234$$1G:(DE-HGF)POF2-230$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and Dynamics of the Upper Troposphere and Stratosphere$$x0
000185591 9141_ $$y2014
000185591 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000185591 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000185591 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000185591 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000185591 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000185591 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000185591 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000185591 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000185591 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000185591 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000185591 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000185591 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000185591 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000185591 9801_ $$aFullTexts
000185591 980__ $$ajournal
000185591 980__ $$aVDB
000185591 980__ $$aUNRESTRICTED
000185591 980__ $$aFullTexts
000185591 980__ $$aI:(DE-Juel1)IEK-7-20101013
000185591 981__ $$aI:(DE-Juel1)ICE-4-20101013