000185592 001__ 185592
000185592 005__ 20240712100858.0
000185592 0247_ $$2doi$$a10.5194/acp-14-10785-2014
000185592 0247_ $$2ISSN$$a1680-7316
000185592 0247_ $$2ISSN$$a1680-7324
000185592 0247_ $$2Handle$$a2128/8179
000185592 0247_ $$2WOS$$aWOS:000344164800025
000185592 0247_ $$2altmetric$$aaltmetric:5350597
000185592 037__ $$aFZJ-2014-07018
000185592 082__ $$a550
000185592 1001_ $$0P:(DE-HGF)0$$aMolleker, S.$$b0$$eCorresponding Author
000185592 245__ $$aMicrophysical properties of synoptic-scale polar stratospheric clouds: in situ measurements of unexpectedly large HNO3-containing particles in the Arctic vortex
000185592 260__ $$aKatlenburg-Lindau$$bEGU$$c2014
000185592 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s185592
000185592 3367_ $$2DataCite$$aOutput Types/Journal article
000185592 3367_ $$00$$2EndNote$$aJournal Article
000185592 3367_ $$2BibTeX$$aARTICLE
000185592 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000185592 3367_ $$2DRIVER$$aarticle
000185592 520__ $$a In January 2010 and December 2011, synoptic-scale polar stratospheric cloud (PSC) fields were probed during seven flights of the high-altitude research aircraft M-55 Geophysica within the RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interaction) and the ESSenCe (ESSenCe: ESA Sounder Campaign) projects. Particle size distributions in a diameter range between 0.46 and 40μm were recorded by four different optical in situ instruments. Three of these particle instruments are based on the detection of forward-scattered light by single particles. The fourth instrument is a grayscale optical array imaging probe. Optical particle diameters of up to 35μm were detected with particle number densities and total particle volumes exceeding previous Arctic measurements. Also, gas-phase and particle-bound NOy was measured, as well as water vapor concentrations. The optical characteristics of the clouds were measured by the remote sensing lidar MAL (Miniature Aerosol Lidar) and by the in situ backscatter sonde MAS (Multiwavelength Aerosol Scatterometer), showing the synoptic scale of the encountered PSCs. The particle mode below 2μm in size diameter has been identified as supercooled ternary solution (STS) droplets. The PSC particles in the size range above 2μm in diameter are considered to consist of nitric acid hydrates, and the particles' high HNO3 content was confirmed by the NOy instrument. Assuming a particle composition of nitric acid trihydrate (NAT), the optically measured size distributions result in particle-phase HNO3 mixing ratios exceeding available stratospheric values. Therefore the measurement uncertainties concerning probable overestimations of measured particle sizes and volumes are discussed in detail. We hypothesize that either a strong asphericity or an alternate particle composition (e.g., water ice coated with NAT) could explain our observations. In particular, with respect to the denitrification by sedimentation of large HNO3-containing particles, generally considered to be NAT, our new measurements raise questions concerning composition, shape and nucleation pathways. Answering these would improve the numerical simulation of PSC microphysical processes like cloud particle formation, growth and denitrification, which is necessary for better predictions of future polar ozone losses, especially under changing global climate conditions. Generally, it seems that the occurrence of large NAT particles – sometimes termed "NAT rocks" – are a regular feature of synoptic-scale PSCs in the Arctic.
000185592 536__ $$0G:(DE-HGF)POF2-234$$a234 - Composition and Dynamics of the Upper Troposphere and Stratosphere (POF2-234)$$cPOF2-234$$fPOF II$$x0
000185592 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000185592 7001_ $$0P:(DE-HGF)0$$aBorrmann, S.$$b1
000185592 7001_ $$0P:(DE-HGF)0$$aSchlager, H.$$b2
000185592 7001_ $$0P:(DE-HGF)0$$aLuo, B.$$b3
000185592 7001_ $$0P:(DE-HGF)0$$aFrey, W.$$b4
000185592 7001_ $$0P:(DE-HGF)0$$aKlingebiel, M.$$b5
000185592 7001_ $$0P:(DE-HGF)0$$aWeigel, R.$$b6
000185592 7001_ $$0P:(DE-Juel1)138125$$aEbert, M.$$b7
000185592 7001_ $$0P:(DE-HGF)0$$aMitev, V.$$b8
000185592 7001_ $$0P:(DE-HGF)0$$aMatthey, R.$$b9
000185592 7001_ $$0P:(DE-HGF)0$$aWoiwode, W.$$b10
000185592 7001_ $$0P:(DE-HGF)0$$aOelhaf, H.$$b11
000185592 7001_ $$0P:(DE-HGF)0$$aDörnbrack, A.$$b12
000185592 7001_ $$0P:(DE-HGF)0$$aStratmann, G.$$b13
000185592 7001_ $$0P:(DE-Juel1)129122$$aGrooß, J.-U.$$b14$$ufzj
000185592 7001_ $$0P:(DE-Juel1)129123$$aGünther, G.$$b15$$ufzj
000185592 7001_ $$0P:(DE-Juel1)129164$$aVogel, B.$$b16$$ufzj
000185592 7001_ $$0P:(DE-Juel1)133396$$aMüller, R.$$b17$$ufzj
000185592 7001_ $$0P:(DE-Juel1)129131$$aKrämer, M.$$b18$$ufzj
000185592 7001_ $$0P:(DE-Juel1)129137$$aMeyer, J.$$b19
000185592 7001_ $$0P:(DE-HGF)0$$aCairo, F.$$b20
000185592 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-14-10785-2014$$gVol. 14, no. 19, p. 10785 - 10801$$n19$$p10785 - 10801$$tAtmospheric chemistry and physics$$v14$$x1680-7324$$y2014
000185592 8564_ $$uwww.atmos-chem-phys.net/14/10785/2014/
000185592 8564_ $$uhttps://juser.fz-juelich.de/record/185592/files/FZJ-2014-07018.pdf$$yOpenAccess
000185592 8564_ $$uhttps://juser.fz-juelich.de/record/185592/files/FZJ-2014-07018.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000185592 8564_ $$uhttps://juser.fz-juelich.de/record/185592/files/FZJ-2014-07018.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000185592 8564_ $$uhttps://juser.fz-juelich.de/record/185592/files/FZJ-2014-07018.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000185592 909CO $$ooai:juser.fz-juelich.de:185592$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000185592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129122$$aForschungszentrum Jülich GmbH$$b14$$kFZJ
000185592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129123$$aForschungszentrum Jülich GmbH$$b15$$kFZJ
000185592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129164$$aForschungszentrum Jülich GmbH$$b16$$kFZJ
000185592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133396$$aForschungszentrum Jülich GmbH$$b17$$kFZJ
000185592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129131$$aForschungszentrum Jülich GmbH$$b18$$kFZJ
000185592 9132_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000185592 9131_ $$0G:(DE-HGF)POF2-234$$1G:(DE-HGF)POF2-230$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and Dynamics of the Upper Troposphere and Stratosphere$$x0
000185592 9141_ $$y2014
000185592 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000185592 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000185592 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000185592 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000185592 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000185592 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000185592 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000185592 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000185592 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000185592 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000185592 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000185592 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000185592 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000185592 9801_ $$aFullTexts
000185592 980__ $$ajournal
000185592 980__ $$aVDB
000185592 980__ $$aUNRESTRICTED
000185592 980__ $$aFullTexts
000185592 980__ $$aI:(DE-Juel1)IEK-7-20101013
000185592 981__ $$aI:(DE-Juel1)ICE-4-20101013