000185592 001__ 185592 000185592 005__ 20240712100858.0 000185592 0247_ $$2doi$$a10.5194/acp-14-10785-2014 000185592 0247_ $$2ISSN$$a1680-7316 000185592 0247_ $$2ISSN$$a1680-7324 000185592 0247_ $$2Handle$$a2128/8179 000185592 0247_ $$2WOS$$aWOS:000344164800025 000185592 0247_ $$2altmetric$$aaltmetric:5350597 000185592 037__ $$aFZJ-2014-07018 000185592 082__ $$a550 000185592 1001_ $$0P:(DE-HGF)0$$aMolleker, S.$$b0$$eCorresponding Author 000185592 245__ $$aMicrophysical properties of synoptic-scale polar stratospheric clouds: in situ measurements of unexpectedly large HNO3-containing particles in the Arctic vortex 000185592 260__ $$aKatlenburg-Lindau$$bEGU$$c2014 000185592 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s185592 000185592 3367_ $$2DataCite$$aOutput Types/Journal article 000185592 3367_ $$00$$2EndNote$$aJournal Article 000185592 3367_ $$2BibTeX$$aARTICLE 000185592 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000185592 3367_ $$2DRIVER$$aarticle 000185592 520__ $$a In January 2010 and December 2011, synoptic-scale polar stratospheric cloud (PSC) fields were probed during seven flights of the high-altitude research aircraft M-55 Geophysica within the RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interaction) and the ESSenCe (ESSenCe: ESA Sounder Campaign) projects. Particle size distributions in a diameter range between 0.46 and 40μm were recorded by four different optical in situ instruments. Three of these particle instruments are based on the detection of forward-scattered light by single particles. The fourth instrument is a grayscale optical array imaging probe. Optical particle diameters of up to 35μm were detected with particle number densities and total particle volumes exceeding previous Arctic measurements. Also, gas-phase and particle-bound NOy was measured, as well as water vapor concentrations. The optical characteristics of the clouds were measured by the remote sensing lidar MAL (Miniature Aerosol Lidar) and by the in situ backscatter sonde MAS (Multiwavelength Aerosol Scatterometer), showing the synoptic scale of the encountered PSCs. The particle mode below 2μm in size diameter has been identified as supercooled ternary solution (STS) droplets. The PSC particles in the size range above 2μm in diameter are considered to consist of nitric acid hydrates, and the particles' high HNO3 content was confirmed by the NOy instrument. Assuming a particle composition of nitric acid trihydrate (NAT), the optically measured size distributions result in particle-phase HNO3 mixing ratios exceeding available stratospheric values. Therefore the measurement uncertainties concerning probable overestimations of measured particle sizes and volumes are discussed in detail. We hypothesize that either a strong asphericity or an alternate particle composition (e.g., water ice coated with NAT) could explain our observations. In particular, with respect to the denitrification by sedimentation of large HNO3-containing particles, generally considered to be NAT, our new measurements raise questions concerning composition, shape and nucleation pathways. Answering these would improve the numerical simulation of PSC microphysical processes like cloud particle formation, growth and denitrification, which is necessary for better predictions of future polar ozone losses, especially under changing global climate conditions. Generally, it seems that the occurrence of large NAT particles – sometimes termed "NAT rocks" – are a regular feature of synoptic-scale PSCs in the Arctic. 000185592 536__ $$0G:(DE-HGF)POF2-234$$a234 - Composition and Dynamics of the Upper Troposphere and Stratosphere (POF2-234)$$cPOF2-234$$fPOF II$$x0 000185592 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000185592 7001_ $$0P:(DE-HGF)0$$aBorrmann, S.$$b1 000185592 7001_ $$0P:(DE-HGF)0$$aSchlager, H.$$b2 000185592 7001_ $$0P:(DE-HGF)0$$aLuo, B.$$b3 000185592 7001_ $$0P:(DE-HGF)0$$aFrey, W.$$b4 000185592 7001_ $$0P:(DE-HGF)0$$aKlingebiel, M.$$b5 000185592 7001_ $$0P:(DE-HGF)0$$aWeigel, R.$$b6 000185592 7001_ $$0P:(DE-Juel1)138125$$aEbert, M.$$b7 000185592 7001_ $$0P:(DE-HGF)0$$aMitev, V.$$b8 000185592 7001_ $$0P:(DE-HGF)0$$aMatthey, R.$$b9 000185592 7001_ $$0P:(DE-HGF)0$$aWoiwode, W.$$b10 000185592 7001_ $$0P:(DE-HGF)0$$aOelhaf, H.$$b11 000185592 7001_ $$0P:(DE-HGF)0$$aDörnbrack, A.$$b12 000185592 7001_ $$0P:(DE-HGF)0$$aStratmann, G.$$b13 000185592 7001_ $$0P:(DE-Juel1)129122$$aGrooß, J.-U.$$b14$$ufzj 000185592 7001_ $$0P:(DE-Juel1)129123$$aGünther, G.$$b15$$ufzj 000185592 7001_ $$0P:(DE-Juel1)129164$$aVogel, B.$$b16$$ufzj 000185592 7001_ $$0P:(DE-Juel1)133396$$aMüller, R.$$b17$$ufzj 000185592 7001_ $$0P:(DE-Juel1)129131$$aKrämer, M.$$b18$$ufzj 000185592 7001_ $$0P:(DE-Juel1)129137$$aMeyer, J.$$b19 000185592 7001_ $$0P:(DE-HGF)0$$aCairo, F.$$b20 000185592 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-14-10785-2014$$gVol. 14, no. 19, p. 10785 - 10801$$n19$$p10785 - 10801$$tAtmospheric chemistry and physics$$v14$$x1680-7324$$y2014 000185592 8564_ $$uwww.atmos-chem-phys.net/14/10785/2014/ 000185592 8564_ $$uhttps://juser.fz-juelich.de/record/185592/files/FZJ-2014-07018.pdf$$yOpenAccess 000185592 8564_ $$uhttps://juser.fz-juelich.de/record/185592/files/FZJ-2014-07018.jpg?subformat=icon-144$$xicon-144$$yOpenAccess 000185592 8564_ $$uhttps://juser.fz-juelich.de/record/185592/files/FZJ-2014-07018.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000185592 8564_ $$uhttps://juser.fz-juelich.de/record/185592/files/FZJ-2014-07018.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000185592 909CO $$ooai:juser.fz-juelich.de:185592$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire 000185592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129122$$aForschungszentrum Jülich GmbH$$b14$$kFZJ 000185592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129123$$aForschungszentrum Jülich GmbH$$b15$$kFZJ 000185592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129164$$aForschungszentrum Jülich GmbH$$b16$$kFZJ 000185592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133396$$aForschungszentrum Jülich GmbH$$b17$$kFZJ 000185592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129131$$aForschungszentrum Jülich GmbH$$b18$$kFZJ 000185592 9132_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0 000185592 9131_ $$0G:(DE-HGF)POF2-234$$1G:(DE-HGF)POF2-230$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and Dynamics of the Upper Troposphere and Stratosphere$$x0 000185592 9141_ $$y2014 000185592 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0 000185592 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000185592 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000185592 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5 000185592 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000185592 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000185592 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000185592 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000185592 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000185592 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000185592 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000185592 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000185592 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0 000185592 9801_ $$aFullTexts 000185592 980__ $$ajournal 000185592 980__ $$aVDB 000185592 980__ $$aUNRESTRICTED 000185592 980__ $$aFullTexts 000185592 980__ $$aI:(DE-Juel1)IEK-7-20101013 000185592 981__ $$aI:(DE-Juel1)ICE-4-20101013