001     185611
005     20240712100908.0
024 7 _ |a 10.5194/angeo-32-1373-2014
|2 doi
024 7 _ |a 0992-7689
|2 ISSN
024 7 _ |a 1432-0576
|2 ISSN
024 7 _ |a 2128/8190
|2 Handle
024 7 _ |a WOS:000345785000001
|2 WOS
024 7 _ |a altmetric:2860658
|2 altmetric
037 _ _ |a FZJ-2014-07037
082 _ _ |a 550
100 1 _ |a Jia, J. Y.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Sea surface temperature as a proxy for convective gravity wave excitation: a study based on global gravity wave observations in the middle atmosphere
260 _ _ |a Katlenburg, Lindau
|c 2014
|b Copernicus
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 185611
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Absolute values of gravity wave momentum flux (GWMF) deduced from satellite measurements by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument and the High Resolution Dynamics Limb Sounder (HIRDLS) are correlated with sea surface temperature (SST) with the aim of identifying those oceanic regions for which convection is a major source of gravity waves (GWs). Our study identifies those latitude bands where high correlation coefficients indicate convective excitation with confidence. This is based on a global ray-tracing simulation, which is used to delineate the source and wind-filtering effects. Convective GWs are identified at the eastern coasts of the continents and over the warm water regions formed by the warm ocean currents, in particular the Gulf Stream and the Kuroshio. Potential contributions of tropical cyclones to the excitation of the GWs are discussed. Convective excitation can be identified well into the mid-mesosphere. In propagating upward, the centers of GWMF formed by convection shift poleward. Some indications of the main forcing regions are even shown for the upper mesosphere/lower thermosphere (MLT).
536 _ _ |a 234 - Composition and Dynamics of the Upper Troposphere and Stratosphere (POF2-234)
|0 G:(DE-HGF)POF2-234
|c POF2-234
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Preusse, P.
|0 P:(DE-Juel1)129143
|b 1
|u fzj
700 1 _ |a Ern, M.
|0 P:(DE-Juel1)129117
|b 2
|u fzj
700 1 _ |a Chun, H.-Y.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gille, J. C.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Eckermann, S. D.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Riese, M.
|0 P:(DE-Juel1)129145
|b 6
|u fzj
773 _ _ |a 10.5194/angeo-32-1373-2014
|g Vol. 32, no. 11, p. 1373 - 1394
|0 PERI:(DE-600)1458425-6
|n 11
|p 1373 - 1394
|t Annales geophysicae
|v 32
|y 2014
|x 1432-0576
856 4 _ |u www.ann-geophys.net/32/1373/2014/
856 4 _ |u https://juser.fz-juelich.de/record/185611/files/FZJ-2014-07037.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/185611/files/FZJ-2014-07037.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/185611/files/FZJ-2014-07037.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/185611/files/FZJ-2014-07037.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:185611
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129143
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129117
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129145
913 2 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF2-230
|0 G:(DE-HGF)POF2-234
|2 G:(DE-HGF)POF2-200
|v Composition and Dynamics of the Upper Troposphere and Stratosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21