000185621 001__ 185621
000185621 005__ 20210129214704.0
000185621 0247_ $$2doi$$a10.1038/ncomms6836
000185621 0247_ $$2WOS$$aWOS:000347682100002
000185621 0247_ $$2altmetric$$aaltmetric:2477179
000185621 0247_ $$2pmid$$apmid:25518969
000185621 0247_ $$2Handle$$a2128/23091
000185621 037__ $$aFZJ-2014-07047
000185621 082__ $$a500
000185621 1001_ $$0P:(DE-HGF)0$$aWang, C.$$b0$$eCorresponding Author
000185621 245__ $$aMeasurement and control of quasiparticle dynamics in a superconducting qubit
000185621 260__ $$aLondon$$bNature Publishing Group$$c2014
000185621 3367_ $$2DRIVER$$aarticle
000185621 3367_ $$2DataCite$$aOutput Types/Journal article
000185621 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1571119334_14381
000185621 3367_ $$2BibTeX$$aARTICLE
000185621 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000185621 3367_ $$00$$2EndNote$$aJournal Article
000185621 520__ $$aSuperconducting circuits have attracted growing interest in recent years as a promising candidate for fault-tolerant quantum information processing. Extensive efforts have always been taken to completely shield these circuits from external magnetic fields to protect the integrity of the superconductivity. Here we show vortices can improve the performance of superconducting qubits by reducing the lifetimes of detrimental single-electron-like excitations known as quasiparticles. Using a contactless injection technique with unprecedented dynamic range, we quantitatively distinguish between recombination and trapping mechanisms in controlling the dynamics of residual quasiparticle, and show quantized changes in quasiparticle trapping rate because of individual vortices. These results highlight the prominent role of quasiparticle trapping in future development of superconducting qubits, and provide a powerful characterization tool along the way.
000185621 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x0
000185621 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000185621 7001_ $$0P:(DE-HGF)0$$aGao, Y. Y.$$b1
000185621 7001_ $$0P:(DE-HGF)0$$aPop, I. M.$$b2
000185621 7001_ $$0P:(DE-HGF)0$$aVool, U.$$b3
000185621 7001_ $$0P:(DE-HGF)0$$aAxline, C.$$b4
000185621 7001_ $$0P:(DE-HGF)0$$aBrecht, T.$$b5
000185621 7001_ $$0P:(DE-HGF)0$$aHeeres, R. W.$$b6
000185621 7001_ $$0P:(DE-HGF)0$$aFrunzio, L.$$b7
000185621 7001_ $$0P:(DE-HGF)0$$aDevoret, M. H.$$b8
000185621 7001_ $$0P:(DE-Juel1)151130$$aCatelani, G.$$b9$$ufzj
000185621 7001_ $$0P:(DE-HGF)0$$aGlazman, L. I.$$b10
000185621 7001_ $$0P:(DE-HGF)0$$aSchoelkopf, R. J.$$b11
000185621 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/ncomms6836$$gVol. 5, p. 5836 -$$p5836$$tNature Communications$$v5$$x2041-1723$$y2014
000185621 8564_ $$uhttps://juser.fz-juelich.de/record/185621/files/1406.7300v2.pdf$$yOpenAccess
000185621 8564_ $$uhttps://juser.fz-juelich.de/record/185621/files/FZJ-2014-07047.pdf$$yOpenAccess
000185621 8564_ $$uhttps://juser.fz-juelich.de/record/185621/files/1406.7300v2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000185621 909CO $$ooai:juser.fz-juelich.de:185621$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000185621 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151130$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000185621 9132_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000185621 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x0
000185621 9141_ $$y2014
000185621 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000185621 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000185621 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000185621 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000185621 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000185621 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10
000185621 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000185621 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000185621 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000185621 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000185621 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000185621 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000185621 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000185621 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000185621 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000185621 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000185621 920__ $$lyes
000185621 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000185621 980__ $$ajournal
000185621 980__ $$aVDB
000185621 980__ $$aUNRESTRICTED
000185621 980__ $$aI:(DE-Juel1)PGI-2-20110106
000185621 9801_ $$aFullTexts