001     185621
005     20210129214704.0
024 7 _ |a 10.1038/ncomms6836
|2 doi
024 7 _ |a WOS:000347682100002
|2 WOS
024 7 _ |a altmetric:2477179
|2 altmetric
024 7 _ |a pmid:25518969
|2 pmid
024 7 _ |a 2128/23091
|2 Handle
037 _ _ |a FZJ-2014-07047
082 _ _ |a 500
100 1 _ |a Wang, C.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Measurement and control of quasiparticle dynamics in a superconducting qubit
260 _ _ |a London
|c 2014
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1571119334_14381
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Superconducting circuits have attracted growing interest in recent years as a promising candidate for fault-tolerant quantum information processing. Extensive efforts have always been taken to completely shield these circuits from external magnetic fields to protect the integrity of the superconductivity. Here we show vortices can improve the performance of superconducting qubits by reducing the lifetimes of detrimental single-electron-like excitations known as quasiparticles. Using a contactless injection technique with unprecedented dynamic range, we quantitatively distinguish between recombination and trapping mechanisms in controlling the dynamics of residual quasiparticle, and show quantized changes in quasiparticle trapping rate because of individual vortices. These results highlight the prominent role of quasiparticle trapping in future development of superconducting qubits, and provide a powerful characterization tool along the way.
536 _ _ |a 424 - Exploratory materials and phenomena (POF2-424)
|0 G:(DE-HGF)POF2-424
|c POF2-424
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Gao, Y. Y.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Pop, I. M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Vool, U.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Axline, C.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Brecht, T.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Heeres, R. W.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Frunzio, L.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Devoret, M. H.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Catelani, G.
|0 P:(DE-Juel1)151130
|b 9
|u fzj
700 1 _ |a Glazman, L. I.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Schoelkopf, R. J.
|0 P:(DE-HGF)0
|b 11
773 _ _ |a 10.1038/ncomms6836
|g Vol. 5, p. 5836 -
|0 PERI:(DE-600)2553671-0
|p 5836
|t Nature Communications
|v 5
|y 2014
|x 2041-1723
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/185621/files/1406.7300v2.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/185621/files/FZJ-2014-07047.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/185621/files/1406.7300v2.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:185621
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)151130
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-424
|2 G:(DE-HGF)POF2-400
|v Exploratory materials and phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21