000185649 001__ 185649
000185649 005__ 20210129214708.0
000185649 0247_ $$2doi$$a10.1103/PhysRevD.90.114504
000185649 0247_ $$2ISSN$$a0556-2821
000185649 0247_ $$2ISSN$$a1089-4918
000185649 0247_ $$2ISSN$$a1550-2368
000185649 0247_ $$2ISSN$$a1550-7998
000185649 0247_ $$2Handle$$a2128/8193
000185649 0247_ $$2WOS$$aWOS:000348730800010
000185649 0247_ $$2altmetric$$aaltmetric:1825656
000185649 037__ $$aFZJ-2014-07074
000185649 082__ $$a530
000185649 1001_ $$0P:(DE-Juel1)132580$$aDürr, Stephan$$b0$$eCorresponding Author$$ufzj
000185649 245__ $$aLattice QCD at the physical point meets $SU\left(2\right)$ chiral perturbation theory
000185649 260__ $$a[S.l.]$$bSoc.$$c2014
000185649 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2014-12-16
000185649 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2014-12-01
000185649 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s185649
000185649 3367_ $$2DataCite$$aOutput Types/Journal article
000185649 3367_ $$00$$2EndNote$$aJournal Article
000185649 3367_ $$2BibTeX$$aARTICLE
000185649 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000185649 3367_ $$2DRIVER$$aarticle
000185649 500__ $$aarXiv:1310.3626
000185649 520__ $$aWe perform a detailed, fully correlated study of the chiral behavior of the pion mass and decay constant, based on 2+1 flavor lattice QCD simulations. These calculations are implemented using tree-level, O(a)-improved Wilson fermions, at four values of the lattice spacing down to 0.054 fm and all the way down to below the physical value of the pion mass. They allow a sharp comparison with the predictions of SU(2) chiral perturbation theory (χPT) and a determination of some of its low energy constants. In particular, we systematically explore the range of applicability of next-to-leading order (NLO) SU(2) χPT in two different expansions: the first in quark mass (x expansion), and the second in pion mass (ξ expansion). We find that these expansions begin showing signs of failure for Mπ≳300 MeV, for the typical percent-level precision of our Nf=2+1 lattice results. We further determine the LO low energy constants (LECs), F=88.0±1.3±0.2 and BMS¯(2 GeV)=2.61(6)(1) GeV, and the related quark condensate, ΣMS¯(2 GeV)=(272±4±1 MeV)3, as well as the NLO ones, ℓ¯3=2.6(5)(3) and ℓ¯4=3.7(4)(2), with fully controlled uncertainties. We also explore the next-to-next-to-leading order (NNLO) expansions and the values of NNLO LECs. In addition, we show that the lattice results favor the presence of chiral logarithms. We further demonstrate how the absence of lattice results with pion masses below 200 MeV can lead to misleading results and conclusions. Our calculations allow a fully controlled, ab initio determination of the pion decay constant with a total 1% error, which is in excellent agreement with experiment.
000185649 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000185649 542__ $$2Crossref$$i2014-12-16$$uhttp://link.aps.org/licenses/aps-default-license
000185649 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000185649 7001_ $$0P:(DE-HGF)0$$aFodor, Zoltán$$b1
000185649 7001_ $$0P:(DE-HGF)0$$aHoelbling, Christian$$b2
000185649 7001_ $$0P:(DE-Juel1)132171$$aKrieg, Stefan$$b3$$ufzj
000185649 7001_ $$0P:(DE-HGF)0$$aKurth, Thorsten$$b4
000185649 7001_ $$0P:(DE-HGF)0$$aLellouch, Laurent$$b5
000185649 7001_ $$0P:(DE-Juel1)132179$$aLippert, Thomas$$b6$$ufzj
000185649 7001_ $$0P:(DE-HGF)0$$aMalak, Rehan$$b7
000185649 7001_ $$0P:(DE-HGF)0$$aMétivet, Thibaut$$b8
000185649 7001_ $$0P:(DE-HGF)0$$aPortelli, Antonin$$b9
000185649 7001_ $$0P:(DE-HGF)0$$aSastre, Alfonso$$b10
000185649 7001_ $$0P:(DE-Juel1)161563$$aSzabó, Kálmán$$b11$$ufzj
000185649 77318 $$2Crossref$$3journal-article$$a10.1103/physrevd.90.114504$$b : American Physical Society (APS), 2014-12-16$$n11$$p114504$$tPhysical Review D$$v90$$x1550-7998$$y2014
000185649 773__ $$0PERI:(DE-600)2844732-3$$a10.1103/PhysRevD.90.114504$$gVol. 90, no. 11, p. 114504$$n11$$p114504$$tPhysical review / D$$v90$$x1550-7998$$y2014
000185649 8564_ $$uhttp://arxiv.org/abs/arXiv:1310.3626
000185649 8564_ $$uhttps://juser.fz-juelich.de/record/185649/files/FZJ-2014-07074.pdf$$yOpenAccess
000185649 8564_ $$uhttps://juser.fz-juelich.de/record/185649/files/FZJ-2014-07074.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000185649 8564_ $$uhttps://juser.fz-juelich.de/record/185649/files/FZJ-2014-07074.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000185649 8564_ $$uhttps://juser.fz-juelich.de/record/185649/files/FZJ-2014-07074.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000185649 909CO $$ooai:juser.fz-juelich.de:185649$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000185649 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132580$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000185649 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132171$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000185649 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000185649 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161563$$aForschungszentrum Jülich GmbH$$b11$$kFZJ
000185649 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000185649 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000185649 9141_ $$y2014
000185649 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000185649 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000185649 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000185649 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000185649 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000185649 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000185649 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000185649 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000185649 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000185649 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000185649 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000185649 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000185649 920__ $$lyes
000185649 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000185649 980__ $$ajournal
000185649 980__ $$aVDB
000185649 980__ $$aUNRESTRICTED
000185649 980__ $$aFullTexts
000185649 980__ $$aI:(DE-Juel1)JSC-20090406
000185649 9801_ $$aFullTexts