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We perform a detailed, fully correlated study of the chiral behavior of the pion mass and decay constant,
based on 2þ 1 flavor lattice QCD simulations. These calculations are implemented using tree-level,
OðaÞ-improved Wilson fermions, at four values of the lattice spacing down to 0.054 fm and all the way
down to below the physical value of the pion mass. They allow a sharp comparison with the predictions of
SUð2Þ chiral perturbation theory (χPT) and a determination of some of its low energy constants. In
particular, we systematically explore the range of applicability of next-to-leading order (NLO) SUð2Þ χPT
in two different expansions: the first in quark mass (x expansion), and the second in pion mass
(ξ expansion). We find that these expansions begin showing signs of failure for Mπ ≳ 300 MeV, for the
typical percent-level precision of our Nf ¼ 2þ 1 lattice results. We further determine the LO low energy
constants (LECs), F ¼ 88.0� 1.3� 0.2 and BMSð2 GeVÞ ¼ 2.61ð6Þð1Þ GeV, and the related quark
condensate, ΣMSð2 GeVÞ ¼ ð272� 4� 1 MeVÞ3, as well as the NLO ones, l̄3 ¼ 2.6ð5Þð3Þ and
l̄4 ¼ 3.7ð4Þð2Þ, with fully controlled uncertainties. We also explore the next-to-next-to-leading order
(NNLO) expansions and the values of NNLO LECs. In addition, we show that the lattice results favor the
presence of chiral logarithms. We further demonstrate how the absence of lattice results with pion masses
below 200 MeV can lead to misleading results and conclusions. Our calculations allow a fully controlled,
ab initio determination of the pion decay constant with a total 1% error, which is in excellent agreement
with experiment.
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I. INTRODUCTION

The study of the strong interaction at low energy is
hampered by the highly nonlinear nature of quantum
chromodynamics (QCD). Thus, large scale numerical
simulations in lattice QCD have become an essential tool
for investigating, from first principles, the nonperturbative
dynamics of the theory in that domain. To account for all of
the relevant physics at the few percent level in low-energy
observables, one must include the vacuum fluctuations of
the up, down and strange quarks. The heavier quarks
contribute corrections in inverse powers of the quark mass
squared and of the number of colors, which can be
neglected at that level of precision. Moreover, for most
QCD observables, isospin breaking effects, which are
proportional to powers of the small up-down mass differ-
ence, ðmd −muÞ, and of the fine structure constant, α, can
also be neglected. Thus, today’s state-of-the-art calcula-
tions are performed with Nf ≥ 2þ 1 flavors of sea quarks,
where the 2 stands for mass-degenerate u and d quarks with

mu ¼ md ¼ mud ≡ ðmu þmdÞ=2 and the 1 for a more
massive s quark with mass ms.
One of the main challenges has been to mitigate the fast

rising cost of these calculations as the average mass of the
simulated up and down quarks is lowered toward its very
small physical value, corresponding to a pion mass
Mπ ≃ 135 MeV. Up until fairly recently, the values of
mud reached were too large to allow a controlled extrapo-
lation of the results to the physical mass point. However, in
the past few years, a handful of groups has been able to
enter the small mass region, Mπ ≲ 200 MeV, with Nf ≥
2þ 1 [1–8]. In particular, we recently performed Nf ¼
2þ 1 simulations which reach down to Mπ ≃ 120 MeV
(i.e. even below the physical point) on lattices with sizes L
up to 6 fm and lattice spacings down to a≃ 0.054 fm [4,5].
This puts us in a very favorable position to probe the low-
energy and low-mass domain of QCD, known as the chiral
regime.
In this paper we investigate SUð2Þ chiral perturbation

theory (χPT), which is a systematic expansion around the
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mu ¼ md ¼ 0 chiral limit, at fixedms (and possiblymc;…)
[9,10]. In the corresponding chiral effective Lagrangian
there are two low-energy constants (LECs) at leading
Oðp2Þ:

F≡ Fπjmu;md→0; B≡ −
h0jūuj0i

F2
π

����
mu;md→0

; ð1Þ

where Fπ is the pion, leptonic decay constant, and there are
seven more at next-to-leading Oðp4Þ, denoted by liðμÞ,
i ¼ 1;…; 7 [10]. By definition the LECs are independent of
the u and d quark masses, but do depend on the masses of
the other four quarks. They also acquire a scale depend-
ence, after renormalization. It is conventional to define
them at the renormalization scale μ¼M̂πþ ¼134.8ð3ÞMeV,
where M̂πþ is the πþ meson mass, corrected for electro-
magnetic effects [11]. Up to negligible corrections, it is
also equal to M̄π , the pion mass in the isospin limit
(mu −md → 0 at fixed mud) [11], in which our Nf ¼
2þ 1 lattice calculations are performed.
The observables which we consider here areM2

π and Fπ .
Their expansions in powers of the quark mass are known to
next-to-next-to-leading order (NNLO) in the SUð2Þ chiral
effective theory. In the isospin limit, the explicit expres-
sions may be written in the form,1 mu ¼ md ¼ mud [12],

M2
π ¼ M2

�
1 −

1

2
x ln

Λ2
3

M2
þ 17

8
x2
�
ln
Λ2
M

M2

�
2

þ x2kM þOðx3Þ
�
;

Fπ ¼ F

�
1þ x ln

Λ2
4

M2
−
5

4
x2
�
ln
Λ2
F

M2

�
2

þ x2kF þOðx3Þ
�
: ð2Þ

The expansion parameter is given by

x ¼ M2

ð4πFÞ2 ; M2 ¼ 2Bmud ¼
2mudΣ
F2

: ð3Þ

The Oðp6Þ LECs, kM and kF, in Eq. (2) are also
independent of the u and d quark masses. The scales in
the quadratic logarithms can be written in terms of Oðp4Þ
LECs through

ln
Λ2
M

M2
¼ 1

51

�
60 ln

Λ2
12

M2
− 9 ln

Λ2
3

M2
þ 49

�
;

ln
Λ2
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M2
¼ 1

30

�
30 ln

Λ2
12

M2
þ 6 ln

Λ2
3

M2
− 6 ln

Λ2
4

M2
þ 23

�
; ð4Þ

where we have defined lnΛ2
12 ¼ ð7 lnΛ2

1 þ 8 lnΛ2
2Þ=15.

The logarithmic scales Λn in Eqs. (2)–(4) are related to
the effective coupling constants l̄3; l̄4 of the chiral
Lagrangian at running scale M̂πþ through

l̄n ¼ ln
Λ2
n

M̂2
πþ

; n ¼ 1;…; 7 and 12; ð5Þ

where we have generalized the definition to also include
Λ12 and l̄12.
It is interesting to note that once we fix Λ3 and Λ4, which

appear already at NLO in the expansions of Fπ andMπ , the
new logarithmic scales ΛM and ΛF are linearly related. This
reduces from eight to seven the number of parameters in a
combined fit of the dependence of M2

π and Fπ on mud. In
particular this means that with precise enough lattice results
for the pair ðM2

π; FπÞ, at four or more values ofmud, one can
in principle determine the seven independent LECs which
appear in the expansions of Eq. (2) as well as test the
compatibility of the lattice results with NNLO χPT. Such
an NNLO analysis is still very demanding by today’s
standards.
The situation is significantly simpler if the expressions of

Eq. (2) are truncated at NLO. Then, only four LECs appear,
B and F at Oðp2Þ, and l̄3 and l̄4 at Oðp4Þ. This is the
expansion considered in previous Nf ≥ 2þ 1 work
[2,6,7,13–20]. Of those, the only calculation whose sim-
ulations reach all the way down to the physical up-down
quark mass is [6]. In that work, NNLO effects are also
investigated.
Work on the x expansion has also been performed using

Nf ¼ 2 lattice QCD simulations in [21–29]. In [25], the
study includes NNLO fits, albeit with priors on Λ12 and
kM;F. Such work has provided interesting information
about SUð2Þ χPT. However, because the effects of the
omitted strange, sea quark in these calculations cannot be
quantified a priori, the conclusions which are drawn from
such studies will differ qualitatively and quantitatively from
ours by an unknown amount. Thus, we do not consider
them further here and refer the interested reader to [11] and
the original papers for further information.
As with any expansion, the chiral expressions can be

reorganized in terms of any other parameter which is
related to x of Eq. (3), through a power series in x. In
particular, one can invert Eq. (2), and express M and F as
an expansion in

ξ≡ M2
π

ð4πFπÞ2
: ð6Þ

The corresponding expressions read [11]
1Here and in the following, we work in the normalization

Fπ ≡ fπ=
ffiffiffi
2

p ¼ 92.2 MeV.
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This expansion has the advantage that its parameter ξ is
given in terms of the physical mass and decay constant of
the particle which is actually contributing to the process.
Thus, it resums a number of higher-order contributions
which are known to be present, and therefore might exhibit
better convergence. In Eq. (7), the scales of the quadratic
logarithms are determined by Λ1;…;Λ4 [11]:
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Here we study SUð2Þ χPT in both the x and ξ
expansions. While most of the work concerns the NLO
expansions, we also investigate the NNLO expansions, in
particular in regards to its range of applicability.
The remainder of the paper is organized as follows. In

Sec. II we detail the lattice ensembles used in the present
study and the various steps required to determine the chiral
observables Mπ , Fπ and the quark masses from our
correlation functions. We also discuss how we perform
the necessary renormalizations and how we account for the
various sources of lattice systematic errors in our analyses.
In Sec. III we systematically explore the range of appli-
cability, in pion or light-quark mass, of the various SUð2Þ
χPT expressions for M2

π=2mud and Fπ. In particular, we
assume that SUð2Þ χPT is valid around Mph

π , where here
and below the superscript “ph” stands for “physical” or
from experiment, and explore how far up one can go in pion
or light-quark mass, while still maintaining an acceptable
description of the lattice results. Then, having established
the range of applicability of SUð2Þ χPT for M2

π=2mud and
Fπ , we devote Sec. IV to a determination of the corre-
sponding LO, NLO and NNLO LECs, as well as of Fπ and
the quark condensate. In particular, we perform a complete
systematic error analysis for these quantities. Our main
results are summarized in Table IV. In Sec. V we show that
the lattice results favor the presence of chiral logarithms.
We also show how the absence of lattice results withMπ ≤
200 MeV can lead to misleading results and conclusions.
In the paper’s final section, Sec. VI, we present our
conclusions. We also provide an appendix in which we
discuss our implementation of the ξ expansion and the
ensuing constraints on the LECs.

II. DETERMINATION OF LATTICE QUANTITIES
AND ASSOCIATED SYSTEMATIC ERRORS

In this section, we describe how we compute the values
of Mπ , Fπ and mud required for the χPT studies described
below. We do so for a range of mud around and above its
physical value to explore the range of applicability of
SUð2Þ χPT. We also do so for a large variety of lattice
parameters to be able to control all sources of systematic
uncertainties.
As first proposed in [1], we determine the central values

and statistical and systematic uncertainties of our results
from histograms obtained by combining the results from a
variety of different analyses. Indeed, for each step of the
analysis, we consider a wide range of possible procedures
whose effects we propagate to the end of the calculation.
Thus, our analyses form a tree where each path corresponds
to one of the many different possible ways in which to
compute a given observable.
The trunk of the tree corresponds to the primary

observables. In the present study, they are the hadron
correlators. Thus, the first level of branching occurs in
choosing the time interval over which these correlators are
fitted to obtain the bare masses and decay constants in
lattice units. The next level of branching is a result of the
different ways which we have to set the lattice spacing.
Note that at each level, these same twigs are sprouted from
every branch. For quantities which require renormalization,
an additional level of branching arises, corresponding to the
different ways which we have to compute the renormaliza-
tion constants. Note that the renormalization constants are
themselves the result of a tree, as described below.
At that stage in the analysis, we have obtained, in all

possible ways, the renormalized results in physical units for
each simulation, which we will need to study SUð2Þ χPT.
Note that throughout our analysis we fully take into account
statistical correlations as well as correlations induced by
quantities such as the lattice spacing or the renormalization
constants, which are shared by all ensembles at a given β.
In the remainder of the section, we detail the ingredients

of the analysis briefly described here, including the
procedure used to determine the associated systematic
uncertainties.

A. Simulation details

The study presented here is based on the 47 Nf ¼ 2þ 1
ensembles that we produced for determining the light quark
masses [4,5]. They were generated using a tree-level
Oða2Þ-improved Symanzik gauge action [30–33], together
with tree-level clover-improved Wilson fermions [34],
coupled to links which have undergone two levels of
Hypercubic-exponential (HEX) smearing [35–37].
Details of the action and simulations are given in [5].
Here we mention that we use the 26 large-volume ensem-
bles that were generated at four values of the lattice spacing
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spanning the range 0.054 fm ≲ a ≲ 0.093 fm. We found
that the low momentum cutoff of the coarsest lattice in [5],
with a ¼ 0.116 fm, does not allow a precise determination
of the renormalization constant of the axial current, ZA,
required for the computation of Fπ. The uncertainty
associated with its determination, of order 1.5%, is suffi-
ciently large that it negates any improvement the inclusion
of the results at that lattice spacing could bring to the final
results. Thus, as in [38], we have chosen not to incorporate
the results of these simulations in our analysis.
The strange quark mass in these simulations is varied

around the physical value to allow for a precise interpo-
lation to that value. For the two lattice spacings a ≈ 0.077,
0.093 fm, simulations were performed all the way down to
the physical value of mud and even below. For the
remaining two lattice spacings (a ≈ 0.065, 0.054 fm), the
pion masses reached are 180 and 220 MeV, respectively.
Thus, our simulations allow us to replace the usual
extrapolations to physical mud by an interpolation, but
also to systematically probe the SUð2Þ chiral regime.
The parameters of the simulations used in this work are

summarized in Tables I and II, together with illustrative
results for the lattice spacing, renormalization constants and
observables that are discussed below.

B. Strategy for determining masses and decay constants

We determine aMπ and aFπ=ZA for each simulation
point by performing a combined fit of the asymptotic time
behavior of the two, zero-momentum correlators,P

~xhAL
0 ð~x; x0ÞPG†ð0Þi and

P
~xhPGð~x; x0ÞPG†ð0Þi, to the

appropriate asymptotic forms, taking correlations between
the two channels into account. Here A0 is the time
component of the axial-vector current and P is the
corresponding pseudoscalar density. Both are appropriately
tree-levelOðaÞ improved [34,39]. These operators have the
flavor quantum numbers appropriate for annihilating a πþ.
The superscript L stands for “local” (i.e. all quark fields are
at the same spacetime point) and G for “Gaussian.” Indeed,

to reduce the relative weight of excited states in the
correlation functions, Gaussian sources and sinks are used
(except for the axial current, of course), with a radius of
about 0.32 fm, which was found to be a good choice [1].
The kaon masses, aMK , are obtained from a fit to the
corresponding, two-point, pseudoscalar density correlators.
To study the x expansion discussed above, we need

to determine the quark masses mud and ms for each
simulation point. Here we follow the OðaÞ-improved
ratio-difference method put forward in [4,5]. Thus, for
each simulation point we determine the bare axial-Ward-
identity mass combinations 2mPCAC

ud ðg0Þ ¼ ðmu þ
mdÞPCACðg0Þ and ðms þmudÞPCACðg0Þ from the relevant
ratio of two-point functions, ∂0

P
~xhAL

0 ð~x; x0ÞPG†ð0Þi=P
~xhPGð~x; x0ÞPG†ð0Þi, where ∂μ is the symmetric deriva-

tive. The operators are appropriately tree-level OðaÞ
improved. From this we obtain the ratio of renormalized,
improved quark masses, rimp ≡mAWI

s ðμÞ=mAWI
ud ðμÞ,

through rimp ¼ mPCAC
s ðg0Þ=mPCAC

ud ðg0Þ½1þOðaÞ�, where
the OðaÞ improvement terms are given in [5] and μ is a
renormalization scale. Because the numerator and denom-
inator in this ratio renormalize identically, all scale and
scheme dependence cancels. This ratio is then combined
with the difference of renormalized, improved vector-
Ward-identity masses, ðms −mudÞVWIðμÞ ¼ dimpðg0Þ=
ðaZSðaμ; g0ÞÞ, to obtain the renormalized values mudðμÞ
and msðμÞ of the quark masses for a given simulation. Here
dimpðg0Þ ¼ ðambare

s − ambare
ud Þðg0Þ½1þOðaÞ�, where the

OðaÞ improvement terms are also given in [5] and where
ambare

ud;sðg0Þ are the bare Lagrangian masses used at bare
coupling g0, equivalent to a hopping-parameter value, κ,
through the tree-level formula ambare ¼ 1

2
ð1κ − 8Þ. In the

definition of the mass difference, ZSðaμ; g0Þ is the renorm-
alization constant of the nonsinglet scalar density in
any chosen scheme at scale μ [4,5]. Here we will mainly
use its renormalization group invariant (RGI) value,
which is regularization scheme and renormalization scale
independent.

C. Excited state contributions

A source of uncertainty, which often proves important, is
the contamination by excited states of the desired ground
state in two-point correlators. As described above, this
contamination is reduced by working with extended
sources and sinks. Moreover, we tested 1-state and 2-state
fits, and found complete agreement if the 1-state fits start at
tmin ≃ 0.7 fm for the pseudoscalar meson channels and
from tmin ≃ 0.8 fm for theΩ. In lattice units this amounts to
atmin ¼ f8; 9; 11; 13g for β ¼ f3.5; 3.61; 3.7; 3.8g (and
∼20% later for baryons). To estimate any remaining excited
state effects, we repeat our analysis with an even more
conservative fit range, starting at atmin ¼ f9; 11; 13; 15g
for mesons and ∼20% later for baryons. The end of the fit
interval is always chosen to be atmax ¼ 2.7 × atmin or

TABLE I. Illustrative results for the lattice spacing and the
renormalization constants at our four values of β. The renorm-
alization constant 1=ZRGI

S is required to convert bare quark
masses to masses renormalized in the Nf ¼ 3 RGI scheme. To
convert results to the MS scheme at scale 2 GeV, the numbers in
the third column of the table must be multiplied by 0.750 [5]. ZA
is used to correctly normalize Fπ . In the results above, the first
error is statistical and the second is systematic. The main text
explains how these errors are obtained as well as why the results
can only be used to reproduce qualitatively the extensive analyses
performed in this paper.

β a [fm] 1=ZRGI
S ZA

3.5 0.0904(10)(2) 1.47(2)(3) 0.9468(5)(56)
3.61 0.0755(11)(3) 1.50(3)(2) 0.9632(4)(53)
3.7 0.0647(11)(3) 1.54(3)(3) 0.9707(3)(35)
3.8 0.0552(8)(1) 1.58(1)(1) 0.9756(1)(15)
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T=2 − 1 for lattices with a time extent shorter than
5.4 × atmin. In total, this yields two combined, time-fit
intervals.

D. Lattice spacing

To set the lattice spacing, we follow [1] and use the Ω
baryon mass. Thus, we perform a combined interpolation to

the physical mass point of our results for aMΩ at all four
values of β, with the following functional form:

aMΩ ¼ aMph
Ω ðβÞ

�
1þ cs

��
aMss̄

aMΩ

�
2

−
�
Mss̄

Mph
Ω

�
2

ph

	

þ cud

��
aMπ

aMΩ

�
2

−
�
M̂πþ

Mph
Ω

�
2

ph

	�
; ð9Þ

TABLE II. Parameters of the simulations used in this work and illustrative results for the quantities ZS × amud, aMss̄, aMπ and
aFπ=ZA. Here, ambare denotes the bare Wilson mass in lattice units, equivalent to a hopping-parameter value, κ, through the tree-level
formula ambare ¼ 1

2
ð1κ − 8Þ. In the results, the first error is statistical and the second is systematic, and they are obtained as described in

the text. For the bare, subtracted ZS × amud, obtained as described in the text, the systematic error is 0 for the number of digits given and
is not reported. The main text explains how these errors are obtained as well as why the results can only be used to reproduce
qualitatively the extensive analyses performed in this paper. The column #traj. gives the number of trajectories generated for each
ensemble. Measurements are made every ten or five trajectories, as indicated by the first number in parentheses in column #traj. For
observables used in this work, these separations are sufficient in most cases, as confirmed by a binning study (repeated here) and a more
general study of autocorrelations reported in [5]. The only exceptions correspond to cases where bins are required to saturate the
statistical errors. For simulations which require binning, the size of the bin (in number of trajectories) is indicated by a second number in
parentheses in column #traj. The absence of such a number implies that no binning is required. For additional information about the
simulations, we refer the reader to [5] where the generation of these gauge ensembles is described at length.

T × L3 ambare
ud ambare

s #traj.(m)(b) ZS × amud aMss̄ aMπ aFπ=ZA

β ¼ 3.5
48 × 243 −0.031 −0.006 3000(10) 0.025543(58) 0.35006(49)(06) 0.25362(51)(04) 0.06078(38)(01)
48 × 243 −0.036 −0.006 1800(10) 0.020246(72) 0.34592(64)(04) 0.22495(71)(06) 0.05859(50)(01)
48 × 243 −0.0437 −0.006 3900(10) 0.011891(50) 0.33967(45)(08) 0.17238(49)(02) 0.05264(34)(01)
64 × 243 −0.041 −0.012 1020(10) 0.014261(76) 0.31750(94)(02) 0.18787(80)(16) 0.05383(81)(04)
64 × 323 −0.0463 −0.012 1065(10) 0.008534(51) 0.31341(78)(45) 0.14435(55)(40) 0.05004(59)(03)
64 × 323 −0.048 −0.0023 1500(10) 0.007298(42) 0.34965(74)(02) 0.13480(61)(12) 0.04982(58)(01)
64 × 323 −0.049 −0.006 1100(10) 0.005839(62) 0.33393(88)(33) 0.12105(85)(16) 0.04837(82)(01)
64 × 323 −0.049 −0.012 1000(5) 0.005633(49) 0.31033(68)(06) 0.11733(63)(01) 0.04800(67)(01)
64 × 483 −0.0515 −0.012 1200(5)(3) 0.002869(33) 0.30807(86)(08) 0.08412(55)(12) 0.04625(62)(01)
64 × 643 −0.05294 −0.006 1100(5) 0.001508(28) 0.32813(78)(31) 0.06127(59)(05) 0.04439(74)(04)

β ¼ 3.61
48 × 323 −0.02 0.0045 2100(5) 0.018409(29) 0.29895(46)(08) 0.19884(38)(10) 0.04898(25)(01)
48 × 323 −0.02 −0.0042 1750(5) 0.018131(29) 0.26546(42)(10) 0.19653(40)(05) 0.04802(26)(01)
48 × 323 −0.028 0.0045 3910(10) 0.010095(32) 0.29559(55)(17) 0.14853(49)(01) 0.04408(33)(01)
48 × 323 −0.03 0.0045 2000(5) 0.008069(34) 0.29298(58)(15) 0.13218(50)(06) 0.04262(38)(01)
48 × 323 −0.03 −0.0042 1450(5) 0.007819(37) 0.26026(64)(11) 0.12944(59)(02) 0.04207(38)(01)
48 × 483 −0.03121 0.0045 2200(5) 0.006761(17) 0.29264(49)(11) 0.12097(29)(02) 0.04233(24)(01)
48 × 483 −0.033 0.0045 2100(10) 0.004931(20) 0.29094(80)(18) 0.10251(48)(04) 0.04005(37)(01)
48 × 483 −0.0344 0.0045 1100(5) 0.003432(23) 0.29074(87)(25) 0.08611(53)(13) 0.03921(37)(03)
72 × 643 −0.0365 −0.003 1004(10) 0.000987(11) 0.25928(102)(32) 0.04646(43)(15) 0.03585(62)(01)

β ¼ 3.7
64 × 323 −0.015 0.05 1170(5) 0.014641(28) 0.38880(73)(06) 0.17117(55)(06) 0.04272(42)(01)
64 × 323 −0.015 0.0 1115(5) 0.014221(31) 0.23213(75)(01) 0.16434(77)(03) 0.04071(49)(01)
64 × 323 −0.0208 0.001 1150(5) 0.008274(31) 0.23284(98)(08) 0.12491(98)(07) 0.03607(55)(01)
64 × 323 −0.0208 0.0 1030(5) 0.008221(32) 0.22768(119)(09) 0.12456(106)(05) 0.03661(57)(01)
64 × 323 −0.0208 −0.005 1405(5) 0.008229(22) 0.20825(62)(06) 0.12489(64)(05) 0.03589(41)(01)
64 × 483 −0.0254 0.0 1420(5) 0.003540(16) 0.22591(80)(14) 0.08168(55)(01) 0.03304(40)(01)
64 × 483 −0.0254 −0.005 1320(5) 0.003458(20) 0.20437(55)(21) 0.08047(33)(14) 0.03269(50)(01)
64 × 643 −0.027 0.0 1045(5) 0.001951(08) 0.22353(52)(02) 0.06030(29)(06) 0.03303(43)(01)

β ¼ 3.8
64 × 323 −0.014 0.003 1325(5) 0.009293(17) 0.20360(55)(06) 0.12304(52)(01) 0.03182(27)(01)
64 × 323 −0.014 0.0 1055(5) 0.009199(18) 0.18987(51)(15) 0.12071(55)(17) 0.03123(26)(01)
64 × 483 −0.019 0.003 1045(5)(7) 0.004225(11) 0.20088(88)(03) 0.08237(102)(06) 0.02783(34)(01)
64 × 483 −0.019 0.0 2280(10)(7) 0.004217(10) 0.18743(105)(07) 0.08199(85)(01) 0.02800(40)(01)
144 × 643 −0.021 0.0 1200(10)(4) 0.002203(05) 0.18801(53)(05) 0.05984(22)(01) 0.02688(38)(01)
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where ðMss̄Þ2 ¼ 2M2
K −M2

π . In (9), there is, of course, one
parameter aMph

Ω per lattice spacing, but we find that our fits
do not require the parameters cs;ud to be β dependent.
Moreover, for the range of quark masses considered, we
find that we do not need higher order terms in the mass
expansion. Thus, these fits have a total of seven parameters.
To estimate the systematic uncertainties in our final

results associated with the determination of the lattice
spacing, we consider 2 × 2 ¼ 4 different procedures for
its computation, which we propagate throughout our
analysis. In particular, we consider two different time-
fitting ranges for the extraction of aMΩ in each simulation
(atmin ¼ f10; 11; 13; 16g or atmin ¼ f11; 13; 16; 18g for
β ¼ f3.5; 3.61; 3.7; 3.8g) to estimate the possible effects
of excited state contributions to the two-point functions and
two pion cuts in the mass interpolation fits described above
(380 or 480 MeV), to estimate the uncertainties associated
with the interpolation of aMΩ to the physical mass point.
This gives us a total of four values of the lattice spacing for
each β. While each of these procedures enters individually
in our determination of systematic uncertainties for all
quantities which depend on the lattice spacing, we give in
Table I illustrative numbers, whose central values are the
fit-quality weighted averages of the results from the differ-
ent procedures and whose statistical errors are the variance
of these central values over 2000 bootstrap samples. The
systematic errors are obtained from the variance over the
procedures.

E. Renormalization

To determine the required renormalization constants we
use the nonperturbative renormalization and running tech-
niques developed in [4,5,40], which are based on the
regularization independent (RI)/momentum substraction
scheme (MOM) methods à la Rome-Southampton [41].
For ZS, we follow [5] and ZA is determined as in [38]. As
described in [5], the calculation of these constants is
performed using 20 fully independent Nf ¼ 3 simulations
at the same four values of β as the Nf ¼ 2þ 1 produc-
tion runs.
To compute the systematic uncertainties associated with

renormalization on our final results, we consider six
different procedures for the determination of ZS and three
for ZA, as described in detail in [5] and [38], respectively.
Here we simply outline the different procedures.
The renormalization of quark masses is performed in

three steps [5]. We first compute ZS in a MOM scheme at
an intermediate scale μ0, which is low enough that dis-
cretization errors on the renormalization constant are under
control. We then run the results nonperturbatively in that
scheme up to a fully perturbative scale μ ¼ 4 GeV where
they are converted nonperturbatively to the usual massless,
Nf ¼ 3, RI/MOM scheme. Values in other schemes are
then obtained using renormalization-group-improved per-
turbation theory at Oðα3sÞ [42], with negligible uncertainty.

These three steps lead to six procedures in the following
way. In step 1 we consider three different MOM schemes to
determine the uncertainties associated with the choice
of an intermediate scale μ0 and with the chiral extrapolation
required to define the RI/MOM scheme. These correspond
to the scale and quark-mass pairs, fμ0½GeV�;
mRGI

ref ½MeV�g ¼ ff2.1; 0g; f2.1; 70g; f1.3; 70gg. The addi-
tional factor of 2 comes from the two ways in which we
extrapolate the nonperturbative running to the continuum
limit and matching factors, either assuming that theOðαsaÞ
or Oða2Þ terms dominate. Finally, since these analyses
depend on the value of a, these six procedures are carried
out for each one of the two procedures used to determine
the lattice spacing at each β.
ZA is a finite renormalization and therefore does not have

a scale or scheme dependence. Nevertheless, we must find a
window, at large values of the squared-momentum,
p2 ≫ ΛQCD, of the quark three-point function used to
determine ZA, in which this correlation function is approx-
imately constant. For such momenta the correlation func-
tion is dominated by perturbation theory and allows for a
reliable extraction of ZA. To estimate the uncertainties
associated with the choice of this window and with possible
ðapÞ2 discretization corrections, we fit our results for the
relevant three-point function to the functional form ZA þ
AðamqÞ þ BðapÞ2 for three different ranges in p2. Here,
amq is the common, Nf ¼ 3, bare partially conserved axial
current (PCAC) mass. For all four β these three ranges
begin at p2 ¼ 3.35, 4.37 and 5.52 GeV2. These values of
p2 are large enough that we are not sensitive to subleading
operator product expansion (OPE) contributions propor-
tional to inverse powers of p2. The upper bounds of the fit
ranges are chosen to be 1.5=a in all cases. This is below
π=ð2aÞ which we found in [5] is a region in which
discretization errors on the RI/MOM correlation functions
are subdominant.
We provide in Table I illustrative results for 1=ZRGI

S and
ZA for the four values of the lattice spacing used in our
study. Their central values are the fit quality weighted
averages of the results from the different procedures, and
their statistical errors are the variance of these central values
over 2000 bootstrap samples. Their systematic uncertain-
ties are obtained from the variance over the different
procedures.
The results for a, 1=ZS and ZA in Table I are only

illustrative, because they cannot be naively combined with
the observables given in Table II to perform a fully self-
consistent analysis such as the one presented below. Indeed
in our analysis, the statistical and systematic uncertainties
associated with these quantities are propagated in a fully
consistent manner to our final results by including them in
our resampling and systematic error loops. Such an analysis
requires having the full statistical and systematic error
distributions of the quantities in Tables II and I, as well as
their correlations.
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F. Finite-volume corrections

Because our calculations are performed in large but finite
boxes, our results for Fπ and Mπ suffer from finite-volume
corrections. These effects have been determined at one loop
in SUð2Þ χPT in [43]. In [44] they have been computed to
three loops for Mπ and two loops for Fπ, up to negligibly
small exponential corrections. Since the expressions for the
latter involve Oðp4Þ LECs at two loops, some of which we
cannot self-consistently determine here, we prefer to rely
on the one-loop formulas, which can be written in terms of
quantities which we calculate directly. The difference is a
correction on an already small correction.
In the ξ expansion, the one-loop finite-volume correc-

tions are given by [43]

M2
πðLÞ
M2

π
− 1 ¼ 1

4
ξ~g1ðMπLÞ þOðξ2Þ; ð10Þ

FπðLÞ
Fπ

− 1 ¼ −ξ~g1ðMπLÞ þOðξ2Þ; ð11Þ

where ξ is defined in Eq. (6). Analogous results are
obtained for the x expansion. The shape function ~g1ðxÞ
has a well behaved large-argument expansion in terms of
Bessel functions of the second kind, which themselves can
be expanded asymptotically:

~g1ðzÞ ¼
24

z
K1ðzÞ þ

48ffiffiffi
2

p
z
K1ð

ffiffiffi
2

p
zÞ

þ 32ffiffiffi
3

p
z
K1ð

ffiffiffi
3

p
zÞ þ 24

2z
K1ð2zÞ þ � � � ð12Þ

K1ðzÞ ¼
ffiffiffiffiffi
π

2z

r
e−z

�
1þ 3

8z
−

3 × 5

2ð8zÞ2 þ
3 × 5 × 21

6ð8zÞ3

−
3 × 5 × 21 × 45

24ð8zÞ4 þ � � �
�

ð13Þ

In the first instance, we include the corrections of
Eq. (11) (and the corresponding ones in the x expansion),
directly into the fit functions given in Eq. (15) [and in
Eq. (14) for the x expansion]. We find that the subtraction
of finite-volume effects on Fπ significantly improves the fit
quality. The corrections on M2

π , which are 4 times as small
and significantly smaller than statistical errors, do not
improve the χ2 of the fits nor do they change the results.
For our simulation parameters, the one-loop finite-

volume effects on Fπ are typically 0.5% and never exceed
1.1%. Thus, higher-order corrections are expected to be
much smaller than our statistical errors. To check this, we
perform a second set of fits in which we multiply the right-
hand sides (RHSs) of each of the two equations in (11) (and
the equivalent expressions in the x expansion) by a
coefficient which is treated as an additional free parameter
in these fits. Thus, each of our ξ and x expansion fits have
two additional parameters. These parameters are 1 if the
NLO estimate of finite-volume corrections is exact.

In practice, for NLO fits in the important region
Mπ ≤ 300 MeV, we find that the addition of these param-
eters does not improve the quality of the fits. Moreover, the
uncertainties on the coefficients come out very large—
between 80% and 90% depending on the quantity and the
expansion—and the coefficients themselves are consistent
with 1 within at worst 1.2 standard deviations. Finally, the
results obtained for the LECs are consistent, within
statistical errors, with those obtained using the analytic
finite-volume expressions, and none of the conclusions that
we draw below are modified.
In light of these findings and of the expectation that

higher-order, finite-volume corrections are negligible com-
pared to our statistical errors, we have decided to fix the
finite-volume corrections to their NLO values in our
analysis, so as not to artificially increase our statistical
errors by adding two irrelevant parameters.

G. Results for the lattice inputs used in the χPT analysis

To conclude this section, we tabulate our simulation
points, together with the corresponding values of
ZS × amud, aMss̄ ≡ ½2ðaMKÞ2 − ðaMπÞ2�1=2, aMπ and
aFπ=ZA. They are given in Table II. ZS × amud is the
bare, subtracted value of the average up-down quark mass
given by the ratio-difference method described in Sec. II B,
before the final multiplicative renormalization. The quan-
tities in Table II are the basic observables needed to study
the chiral behavior of M2

π and Fπ . Their central values are
the fit-quality weighted averages of the results from the two
different time-fit ranges of the correlation functions, and
their statistical errors are the variance of these central values
over 2000 bootstrap samples. Their systematic uncertain-
ties are obtained from the variance over the two procedures.
These values are only meant as illustrative. In particular,

they do not allow a full determination of systematic errors,
nor of statistical and systematic error correlations, includ-
ing those with the lattice spacing. While this limits the
reliability of conclusions drawn from them, we give them
nonetheless so that the interested readers may get their own
sense of what sort of chiral behavior these results allow,
after combining them with the values of the lattice spacing
a and the renormalization constants 1=ZS and ZA given in
Table I.
For the reader interested in performing a more thorough

analysis, including systematic errors and correlations, we
provide, as Supplemental Material [45], the bootstrap
samples for all of the results given in Tables I and
II. With these the reader can, in principle, reproduce all
of the results obtained in the present paper.

III. EXPLORING THE RANGE OF
APPLICABILITY OF SUð2Þ χPT FOR M2

π AND Fπ

In this section we explore the range of applicability of
SUð2Þ χPT, in u-d and pion mass, for the various
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expansions discussed in Sec. I. We proceed in a systematic
fashion. We begin by assuming that χPT is valid around
Mph

π , the experimental value of Mπ , where we have our
lightest points. We then study the p values of the combined,
fully correlated fit of the different chiral expansions to our
results for Fπ and M2

π with mud ≤ mmax
ud or Mπ ≤ Mmax

π , as
mmax

ud orMmax
π is increased. Because our procedure correctly

accounts for all correlations in the lattice observables, the p
value is a meaningful quantity whose value indicates the
probability that an independent set of results that is
consistent with the chiral forms would give a worse fit.
Thus we expect the p value to drop as mmax

ud or Mmax
π is

increased beyond the range of applicability of a given
SUð2Þ χPT expansion for Fπ and M2

π. It is important to
note, however, that the sharpness of the drop and the
conclusions which can be drawn depend on the size of the
error bars on the quantities studied.

A. Strange quark mass dependence
and continuum extrapolation

To carry out this program on our simulation results, there
are two topics which we must address. The first is the
dependence ofM2

π and Fπ on the strange quark mass. In our
Nf ¼ 2þ 1 simulations, we vary ms in the vicinity of its
real-world value to allow us to tune it precisely to that value
in our final results. To parametrize this mass dependence
we follow [46] and expand the LECs of SUð2Þ χPT in
power series in the strange quark mass, or an equivalent
variable such as M2

ss̄ ≡ 2M2
K −M2

π , around the physical
strange quark point. Since these corrections are small, they
are usually only visible in the LO terms of the chiral
expansion. For instance, terms of order x or ξ times
ðms −mph

s Þ=MQCD, where MQCD is a scale characteristic
of QCD (e.g. the ρ-meson mass Mρ), are not detectable at

our level of precision. We retain only those terms whose
coefficients differ from zero by more than 1 standard
deviation in our fits.
The second point that must be addressed is that of the

continuum extrapolation. At finite lattice spacing, results
for Mπ, Fπ and the renormalized quark masses suffer from
discretization errors which are proportional to powers of a,
up to logarithms. Because the fermion action that we use is
tree-level OðaÞ improved, the leading such errors are
formally proportional to αsðaÞa. However, with our
smeared fermion actions, the tree-level value of improve-
ment coefficients are expected to be close to their non-
perturbative values, which yield results whose leading
discretization errors are of Oða2Þ [47]. This is confirmed
by the fact that in [47], as well as in our subsequent work,
including the study here, we have found that a2 terms
provide an equally good (in some cases better) description
of the lattice results. Moreover, the a dependence of the
quantities studied here is monotonic and in many cases
smaller than statistical errors. For those quantities which
exhibit a statistically significant a dependence, the separate
inclusion of an αsa or an a2 correction brings the fit quality
up to acceptable values. However, the further inclusion of a
second discretization term reduces fit quality. Thus, for our
continuum extrapolations of quantities which exhibit a
statistically significant a dependence, we include sepa-
rately αsa or a2 terms and use the spread of results obtained
to estimate the systematic uncertainty associated with these
extrapolations. We find that our fits work better if we
consider that discretization errors are associated with a
given lattice quantity and consistently include the required
corrections every time that quantity appears. This is what is
done in Eq. (14) below for mud, for instance. In fact, we
performed an extensive study of these effects. This study

FIG. 1 (color online). Example of a continuum extrapolation of the LO LEC B (left panel) and of Fπ at physical Mπ (right panel).
These plots are obtained from a typical x expansion, NLO chiral fit of the type discussed in Sec. III B, to all of our lattice simulation
results up toMπ ¼ 300 MeV (the fit considered is the same as in Fig. 2). This fit is then used to interpolate the lattice points, β per β, to
the relevant physical mud and ms point in infinite volume, eliminating the dependence on all lattice parameters except for a possible a
dependence. This yields the blue crosses, corresponding to the results at the four lattice spacing considered here. We also show, as a
green burst, the resulting continuum limit value for this example analysis. Since we are considering a particular analysis, error bars are
statistical only. The black lines going through the points show the a dependence of B and Fπ given by the NLO fit. As the left panel
shows, a linear dependence is visible in B. This dependence is inherited from the discretization corrections observed inmud. On the other
hand, Fπ has no statistically significant a dependence, as shown in the right panel.
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consisted in adding, in turn, αsa or a2 terms to each lattice
observable and keeping only those terms whose presence
improved the fit quality and whose coefficients came out
more than 1 standard deviation away from zero. We found
that the only discretization corrections which our results are
sensitive to are αsa or a2 corrections in mud. Attempts to
add discretization corrections to Mπ or Fπ always lead to
coefficients which were consistent with zero within less
than 1 standard deviation. This is illustrated in Fig. 1, where
we plot B and Fπ at the physical point, as functions of a2.
Thus, in the sequel, we keep only discretization corrections
on the light-quark mass, which we allow to be either
OðαsaÞ or Oða2Þ.

B. NLO and NNLO chiral fit strategy

Combining the strange quark mass and lattice-spacing
dependencies discussed above with the SUð2Þ chiral
expansions of Sec. I gives the desired NLO and NNLO
parametrizations. At NLO in the x expansion, we obtain
the following expressions for the lattice quantities
ðaMπÞ2=2ðamudÞ, ðaFπÞ, amud, ðaMss̄Þ2, a, ZA and ZS:

ðaMπÞ2
2ðamudÞ

¼ ap

Zp
S
ð1 − γa1fðapÞ

þ γs1ðΔM2
ss̄ÞpÞðBx−NLO

π Þðmp
ud;B;F; l̄3Þ;

ðaFπÞ ¼
ap

Zp
A
ð1þ γs2ðΔMss̄Þ2ÞFx−NLO

π ðmp
ud;B;F;l4Þ;

ðamudÞ ¼ apZp
s ð1þ γa1fðapÞÞmp

ud;

ðaMss̄Þ2 ¼ ðapÞ2ðM2
ss̄Þp;

a ¼ ap; ZA ¼ Zp
A; ZS ¼ Zp

S; ð14Þ

where ðaMss̄Þ2 ≡ 2ðaMKÞ2 − ðaMπÞ2, ðΔM2
ss̄Þp ≡

ðM2
ss̄Þp − Mph

ss̄ and fðaÞ ¼ αsðaÞa or a2, depending on
which discretization errors are chosen as leading.
Bx−NLO
π ðmp

ud;B; F; l̄3Þ is B times the NLO part of the
expression in brackets on the RHS of the first equation in
(2) and Fx−NLO

π ðmp
ud;B;F;l4Þ are the NLO expressions of

Eq. (2). The relevant chiral parameters of the fit are the two
LO LECs, B and F, and the two NLO LECs, l̄3 and l̄4.
As described in the preceding section, we performed a

systematic study of discretization corrections in the observ-
ables used in this work. A similar study was carried out for
their strange quark mass dependence. The upshot is
summarized in (14): the only discretization and strange-
mass corrections which are statistically significant are those
associated with the parameters γa1 , γ

s
1 and γs2.

In Eq. (14), variables with a superscript p are also
parameters of the fit. These are associated with the
corresponding lattice quantities. As in our previous work,
they are added so that uncertainties and correlations in all
lattice quantities, including those which appear in nontrivial
expressions involving the parameters, can consistently be

accounted for in the χ2. Since there is one such variable per
new observable added, the total number of degrees of
freedom (d.o.f.) is unchanged.
For each β we define the large lattice data

vector yTðβÞ¼ða;ZA;ZS;amud;ðaMss̄Þ2;2ðamudÞ=ðaMπÞ2;
ðaFπÞ;…Þ where the quantities amud, ðaMss̄Þ2,

FIG. 2 (color online). Example of an NLO SUð2Þ χPT fit
(curves) of our lattice results (points with error bars) for Bπ ¼
M2

π=ð2mudÞ and Fπ as functions ofmud, in the x expansion. These
are fully correlated fits to the NLO expressions of (14), which
also account for discretization and strange quark mass correc-
tions. Only points with Mπ ≤ Mmax

π ¼ 300 MeV (i.e.
mRGI

ud ≲ 23 MeV) are included in the fits, i.e. those left of the
dashed vertical line. The more massive points are shown for
illustration. The lattice results in the figure are corrected for
discretization and strange mass contributions, using the fit
parameters obtained. Thus, they are continuum limit results at
the physical value of ms and their only residual dependence is on
mud. Nevertheless, results obtained at different lattice spacings
are plotted with different symbols. The fact that they lie on the
same curve indicates that residual discretization errors are
negligible. Note that the corrections made to the more massive
points may not be optimal as these points are not included in the
fit and, as we will see, the applicability of NLO χPT is
questionable for these points. Error bars on all points are
statistical only. Also shown, but not included in the fits, is the
experimental value of Fπ [48]. Agreement with our results
computed directly around the physical pion mass point is
remarkable.
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2ðamudÞ=ðaMπÞ2, ðaFπÞ are repeated for every simulation
at that lattice spacing. We then use a bootstrap to compute a
correlation matrix CijðβÞ for each β between different
components i and j of the vector y. Because simulations are
independent, this matrix is essentially block diagonal per
simulation, in blocks corresponding to a set of quantities
ðamudÞ2;…; ðaFπÞ. There will be large correlations within
a block corresponding to a given simulation and smaller,
respectively much smaller, ones between these blocks and
the lattice spacing, respectively the renormalization con-
stants. Though the correlations are significant within a
simulation block, the correlation matrix remains invertible.
We then construct the fully correlated χ2 through
χ2 ¼ P

βX
TðβÞC−1ðβÞXðβÞ, where XðβÞ is the vector

constructed from the difference of yðβÞ and the expressions
on the RHS sides of (14), appropriately repeated for each
simulation. This construction guarantees that the p value
that we obtain for these fits accounts for all uncertainties
and correlations.
In Fig. 2 we show a typical NLO, x expansion fit of M2

π

and Fπ . Points withMπ ≳ 120 MeV (i.e.mRGI
ud ≳ 3.7 MeV)

but less than Mmax
π ¼300MeV (i.e. mRGI

ud ∼ 23 MeV) are
included in the combined, correlated fit. Agreement of the
NLO expressions with the lattice results is excellent in
this range.However, the corresponding curves start deviating
significantly from the lattice results for larger values ofMπ .
For the NLO ξ expansion, we perform a very similar

construction. Here, however, the lattice data are ðaMπÞ2,
ðaMss̄Þ2, 2ðamudÞ=ðaMπÞ2, ðaFπÞ, a, ZA and ZS, and the
corresponding NLO expressions are

2ðamudÞ
ðaMπÞ2

¼ Zp
S

ap
ð1þ γa1fðapÞ þ γs1ðΔM2

ss̄ÞpÞ=Bξ−NLO
π ððM2

πÞp;B;F; l̄3Þ;

ðaFπÞ ¼
ap

Zp
A
ð1þ γs2ðΔMss̄Þ2ÞFξ−NLO

π ððM2
πÞp;B;F;l4Þ; ð15Þ

ðaMπÞ2 ¼ ðapÞ2ðM2
πÞp; ðaMss̄Þ2 ¼ ðapÞ2ðM2

ss̄Þp;
a ¼ ap; ZA ¼ Zp

A; ZS ¼ Zp
S; ð16Þ

where 1=Bξ−NLO
π ððM2

πÞp;B;F; l̄3Þ is 1=B times the NLO
part of the expression in brackets on the RHS of the first
equation in (7). Fξ−NLO

π ððM2
πÞp;B;F;l4Þ is the expression

obtained by solving exactly the NLO part of the second
equation in (7) for Fπ and keeping the physical solution.
This equation is quadratic in Fπ and the existence of a
physical solution is not guaranteed. The existence of such a
solution imposes a constraint on the LO and NLO SUð2Þ
χPT parameters, which we take into account in our fits. We
discuss these solutions and constraints in more detail in the
Appendix A.
We show typical NLO ξ expansion fits in Fig. 3. Again,

only points with Mπ less than Mmax
π ¼ 300 MeV are

included. The behavior found here is quite similar to the
one found above for the NLO x expansion, with the fit curves
agreeing well with the lattice results in the fit range, but
deviating more and more beyond that. However, the devia-
tions beyondMmax

π ¼ 300 MeV are slightly less pronounced
than in the x expansion. This is probably a demonstration of
the statement made in the Introduction, that the ξ expansion
resums some higher-order physical contributions.
We now turn to NNLO fits. The procedure followed

here is identical to the one described above for NLO fits,
except that the NLO expressions in Eqs. (14) and (15) are
replaced by the appropriate NNLO expressions from Sec. I.
That is, Bx−NLO

π ðmp
ud;B;F; l̄3Þ, Fx−NLO

π ðmp
ud;B;F; l̄4Þ,

Bξ−NLO
π ððM2

πÞp;B; F; l̄3Þ and Fξ−NLO
π ððM2

πÞp;B; F; l̄4Þ
are replaced by Bx−NNLO

π ðmp
ud;B;F; l̄3; l̄12; kMÞ,

Fx−NNLO
π ðmp

ud;B;F; l̄4; l̄12; kFÞ, Bξ−NNLO
π ððM2

πÞp;B;F; l̄3;

FIG. 3 (color online). Example of an NLO SUð2Þ χPT fit
(curves) of our lattice results (points with error bars) for 1=Bπ and
Fπ as functions of M2

π , in the ξ expansion. Only points with
Mπ ≤ Mmax

π ¼ 300 MeV are included in the fits, i.e. those left of
the dashed vertical line. The description is the same as in Fig. 2,
except that the functional forms used are those of (15).
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l̄12; cMÞ and Fξ−NNLO
π ððM2

πÞp;B;F; l̄4; l̄12; cFÞ. Thus, in
addition to the four χPT parameters required in the NLO fits,
the NNLO expressions contain five additional chiral param-
eters: l̄12, kM and kF for the x expansion and l̄12, cM and cF
for the ξ expansion.
Fξ−NNLO
π ððM2

πÞp;B;F; l̄4; l̄12; cFÞ is the expression
obtained by solving exactly the quartic, second equation
in (7) for Fπ and by keeping the physical solution. Again,
the existence of a physical solution imposes constraints on
the LO, NLO and now NNLO SUð2Þ χPT parameters. We
take these constraints into account in our fits. In the
Appendix we give the physical solution and discuss the
conditions for its existence in more detail.
Defining the χ2 as we do for the NLO fits, we perform

fully correlated, NNLO x and ξ expansion fits to M2
π and

Fπ , with Mmax
π between 400 and 550 MeV. A typical

example of such a fit is shown in Fig. 4 for the x expansion,
and in Fig. 5 for the ξ expansion, both for
Mmax

π ¼ 500 MeV. The p values of these fits are accept-
able. The agreement with the lattice results is also visibly
reasonable and extends better beyond Mmax

π than in the

NLO case. In both the x and ξ expansions, the NNLO
serves to cancel the curvature of the NLO forms to give a
more linear behavior of the mass dependence ofM2

π and Fπ .

C. Fit quality and LECs in terms of maximum pion
mass for NLO χPT

We now turn to our systematic study of the range of
applicability of SUð2Þ chiral perturbation theory to the
quark-mass dependence of M2

π and Fπ . We implement the
fully correlated, combined fits described above, including
lattice results extending from our smallest pion mass of
around 120 MeV up to a maximal value, Mmax

π . We then
study the p value of these fits as a function of Mmax

π . We
consider NLO x and ξ expansion fits in this section and
NNLO ones in the following. For the x expansion fits, the
cut is made at a value of mud corresponding to Mmax

π such
that the same lattice results are included as would be with a
cut at Mmax

π in the ξ expansion fits.
For each value of Mmax

π and for each functional form
tried, we compute the fit quality, including a systematic
error. Indeed, we want to make sure that the p value which

FIG. 4 (color online). Example of an NNLO SUð2Þ χPT fit
(curves) of our lattice results (points with error bars) for Bπ and
Fπ as functions of mud, in the x expansion. Only points with
Mπ ≤ Mmax

π ¼ 500 MeV (i.e. mRGI
ud ≲ 65 MeV) are included in

the fits, i.e. those left of the dashed vertical line. The description
is the same as in Fig. 2, except that the functional forms used are
those of (14) with Bx−NLO

π and Fx−NLO
π replaced by Bx−NNLO

π and
Fx−NNLO
π , respectively.

FIG. 5 (color online). Example of an NNLO SUð2Þ χPT fit
(curves) of our lattice results (points with error bars) for 1=Bπ and
Fπ as functions of M2

π , in the ξ expansion. Only points with
Mπ ≤ Mmax

π ¼ 500 MeV are included in the fits, i.e. those left of
the dashed vertical line. The description is the same as in Fig. 2,
except that the function forms used are those of (15) with Bξ−NLO

π

and Fξ−NLO
π replaced by Bξ−NNLO

π and Fξ−NNLO
π , respectively.
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we quote is not peculiar to a particular choice of analysis
procedure. This is particularly important in fits, such as
those performed here, where the observables considered
have significant correlations and small changes can make
large changes in the fit quality. The p values are obtained
from the p-value-weighted distributions of results from
2 × 2 × 3 × 6 ¼ 72 different analysis procedures for a
given Mmax

π . These procedures correspond to two time-fit
intervals for the two-point functions, two mass cuts in the
scale setting, three ways of doing RI/MOM renormalization
for ZA and six for ZS, as described in Sec. II. The central
value of the fit quality for a given Mmax

π is chosen as the
mean of the corresponding distribution and its systematic
error obtained from this distribution’s variance.
The results for the p values of our NLO and NNLO, x

and ξ expansion fits are shown together in Fig. 6. For the
NLO fits we consider values of Mmax

π between 250 and
450 MeV. Below 250 MeV the number of lattice points
which we have starts becoming too small to reliably
constrain the NLO form. Above 450 MeV, these fits have
tiny p values.
As Fig. 6 shows, the NLO x and ξ expansion fits work

very well for Mmax
π ≤ 300 MeV. There is a first drop in the

p value forMmax
π in the region of 350 to 400 MeV in which

fit qualities are in the 1% to 10% range. Between 400 and

450 MeV the fit quality drops enormously and keeps on
doing so beyond that point. We have checked that these
changes are not the artifact of a single stray point in these
intervals. This discussion suggests that, for M2

π and Fπ , the
range of validity of SUð2Þ extends safely up to 300 MeV
and may be stretched up to around 400 MeV. Beyond that
point it clearly breaks down. Of course, these conclusions
only hold within the statistical accuracy of our calculation,
which is described in more detail in Sec. III E.
It is worth noting that the breakdown is less pronounced

for the NLO ξ expansion. This may be ascribed in part to a
difference in size in the relative uncertainties on M2

π and
mud. It also seems to corroborate the observation, made in
Sec. III B, that the ξ expansion range of applicability may
extend to slightly larger quark-mass values because it
resums some higher-order physical contributions.
To further verify the conclusions drawn up to now, we

also monitor the values of the fitted LECs, as a function of
Mmax

π . We begin with the LO LECs B and F. Their values as
a function ofMmax

π are shown in Fig. 7 for the NLO x and ξ
expansions. These values include full statistical and sys-
tematic errors, obtained with the same collection of
analyses as those used in determining the p values. For
each quantity, we weigh the result given in each procedure
by its p value. This yields a distribution of results for each
quantity. The central value for each quantity is chosen to be
the mean of the distributions. Its systematic uncertainty is
obtained by computing the variance with respect to the
mean, of this distribution. Finally, the statistical error is
obtained by repeating the construction of the distributions
for the 2000 bootstrap samples and considering the
variance of these means around the central value.
As the plots show, the LO LECs obtained from NLO fits

jump for Mmax
π between 300 and 350 MeV, but appear to

remain consistent within errors. However, because the
values of the LECs for two different pion mass cuts are
obtained from data sets which have significant overlap,
they are correlated, which may give a false impression of
agreement. To eliminate the effect of these correlations in
the comparison, we study the quantities ΔBRGI and ΔF,
which are the differences of the LECs at the given value of
Mmax

π minus the ones obtained for Mmax
π ¼ 300 MeV. The

latter is chosen because it is clearly within the range of
applicability of SUð2Þ χPT, at the level of accuracy
considered here. We compute the statistical and systematic
errors directly on these differences, both within our boot-
strap resampling and systematic error analysis loops. The
errors on these differences determine directly the signifi-
cance of the deviations of the values of the LECs obtained
for a given Mmax

π with that obtained for Mmax
π ¼ 300 MeV.

These differences are plotted in Fig. 7, in a panel below the
corresponding LEC. By definition, ΔBRGI and ΔF are
exactly zero at Mmax

π ¼ 300 MeV.
The plots of these differences show that the seeming

agreement deduced from a direct comparison of the values

FIG. 6 (color online). Fit quality of the fully correlated SUð2Þ
χPT fits to our lattice results for Bπ and Fπ described in Sec. III B.
The fits to our lattice results for these quantities include points
whose pion mass is in the range ½120 MeV;Mmax

π �. The p values
shown are those of NLO and NNLO fits in the x and ξ
expansions. They are plotted as a function of Mmax

π . For
Mmax

π ≤ 350 MeV, only the p values of NLO fits are plotted
as these ranges do not contain enough data to constrain NNLO
chiral expressions. For Mmax

π ∈ ½400; 450� MeV, the p values of
both NLO and NNLO fits are shown. For larger Mmax

π only
NNLO results are shown, as the p values of NLO fits are
negligibly small. The gray band corresponds to the p-value
interval of 10% to 50% and the red one to that of 50% to 100%.
Error bars on each point are the systematic uncertainties
described in the text. Results obtained for the same
Mmax

π ¼ 250 MeV;…, are displaced horizontally by a small
amount around that Mmax

π value so that they can be visually
distinguished.
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of the LECs at two different pion mass cuts is misleading.
While one finds that the values of the LO LECs forMmax

π ¼
250 and 300 MeVagree within 1 standard deviation, this is
no longer true for values of Mmax

π ≥ 350 MeV. Indeed, the
values of ΔBRGI and ΔF are almost 2 standard deviations
away from 0 and more for Mmax

π ¼ 400 MeV. Beyond that
point, the values of the LECs obtained from NLO fits are
not meaningful, because the quality of the fits becomes so
poor. The results on these differences sharpen the earlier
conclusion that NLO, SUð2Þ χPT starts breaking down
above 300 MeV, for the precisions reached here.

We perform a very similar analysis for the NLO LECs,
l̄3 and l̄4, extracted from our combined, correlated NLO
fits. In particular, we define the differences Δl̄3 and Δl̄4 in
full analogy with ΔBRGI and ΔF. These LECs and their
differences with respect to their values for Mmax

π ¼
300 MeV are plotted as a function of Mmax

π in Fig. 8.
The jump between Mmax

π ¼ 300 and 350 MeVobserved in
the p values and in ΔBRGI and ΔF is still present in Δl̄4,
but less so in Δl̄3. It is also interesting to note that for
Mmax

π ≥ 350 MeV, the values of l̄4 obtained from the x and
ξ expansion fits are no longer compatible, a clear sign that
higher order contributions are becoming relevant. Thus
these NLO LEC results are compatible with the conclusions
drawn so far, as to the range of applicability of NLO,
SUð2Þ χPT.

D. Fit quality and LECs in terms of maximum pion
mass for NNLO χPT

We now turn to the study of NNLO SUð2Þ χPT. The
analysis we perform here parallels the one discussed above
for NLO χPT. In particular, we study the dependence of the
p value and the LECs as a function ofMmax

π . Here there are
five additional LECs that have to be considered. These are

FIG. 8 (color online). NLO LECs as a function of Mmax
π

obtained from the SUð2Þ χPT fits to our lattice results for Bπ

and Fπ in the pion mass range ½120 MeV;Mmax
π �, as described in

Sec. III B. This figure is the same as Fig. 7, but for NLO instead
of LO LECs.

FIG. 7 (color online). LO LECs as a function ofMmax
π obtained

from the SUð2Þ χPT fits to our lattice results for Bπ and Fπ in the
pion-mass range ½120 MeV;Mmax

π �, as described in Sec. III B.
Results are shown for NLO and NNLO fits in the x and ξ
expansions (see the caption of Fig. 6 for additional details). In the
top panel of each of the two figures, it is the LEC in physical units
which is shown. The horizontal gray band denotes our final result
for the corresponding LEC, given in Table IV, and obtained as
described in Sec. IV. In the lower panel of each figure it is the
difference of the LEC obtained from a fit with Mπ ∈
½120 MeV;Mmax

π � to that obtained from the NLO fit in the
range [120, 300] MeV, in the corresponding expansion. As
argued in the text, this reference domain is in the range of
applicability of NLO χPT at our level of accuracy. Error bars on
each point are the statistical and the quadratically combined
statistical-plus-systematic uncertainties. Results obtained for a
same Mmax

π ¼ 250 MeV;…, are displaced horizontally by a
small amount around thatMmax

π value so that they can be visually
distinguished.
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l̄12, kM and kF, in the case of the x expansion, and l̄12, cM
and cF for the ξ expansion. The lowest value of Mmax

π that
we consider is 400 MeV, because NLO fits work reason-
ably well up to around that point and because we need more
range in Mπ and more data to fix the three additional
parameters required at NNLO in each expansion.
The results for the fit quality as a function of Mmax

π are
shown in Fig. 6, together with the results from NLO fits.
As these show, the introduction of NNLO terms brings
the p values back up to acceptable values up to
Mmax

π ≃ 500 MeV. Beyond that point the p values of
NNLO fits also drop. These observations suggest that
the NNLO, SUð2Þ chiral expansion of M2

π and Fπ may
extend up to 500 MeV, at least for the statistical precision
reached in this work and described in Sec. III E.
To check this statement, we turn to the study of the LECs

as a function of Mmax
π . The results for the LO LECs, BRGI

and F, are shown in Fig. 7 and those for the NLO LECs, l̄3

and l̄4, are given in Fig. 8, together with the results
obtained from the NLO fits discussed in the previous
section.
The results for F and l̄4 appear to confirm the con-

clusions drawn from the behavior of the p values, at least
for the ξ expansion. In that case, the addition of NNLO
terms for Mmax

π ≥ 400 MeV brings the values of F and l̄4,
associated with Fπ , back in line with those obtained at
NLO, with Mmax

π ¼ 300 MeV. This suggests that the
NNLO terms are just what is needed to accommodate
the tensions which appear in the NLO fits for
Mmax

π ≳ 350 MeV. However, this picture is not fully borne
out by the LECs associated with the quark-mass depend-
ence ofM2

π . Indeed the jump in BRGI, observed in NLO fits
in the region of pion-mass cuts between 300 and 350 MeV,
remains present for Mmax

π ∼ 400 to 450 MeV, despite the
addition of NNLO terms. Similar features are observed in
the x expansion, though the addition of NNLO terms
reduces the jump in F and l̄4 less than it does in the ξ
expansion.
In view of this discussion, we conclude that the addition

of NNLO terms appears to allow a description of the mass
dependence of Fπ up to a pion mass of around 500 MeV,
which is consistent with NLO fits in a smaller range of pion
masses. This is more true for the expansion in ξ than it is for
the one in x. However, this apparent extension of the
applicability range does not carry over to the study of the
chiral behavior of Bπ , suggesting that the NNLO chiral
expansion of this quantity begins to fail for Mmax

π in the
region of 300 to 350 MeV, for the accuracies reached here.
Moreover, it is important to remember that Bπ and Fπ share
common LECs and lattice data, and are fitted together.
Thus, there is limited sense in suggesting that the range of
applicability of χPT for these two quantities differs.
For completeness, in Fig. 9 we show results for the

NNLO x expansion LECs, kM and kF, as well as results for
the NNLO ξ-expansion LECs, cM and cF, as functions of

FIG. 9 (color online). LECswhich appear atNNLO in the SUð2Þ
χPT expansions of Bπ and Fπ given in Eqs. (2)–(9). The top figure
shows the results obtained for kM and kF from NNLO fits in the x
expansion to our lattice results with Mπ ∈ ½120 MeV;Mmax

π �. The
results are plotted as functions of Mmax

π . In the middle figure are
plotted the NNLO LECs cM and cF, which appear in the ξ
expansion. The NLO LEC combination l̄12 ¼ ð7l̄1 þ 8l̄2Þ=15
appears in the x and ξ expansions ofBπ andFπ atNNLO.The results
that we obtain for this LEC in each of the expansions are plotted in
the bottom panel. The horizontal gray band denotes our final result
for l̄12, obtained as described in Sec. IV. Error bars on each point are
the statistical and the quadratically combined statistical-plus-
systematic uncertainties. Results obtained for the same Mmax

π ¼
250 MeV;…, are displaced horizontally by a small amount around
that Mmax

π value so that they can be visually distinguished.
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Mmax
π . At NNLO these fits also allow the determination of

the linear combination of the NLO LECs l̄1 and l̄2 given
by l̄12 that is defined after Eq. (4). This combination is also
shown in Fig. 9 as a function ofMmax

π . The uncertainties on
all of these coefficients are large, since the precision of our
results is barely sufficient to determine these higher order
contributions, at least for Mmax

π ≤ 450 MeV. The coeffi-
cients kM and kF of the x expansion show little dependence
onMmax

π all the way up to 550MeV. This is only the case up
to 500 MeV for kM and kF of the ξ expansion. In both
expansions, l̄12 drops beyond Mmax

π ¼ 500 MeV. It is
worth noting that the x expansion gives a value of l̄12

which is consistent with the determination of [12] discussed
below in Sec. IV, for Mmax

π ≤ 500 MeV. The ξ expansion
yields values which are larger.

E. Relative contributions of different orders in χPT and
conclusions on its range of applicability

As a final indication on the range of applicability of
SUð2Þ χPT to Bπ and Fπ, we consider the size of NLO and
NNLO contributions relative to the LO ones, as functions
of mud and M2

π . We do so for two purposes. The first is to

verify that the corrections obtained in the NLO fits, which
we perform for Mmax

π ≤ 400 MeV [i.e. ðmRGI
ud Þmax ≤

41 MeV], remain reasonable over the mass range Mπ ∈
½120 MeV;Mmax

π � (i.e. mRGI
ud ∈ ½3.7 MeV; ðmRGI

ud Þmax�). The
second reason for investigating the size of these corrections
is to further assess the validity of our NNLO fits which
include points up to Mmax

π ≃ 500 MeV [i.e. ðmRGI
ud Þmax≃

65 MeV].
In Fig. 10 we plot together the NLO corrections to

Bπ and Fπ in the x expansion with those of 1=Bπ and Fπ in
the ξ expansion, for mRGI

ud ≤ 52 MeV, respectively
Mπ ≤ 450 MeV. As the plots show, the NLO corrections
on Fπ remain less than about 10% forMπ ≤ 200 MeV (i.e.
mRGI

ud ≤ 10 MeV), less than about 15% forMπ ≤ 300 MeV
(i.e. mRGI

ud ≤ 23MeV) and less than about 20% for Mπ ≤
400 MeV (i.e. mRGI

ud ≤ 41 MeV). The NLO corrections on
Bπ are significantly smaller. They remain significantly less
than 5% all the way up to Mπ ¼ 450 MeV (i.e.
mRGI

ud ≤ 52 MeV). However, they exhibit nonmonotonic
behavior, with a turnover around Mπ ∼ 280 MeV (i.e.
mRGI

ud ∼ 20 MeV). All of this is entirely consistent with
the picture, drawn earlier, that our results with errors on the

1002 2002 2502 3002 3502 4002 4502

M2
π [MeV2]

FIG. 10 (color online). Ratios of the NLO contributions to Bπ and Fπ with respect to the LO ones, as a function of mud in the SUð2Þ
chiral x expansion (left panel) and ofM2

π in the ξ expansion (right panel). The values of the LECs used are those given in Table III for the
respective expansions.

FIG. 11 (color online). Typical ratios of the NLO and NNLO contributions to Bπ (left panel) and Fπ (right panel) with respect to the LO
ones, as a function of mud in the SUð2Þ chiral x expansion. The values of the LECs used are those obtained from the fit shown in Fig. 4.

LATTICE QCD AT THE PHYSICAL POINT MEETS … PHYSICAL REVIEW D 90, 114504 (2014)

114504-15



order of a percent start becoming sensitive to NNLO effects
for Mπ ∼ 300 MeV and require their presence beyond
Mπ ≳ 400 MeV.
Now let us investigate the size of the NLO and NNLO

corrections in our NNLO fits. For this we consider the same
typical NNLO fits that were shown in Fig. 4 for the x
expansion and Fig. 5 for the ξ expansion. We plot the
relative size of the NLO and NNLO corrections to Bπ and
Fπ as a function of mRGI

ud in Fig. 11 for the x expansion and
in Fig. 12 as a function ofM2

π for the ξ expansion. Although
the p values of our NNLO fits remain acceptable up to
Mπ ∼ 500 MeV (i.e. mRGI

ud ∼ 65 MeV), at that value of Mπ

the NNLO corrections to Fπ are a significant fraction of the
NLO corrections, raising doubts as to the legitimacy of
neglecting NNNLO terms in these fits. This is more than
confirmed by the corrections to Bπ for which the NNLO
corrections are already a significant fraction of the NLO
corrections for Mπ ∼ 300 MeV or mRGI

ud ∼ 23 MeV.
Moreover, these NLO and NNLO corrections have here
opposite signs, implying cancellations which may be
affected by the inclusion of higher-order terms at larger
pion-mass values.
It is worth noting that the expansion appears better

behaved for Fπ than for Bπ, since the hierarchy of
corrections for the former remains acceptable up to Mπ ∼
450 MeV or mRGI

ud ∼ 52 MeV. The situation is quite differ-
ent with the chiral expansion of Bπ . Unlike Fπ , Bπ has very
little mass dependence. Thus, the role of the NLO and
NNLO analytic terms in the expansion of Bπ is to cancel as
much as possible the mass dependence brought by the
nonanalytic terms. When this is done correctly in an NLO
fit, adding an NNLO term destabilizes the balance between
analytic and nonanalytic terms, therefore requiring a
retuning of the LECs.
Putting together all of the information discussed up until

now, we draw the following conclusions as to the range of
applicability of SUð2Þ χPT for Nf ¼ 2þ 1 QCD. Note that
conclusions may differ when considering applications to
Nf ¼ 2 QCD, since the latter is missing the relatively light

degrees of freedom associated with the strange quark. As
indicated in Table II, our results for Fπ have statistical
uncertainties typically in the range of 0.5% to 2.2%, with a
median error over our simulations of 1.2% and a standard
deviation of 0.5%. Those for Bπ are in the range of 0.3% to
3.3%, with a median and a standard error 0.8% and 0.7%.
Similarly, the statistical uncertainties on mud andM2

π are in
the ranges of 0.2% and 1.9% and of 0.4% and 3.2%, with
medians and standard errors of (0.4%, 0.4%) and (0.9%,
0.7%), respectively. For such results, we find that NLO χPT
begins showing signs of failure for Mπ beyond 300 MeV
and breaks down completely around 450 MeV for both
expansions. Adding NNLO terms allows one to describe
consistently the mass dependence of Fπ in the ξ expansion,
up to around 500 MeV, at the expense of NNLO corrections
which are approaching those of the NLO ones. This is only
marginally true in the x expansion, as F and l̄4 begin
deviating from the values given by the NLO fits with
Mmax

π ≤ 300 MeV in that expansion. However, in both
expansions, the addition of NNLO terms in Bπ does not
allow a description of that quantity beyond 300–350 MeV
that is consistent with the NLO description at the level of
around 1 standard deviation.

IV. RESULTS FOR LECS AND
OTHER PHYSICAL QUANTITIES

Having explored the range in which one can describe the
mass dependence of the quantities Bπ and Fπ in SUð2Þ
χPT, we are now in a position to determine the correspond-
ing LECs. We observe a small but significant change of
behavior if we include points with pion masses above
300 MeV, which suggests that the NLO χPT expansion is
beginning to break down beyond that point. Moreover, the
inclusion NNLO terms does not seem to allow one to
extend the range of applicability of χPT beyond that point,
in particular for Bπ. Thus, we will consider only NLO fits to
determine the LO and NLO LECs, as well as quantities
such as Fπ or the condensate. Moreover, we will not
include results with Mmax

π > 300 MeV.

FIG. 12 (color online). Typical ratios of the NLO and NNLO contributions to 1=Bπ (left panel) and Fπ (right panel) with respect to the
LO ones, as a function ofM2

π in the SUð2Þ chiral ξ expansion. The values of the LECs used are those obtained from the fit shown in Fig. 5.
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We begin by considering separately the results for the
LECs and other physical quantities of interest in the x and ξ
expansions. They are given in Table III. As described in
Sec. II, we consider all sources of systematic error. In
particular, we consider two initial fit times in the two-point
functions to account for possible excited state contributions
[ð8; 9; 11; 13Þ=ð9; 11; 13; 15Þ], two mass cuts for the scale
setting (380=480 MeV), three ways of performing the RI/
MOM renormalization for ZA and six for ZS and different
mass cuts in chiral fits (250=300 MeV). This implies a total
of 2 × 2 × 3 × 6 × 2 ¼ 144 procedures for determining
each quantity. We then weigh the result of each procedure
by its p value. This yields a distribution of results for each
quantity. The distributions for the LO and NLO LECs are
shown in Figs. 13 and 14, respectively. The central value
for each quantity is chosen to be the mean of the
distributions. Its systematic uncertainty is obtained by
computing the corresponding variance. Finally, the stat-
istical error is determined by repeating the construction of

FIG. 14 (color online). Systematic error distributions for the NLO LECs. The different components of the graphs have the same
meaning as in Fig. 13.

FIG. 13 (color online). Systematic error distributions for the LO LECs. These are obtained by varying the analysis procedure, as
described in the text. The total distribution is delineated by the solid black line. It is the sum of the distributions corresponding to the
analyses performed in the x and ξ expansions. These are shown as a red dotted line and a blue dashed line, respectively. Where only the x
or ξ expansion distributions contribute, they partially hide the line corresponding to the total distribution. In the plots, the central,
vertical, dotted line is the mean of the total distribution, i.e. our final central value. The central, vertical green band denotes the
systematic error, the larger pink one, the statistical error and the largest gray one, the sum in quadrature of these two errors.

TABLE III. Results for LO and NLO LECs obtained from
NLO, SUð2Þ χPT fits in the x and ξ expansions. We also give
results for Fπ and its ratio to F. The relevant χPT expressions are
fitted to our lattice results for Bπ and Fπ with pion masses in the
range [120, 300] MeV. In these results, the first error is statistical
and the second is the systematic error in each expansion,
computed as described in the text.

x expansion ξ expansion

LO

BRGI [GeV] 1.96� 0.04� 0.01 1.95� 0.04� 0.01
F [MeV] 88.1� 1.3� 0.2 87.9� 1.4� 0.1
½ΣRGI�1=3 [MeV] 247.6� 3.3� 0.5 247.2� 3.4� 0.5

NLO
l̄3 2.5� 0.4� 0.2 2.8� 0.6� 0.3
l̄4 3.58� 0.32� 0.03 3.92� 0.43� 0.05

Other quantities
Fπ [MeV] 92.8� 0.9� 0.1 92.8� 0.9� 0.1
Fπ=F 1.053� 0.006� 0.001 1.055� 0.007� 0.001
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distributions for 2000 bootstrap samples and considering
the variance of their means around the central value.
In our approach, it is possible to decompose the

systematic uncertainty into its various components. This
is done by constructing systematic error distributions as
above, but instead of considering a single distribution per
observable, one constructs a separate distribution for each
analysis variation associated with a given source of
systematic uncertainty. For instance, for each quantity
we have two distributions to estimate the uncertainty
associated with the choice of pion mass range, one for
Mmax

π ¼ 250 MeV and another for 300 MeV. We then
compute the mean of each of these distributions. The error
associated with this source of systematic uncertainty is
obtained from the variance of these means with respect to
the mean of the total systematic error distribution.
As Table III shows, the uncertainties on our results are

dominated by statistical errors. This means that the
numerical values of the contributions of each source of
systematic uncertainty are not particularly relevant here.
Nevertheless, for completeness, we provide a rough hier-
archy of these contributions here. The dominant source for
F, Σ and Fπ is the pion-mass cut, followed by ZS. The pion-
mass cut also dominates the systematic error in l̄3, but is
followed by the one associated with the choice of expan-
sion (x versus ξ), when the results of the two expansions are
combined below to give our final results. The latter
dominates in l̄4.
Let us now turn to a discussion of the results themselves.

In both expansions, we determine the LO LECs with total
uncertainties in the range of 1.5% to 2.9%. The pion decay
constant is obtained even more precisely, with a total
uncertainty of less than 1% and the uncertainty on Fπ=F
is as small as 0.7%. Of course, the NLO LECs are obtained

with significantly less precision: l̄4 has a total uncertainty
of approximately 10% while for l̄3 it is around 25%.
The agreement of the results obtained from the x and ξ

expansions is striking. This is an additional confirmation
that NLO SUð2Þ χPT correctly describes M2

π and Fπ up to
Mπ ≃ 300 MeV. Indeed, the two expansions differ by
higher order terms. This difference also explains why
the agreement is better for LO LECs and Fπ than it is
for NLO LECs: the smaller, less constrained NLO con-
tributions are more affected by changes made at higher
orders.
Because of the consistency of the results in the two

expansions, we combine them in the first column of
Table IV to obtain our final results. This combination is
performed in a way which is entirely consistent with our
determination of systematic errors. The two expansions
(x=ξ) are treated as an additional alternative in our
determination of LECs and other quantities. Thus, our
final results are obtained from a total of 144 × 2 ¼ 288
different analyses for each quantity. The corresponding
systematic error distributions for the LECs are shown in
Figs. 13 and 14, together with our final results for these
quantities. It should be noted, however, that in performing
fine comparisons between lattice studies, one may wish to
compare them separately in each expansion.
The LO LECs and Fπ do not change visibly compared to

those obtained from the individual expansions. The sys-
tematic uncertainties on the NLO LECs increase slightly as
a result of the variation induced by the use of the two
expansions. For comparison, we give in the second column
of Table IV the averages for these quantities obtained by
FLAG [11] and/or the PDG [48].
We now turn to a comparison of our results with those of

other collaborations who have performed Nf ≥ 2þ 1

TABLE IV. Our final results for LO and NLO LECs, as well as for Fπ and its ratio to F. They are obtained by
combining the results leading to those given for the individual x and ξ expansions, as described in the text. In these
results, the first error is statistical and the second is systematic. The computation of these errors is described in the
text. The conversion of RGI numbers to those in the MS scheme at 2 GeV is performed using the results of [5]. For
comparison, we give in the second column the estimates of the FLAG review [11] for the LECs and Fπ=F, and of the
PDG [48] for Fπ.

Combined FLAG and PDG

LO

BRGI [GeV] 1.96� 0.04� 0.01

BMSð2 GeVÞ [GeV] 2.61� 0.06� 0.01

F [MeV] 88.0� 1.3� 0.2
½ΣRGI�1=3 [MeV] 247.4� 3.3� 0.5

½ΣMSð2 GeVÞ�1=3 [MeV] 272� 4� 1 271� 15

NLO
l̄3 2.6� 0.5� 0.3 3.05� 0.99
l̄4 3.7� 0.4� 0.2 4.02� 0.28

Other quantities
Fπ [MeV] 92.8� 0.9� 0.1 92.21� 0.02� 0.14
Fπ=F 1.054� 0.007� 0.001 1.0624� 0.021
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studies [2,6,7,13–20]. Note that amongst those, the
only study which includes simulations all the way down
to the physical value of the pion mass is the staggered
fermion one in [6]. That study computes the LO quantities
2Bmph

ud and Fπ=F, and the NLO LECs l̄3 and l̄4. Thus, in
addition to the physical value of Mπ , it requires Fπ to
determine the LO LEC F and the renormalized quark
mass, mph

ud, to determine the other LO LEC, B, or alter-
natively the quark condensate. It takes the former from [48]
and the latter from [4,5], which make use of the same
Wilson quark simulations as employed in the present paper,
and is thus not fully decorrelated from the results presented
here. Moreover, the use of outside input for Fπ and
mph

ud forbids predicting these two quantities and thus
making valuable cross-checks of the calculation. It may
also be noted that the smallest lattice spacing in that work
is 0.1 fm.
We find agreement with [6] on the LO LECs F and B.

MILC [17] obtains a condensate which is more than 1
standard deviation larger than ours while RBC/UKQCD [7]
find a value which is more than 2 standard deviations
smaller than ours. As for F, it is not studied by
RBC/UKQCD, but agreement with MILC [17] is
excellent, while ETM [19], in an Nf ¼ 2þ 1þ 1 compu-
tation, find a value which is more than 1.5 combined
standard deviations smaller than ours. Regarding Fπ=F,
which measures the chiral corrections to Fπ at Mph

π , our
result is in good agreement with that of Borsanyi et al. [6],
NPLQCD [18] and MILC [17]. However, ETM’s Nf ¼
2þ 1þ 1 result [19] is almost 2.5 standard deviations
away from ours.
It is interesting to note that the deviations from ETM’s

[19] results gradually decrease as we increase Mmax
π above

300 MeV. This is clearly visible in the bottom panel of
Fig. 7 which shows that F decreases by more than 1
standard deviation when lattice results with Mπ ≳
350 MeV are included. Though we have not shown the
Mmax

π dependence of Fπ=F, it undergoes a very similar
increase, instead of decrease. This suggests that the
discrepancy that we observe with ETM [19] on F and
Fπ=F may be due to the fact that ETM’s lightest pion is
270 MeV and that they include points up to 510 MeV in
their NLO fits. This observation is further corroborated by
the discussion in Sec. V B, where we investigate the effect
of removing lattice data at the low-Mπ end.
For completeness we note that B undergoes a more than

1 standard deviation increase when lattice results with
Mπ ≳ 350 MeV are included. The net effect is that Σ
remains essentially stable as Mmax

π is increased.
We now discuss NLO LECs. Our results for l̄3 and l̄4

are systematically smaller than those obtained in other
recent Nf ≥ 2þ 1 computations [2,6,7,13–20], the effect
being more pronounced in the x expansion which is the one
used in other studies. Though the discrepancy is generally
marginal, it is marked with the Nf ¼ 2þ 1þ 1 ETM

results [19]. Their results for l̄3 and l̄4 are almost 2
combined standard deviations above ours. As Fig. 8 shows,
these larger values are compatible with those which we
obtain including points with Mπ ≳ 350 MeV. Thus, the
possible explanation for the discrepancy with ETM’s LO
LECs also applies for NLO LECs. The only other results
obtained with simulations down to the physical pion mass
[6] are also larger than ours, though the difference here is
within a standard deviation.
We conclude this section with a discussion of NNLO

LECs. The results presented here should be understood as
provisional. The first reason is that we are only sensitive to
them if we include points with Mπ ≥ 400 MeV. While
NNLO χPT for Fπ may be applicable for such masses, this
is not the case for Bπ. Moreover, the statistical uncertainties
on these results are very large. Nevertheless, because very
little is known about these LECs, we believe that the
information brought by our analysis is useful. We obtain
these estimates very much in the same way as we determine
the LO and NLO LECs. The only difference is that instead
of considering Mmax

π ¼ 250 and 300 MeV, we estimate
systematic errors associated with the neglect of higher-
order terms using Mmax

π ¼ 400, 450 and 500 MeV. Note
that for these ranges, the p values of the NNLO fits are
good, as shown in Fig. 6.
The results that we obtain are, for the x expansion, kM ¼

−2.9� 5.0� 3.6 and kF ¼ 4.6� 4.3� 1.9, and cM ¼
38� 14� 14 and cF ¼ 19� 16� 17 for the ξ expansion.
The only other lattice study in which kM and kF are
considered is [6]. As already noted this study uses the
physical value of Fπ as input. Moreover, the NNLO fits are
constrained with a prior on l̄12, and in some cases on kM
and kF. Considering only the fits in which kM and kF are
not constrained, they find kM ∼ 2 and kF ∼ 1.
As already mentioned, our NNLO fits are sensitive to the

combination of NLO LECs, l̄12 ¼ ð7l̄1 þ 8l̄2Þ=15. We
determine it in the same way as the NNLO LECs, finding
l̄12 ¼ 3.2� 1.2� 0.9 and 5.5� 1.5� 1.1 in the x and ξ
expansions, respectively. The ξ expansion leads to a larger
value of that LEC, the discrepancy probably indicating a
sensitivity to the treatment of higher-order terms. Since we
have no reason to favor the result of one expansion over that
from the other, we include the results from both in our final
estimate of l̄12. In this way, we find l̄12 ¼ 4.0� 1.2� 1.5.
For comparison we can use the LECs l̄1 and l̄2 obtained
from the fitting of NLO expansions of ππ scattering
amplitudes to experimental data [12]. Combining the
results for l̄1 and l̄2 from [12], one obtains l̄12 ¼
2.1� 0.3. It should be noted that the results in [12] only
include uncertainties coming from the phenomenological
input and not possibly significant uncertainties coming
from neglected higher-order terms in the relevant chiral
expansion. Though our determinations of l̄12 from NNLO
fits has much larger errors, it is compatible with the value
from ππ scattering.
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We have also performed NNLO fits imposing a Gaussian
constraint on l̄12. Instead of taking l̄12 ¼ 2.1� 0.3 as done
in [6], we more than triple the error and consider
l̄12 ¼ 2.1� 1.0. The fits still have good p values.
However, even such a loose prior has a significant impact
on the LECs present at NNLO. Instead of the values given
above, with this prior we find kM ¼ 3� 2� 2, kF ¼ 3.0�
2.1� 0.3 and l̄12 ¼ 2.14� 0.05� 0.11 for the x expan-
sion, and cM ¼ 2� 4� 4, cF ¼ 13� 10� 3 and l̄12 ¼
2.14� 0.03� 0.03 for the ξ expansion. Perhaps more
surprisingly, this prior also affects the NLO LECs extracted
from NNLO fits. Determining these LECs from the three
pion-mass intervals with Mmax

π ¼ 400, 450 and 500 MeV
leads to ðl̄3; l̄4Þ ¼ ð2.9� 0.4� 0.3; 3.82� 0.30� 0.05Þ
for the x expansion and ðl̄3; l̄4Þ ¼ ð2.6� 0.6� 0.5; 3.4�
0.5� 0.2Þ in the ξ expansion with the prior. This is to be
compared with ðl̄3; l̄4Þ ¼ ð4.0� 1.4� 1.2; 4.2� 0.6�
0.4Þ for the x expansion and ðl̄3; l̄4Þ ¼ ð5.0� 1.3�
1.0; 4.1� 0.6� 0.3Þ in the ξ expansion obtained without
prior. Not surprisingly, the difference observed in the ξ
expansion also carries over to Fπ=F which is significantly
lower with the constraint. More generally, while the x
expansion results with and without prior are consistent
within errors, those in the ξ expansion are not. This is due to
the fact that, without a Gaussian constraint, our NNLO, ξ
expansion fits favor a larger value of l̄12. Needless to say
that a more stringent constraint on l̄12 or forcing the NNLO
LECs to vanish within a few units will have an even larger
impact. Thus, while we cannot exclude the use of priors
based solely on the absolute quality of the fits which
include them, we take the differences that we observe in the
fitted parameters, when priors are added, as a warning. The
use of even loose priors may induce one to believe that data
have more resolution power than they actually have and
may bias the results obtained.

V. ON THE PRESENCE OF CHIRAL
LOGARITHMS AND THE ROLE OF

LATTICE RESULTS NEAR
PHYSICAL Mπ

A. On the presence of chiral logarithms

Having studied the range of applicability of the NLO
expansions, we now explore the extent to which chiral
logarithms are required to describe our results. We do so by
fitting, to our results for Bπ and Fπ , the NLO expressions in
Eq. (14) and Eq. (15), with the logarithms omitted. For
example, we replace the NLO expression of (2) for M2

π by
M2

π ¼ M2f1þ λ3xg, where λ3 is the parameter of this
correction in x. Note that the omission of the logarithms
leaves the number of fit parameters unchanged, as the
parameter Λ3 in (2) is replaced by the new parameter λ3. As
in our study of the range of applicability of SUð2Þ χPT, we
include in these fully correlated fits all points with mud ≤
mmax

ud or Mπ ≤ Mmax
π , and study the behavior of the p value

as the cut is increased. We also monitor the value of Fπ

at Mph
π .

In Fig. 15 we compare these p values of NLO fits
without logarithms to those of the NLO χPT fits performed
in Sec. III, in both the x and ξ expansions. The p values
obtained when logarithms are omitted are consistently
lower than for the χPT fits, though they remain acceptable
forMmax

π ≤ 350 MeV. Beyond that point they become very
bad. To explore the significance of the preference for the
presence of logarithms, we compute the difference of the p
values obtained omitting the chiral logarithms to those
including them, normalized by the latter. While this
quantity does not have a statistical meaning per se, it does
indicate whether the p values obtained with and without
logarithms on the same data are compatible. The results for
this quantity are shown in the lower panel of Fig. 15. As the
figure shows, in the range of applicability of NLO χPT, i.e.
Mmax

π ≤ 300 MeV, the presence of logarithms is signifi-
cantly favored.
Figure 16 shows theMmax

π dependence of the value of Fπ

at physical Mπ , obtained in fits with and without loga-
rithms. Both fits give very similar results in the range of
applicability of NLO χPT, whereMmax

π ≤ 300 MeV. Thus,
at our level of accuracy, a simple linear interpolation would
allow us to obtain Fπ. However, the bottom panel of Fig. 16
shows that this will no longer be true when the total
uncertainty on Fπ reaches a few tenths of an MeV.

FIG. 15 (color online). Comparison of the p values obtained in
fits of NLO SUð2Þ expansion, including and omitting the chiral
logarithms. These fully correlated fits to our lattice results for Bπ

and Fπ include points whose pion mass is in the range
½120 MeV;Mmax

π �. Results are shown for the x and ξ expansions.
In the top panel the individual p values are shown. Those of fits
including the logarithms are the same as the ones given in Fig. 6.
In the lower panel it is the difference of the p value obtained
omitting logarithms minus the χPT one, normalized by the latter.
Error bars on each point are the systematic uncertainties dis-
cussed in Sec. III C. Results obtained for the same
Mmax

π ¼ 200 MeV;…, are displaced horizontally by a small
amount around that Mmax

π value so that they can be visually
distinguished.
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To conclude this discussion, our lattice results clearly
favor the presence of logarithms in the range of applicabil-
ity of NLO SUð2Þ χPT, though the values of Fπ obtained
without them are compatible with those obtained in χPT at
the present level of accuracy.

B. On the role of lattice results near physical Mπ

In this section we examine the role of lattice results near
the physical value of Mπ, for the determination of LECs.
For this purpose we fix the maximum value of Mπ to
Mmax

π ¼ 450 MeV and study the dependence of the p value
and of the LECs as a function of the lower bound, Mmin

π ,
that we place on the lattice results included in the fit. We
consider fully correlated NLO, SUð2Þ χPT fits, in both the
x and ξ expansions. We compare the results obtained to
those given by NLO fits in our canonical range,
Mπ ∈ ½120; 300� MeV. We perform the comparison by
subtracting these canonical results for the LECs from the
new ones, under our systematic and bootstrap error loops.
Thus we obtain fully controlled statistical and systematic
errors on these differences.
In Fig. 17 we plot the p value of these NLO fits as a

function of Mmin
π with full systematic errors. We find

FIG. 17 (color online). The p value as a function of Mmin
π . The

p values are obtained by performing fully correlated NLO, SUð2Þ
χPT fits to lattice results for Bπ and Fπ with pion masses in the
range ½Mmin

π ; 450 MeV�. Both the x and ξ expansions are
considered. The points with Mmin

π ¼ 120 MeV are the same as
those with Mmax

π ¼ 450 MeV in Fig. 6. These and the points at
Mmin

π ¼ 150 MeV have significantly smaller p values because
NLO, SUð2Þ χPT does not adequately describe the behavior
of Bπ and Fπ for pion masses ranging from around its physical
value up to Mmax

π ¼ 450 MeV, as discussed at length in Sec. III.
The horizontal bands have the same meaning as in Fig. 6.
Error bars on each point are the systematic uncertainties dis-
cussed in Sec. III C. Results obtained for a same Mmin

π ¼
120; 150 MeV;…, are displaced horizontally by a small amount
around thatMmin

π value so that they can be visually distinguished.

FIG. 18 (color online). LO LECs as a function of Mmin
π (upper

panel of each plot). The LECs are obtained from the fits described
in Fig. 17. The horizontal gray band denotes our final result for
the corresponding LEC, given in Table IV, and obtained as
described in Sec. IV. In the lower panel corresponding to each
LEC, it is the difference of this LEC with the one obtained from
fits in our canonical range, Mπ ∈ ½120; 300� MeV. Error bars on
each point are the statistical and the quadratically combined
statistical-plus-systematic uncertainties. Results obtained for the
sameMmin

π ¼ 150 MeV;…, are displaced horizontally by a small
amount around that Mmin

π value so that they can be visually
distinguished.

FIG. 16 (color online). Fπ as a function ofMmax
π , obtained from

NLO fits with and without logarithms, in the x and ξ expansions
(upper panel). In the lower panel it is the difference (no logarithm
minus logarithm) of these highly correlated results that are
shown. Error bars on each point are the statistical and the
quadratically combined statistical-plus-systematic uncertainties.
Results obtained for a same Mmax

π ¼ 200 MeV;…, are displaced
horizontally by a small amount around that Mmax

π value so that
they can be visually distinguished.
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acceptable values for Mmin
π ≥ 200 MeV, which may give

the erroneous impression that NLO, SUð2Þ χPT is appli-
cable in the range Mπ ∈ ½200; 450� MeV. However, as we
showed in Sec. III C, NLO χPT is not applicable up to
450 MeV.
To give an idea of how one might be misled in the

determination of LECs and physical quantities, in Fig. 18
we plot the LO LECs and Fπ as a function of Mmin

π for
Mmin

π ∈ ½150; 300� MeV, for both the x and ξ expansions.
As in Figs. 7 and 8, we also plot, in the lower panel, the
difference of these quantities with the corresponding results
obtained in our canonical range Mπ ∈ ½120; 300� MeV.
While B remains close to its physical value, F and Fπ drop
significantly below our canonical values, by as much as
7%. The net result on the condensate, Σ, is even larger
since Σ ¼ F2B.
Figure 19 displays the same study, but for NLO LECs.

While the value of l̄3 remains approximately compatible
with its physical value, l̄4 increases steadily as Mmin

π is
increased, especially in the ξ expansion. These are the NLO
expressions of the observations made at LO. In particular,
the larger values of l̄4, or equivalently of the scale Λ4,
indicate that as lattice results at lower Mπ are removed, the
downward trend of the chiral logarithm in Fπ , as the chiral
limit is approached, is allowed to begin at larger values of
Mπ . The end result is lower values of F and Fπ for larger
Mmin

π . These results fully corroborate the observations that
we made, in Sec. IV, about the values of LECs obtained by

groups whose simulations do not reach down to
small Mπ < 200 MeV.
To summarize, if NLO SUð2Þ χPT is applied to results

for Bπ and Fπ up to Mmax
π ¼ 450 MeV, one obtains a good

description if one does not have results very close to the
physical point, i.e. withMπ < 200 MeV. Thus, one may be
led to believe that one is in the range of applicability of
NLO χPT. However, as we show, the description of Fπ , in
particular, is significantly different from that obtained
around the physical point, with values of F and Fπ which
are too small and of l̄4 which are too large. Said differently,
results for Fπ close to the physical point show less
downward curvature than results at larger values of Mπ

suggest.

VI. CONCLUSION

We have performed a detailed, fully correlated study of
the chiral behavior of the pion mass and decay constant,
based on 2þ 1 flavor lattice QCD simulations. These
calculations are implemented using tree-level, OðaÞ-
improved Wilson fermions all the way down to
Mπ ≃ 120 MeV. This coverage of the low-mass region
allows us to probe deeply into the chiral regime. Quark
masses and decay constants undergo fully controlled non-
perturbative renormalization. Moreover, our fine lattice
spacings down to 0.054 fm and large volumes up to
6 fm enable us to accurately perform the relevant con-
tinuum and infinite-volume extrapolations. We set the scale
of our calculations with the Ω baryon mass, which is
independent of the quantities of interest here. This allows
us to make valuable tests of our calculation. The first is an
ab initio computation of Fπ , whose result agrees well with
experiment [48] within our 1% error bar. The second is a
determination of mud that is fully compatible with the
FLAG value [11]. In fact, it is nearly identical to the result
of [4,5], which is not surprising as our treatment of quark
masses is carried over from that work.
We begin the study presented in this paper with a

systematic investigation of the range of applicability of
SUð2Þ χPT. We consider two expansions. The first, which
is that used in previous Nf ≥ 2þ 1 studies [2,6,7,13–20],
is in quark mass (x expansion). The second is in squared
pion mass (ξ expansion) and has not, as far as we know,
been investigated before. The study of the latter has led us
to find constraints on the NLO LEC l̄4 in terms of the LO
LEC F and bounds on the NNLO LEC cF in terms of the F
and the NLO LECs l̄4 and l̄12 defined in and around
Eq. (5). These bounds are derived and discussed in the
Appendix.
To explore the range of applicability of SUð2Þ χPT we

consider a number of criteria. These include a study of the
p value of our combined, fully correlated χPT fits, to M2

π

and Fπ , as a function of Mmax
π , where ½120 MeV;Mmax

π � is
the range of the masses of the lattice pions which we
include in our fits. We also study the values of the LO, NLOFIG. 19 (color online). Same as Fig. 17, but for NLO LECs.
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and NNLO LECs obtained in these fits, as a function of
Mmax

π . We further investigate the relative size of contribu-
tions of different orders in the χPT expansion for different
pion masses. While our study of NLO expansions is well
controlled, we find that we do not really have enough
precision to make definite statements about NNLO.
Our systematic investigation leads to the following

conclusions. We find that NLO χPT for M2
π and Fπ begins

showing signs of failure for Mπ beyond 300 MeV and
breaks down completely around 450 MeV for both expan-
sions. Adding NNLO terms allows one to describe con-
sistently the mass dependence of Fπ in the ξ expansion, up
to around 500 MeV, at the expense of NNLO corrections
which are approaching those of the NLO ones. This is only
marginally true in the x expansion, as F and l̄4 begin
deviating from the values given by the NLO fits with
Mmax

π ≤ 300 MeV in that expansion. However, in both
expansions, the addition of NNLO terms in Bπ does not
allow a description of that quantity beyond 300–350 MeV
that is consistent with the NLO description at the level of
around one standard deviation. This behavior is consistent
with the fact that these are asymptotic expansions. Since
conclusions about the applicability of SUð2Þ χPT depend
not only on the range of pion masses but also on the
precision of the results to which it is applied, it is important
that the latter be specified. This is discussed in detail in
Sec. III E. Here we only remind the reader that the typical
precision of our lattice results is around 1%. Note also that
conclusions may differ when considering applications of
SUð2Þ χPT to Nf ¼ 2 QCD, since the latter is missing the
relatively light degrees of freedom associated with the
strange quark.
Having established the range of applicability of SUð2Þ

χPT, which is very similar for both expansions, we use
lattice results in that range to determine the theories’ LECs.
In particular, we use our combined, fully correlated
NLO χPT fits to lattice results for M2

π and Fπ with
Mmax

π ≤ 300 MeV, to compute F, B, l̄3 and l̄4, as well
as the quark condensate and Fπ , with fully controlled
uncertainties. Our final results are summarized in Table IV
and those for the individual x and ξ expansions in Table III.
A detailed comparison with the Nf ≥ 2þ 1 studies of
[2,6,7,13–20] is given in Sec. IV. Here we note that while
our results for l̄3 and l̄4 are consistent with those obtained
from lattice Nf ≥ 2þ 1 simulations with pion masses
below 200 MeV [6,7,17], they are systematically smaller,
particularly those obtained in the x expansion, which is
used by all other collaborations. It is also interesting to note
that our result for the quark condensate has an uncertainty
which is almost 5 times smaller than the FLAG compilation
of [11].
We investigate the application of NNLO SUð2Þ χPT to

our lattice results. There we find that we have to include
results with Mπ at least up to 400 MeV to have enough
information to stabilize these fits without imposing

arbitrary priors. Unfortunately, our studies suggest that,
at such masses, we are already reaching beyond the range
of applicability of NNLO SUð2Þ χPT. Nevertheless, since
little is known about NNLO LECs, we still attempt to
determine them, with results given at the end of Sec. IV. As
noted there, these results should be taken with a grain of
salt and are only meant as indicative.
In Sec. V we explore the presence of NLO chiral

logarithms in our lattice results. We show that this presence
is significantly favored in the region of applicability of NLO
SUð2Þ χPT. While the inclusion of logarithms does not
make a significant difference on the value of Fπ obtained at
the present level of accuracy, we find that it will when the
total uncertainty on Fπ reaches a few tenths of an MeV.
In that same section, we examine the role of lattice

results near the physical value of Mπ , in particular for the
determination of LECs. We find that one obtains perfectly
good NLO fits of lattice results for M2

π and Fπ in the range
½Mmin

π ; 450 MeV� with Mmin
π ≥ 200 MeV. This might lead

one to believe that NLO SUð2Þ χPT is applicable in this
range. However, our systematic study of the range of
applicability of this theory already showed that the theory
failed forMπ ≳ 450 MeV. Moreover, while the values of B
and l̄3 are not strongly affected by considering higher pion
mass ranges, this is not true of F, l̄4, the pion decay
constant and the quark condensate.
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APPENDIX: SOLUTION FOR Fπ IN THE ξ
EXPANSION AND ENSUING CONSTRAINTS

As mentioned in Sec. III B, the expressions for Fπ in the
ξ expansion are obtained by solving the second equation in
(7) for Fπ. At NLO this equation is quadratic and, at
NNLO, it is quartic. Therefore, it has up to either two or
four solutions, and there is no guarantee that any of them
are physical. In this section we investigate the conditions
under which a physical solution exists. At fixed order in
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χPT, we find that these conditions impose nontrivial
constraints on the LECs. Of course, if higher orders are
allowed, these constraints eventually disappear.
The second equation in (7) can be rewritten as

fðrÞ≡ r4 − r3 − Cr2 −D ¼ 0; ðA1Þ

with

C ¼ X ln

�
Λ4

Mπ

�
2

; D ¼ X2

4

��
ln

�
ΩF

Mπ

�
2
	
2

− 4cF

�
;

ðA2Þ
and

r ¼ Fπ

F
; X ¼

�
Mπ

4πF

�
2

: ðA3Þ

At NLO, D ¼ 0 and, since Fπ ¼ 0 is not physical,
Eq. (A1) reduces to the quadratic equation

r2 − r − C ¼ 0: ðA4Þ

This equation has real solutions iff C ≥ −1=4 or

l̄4 ≥ ln

�
Mπ

M̂πþ

�
2

−
�
2πF
Mπ

�
2

: ðA5Þ

Since we want Fπ ≥ F=2, the physical solution is the larger
of the two, i.e.

Fπ ¼
F
2
½1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4C
p �: ðA6Þ

Note that Fπ is greater than F iff C > 0 or, equivalently
for Mπ ≥ M̂πþ, l̄4 is positive and its contribution in (7)
dominates over that of the chiral logarithm. Thus, the
constraint in Eq. (A5) is weaker than requiring that Fπ > F.
On the other hand, the validity of NLO χPT would
generically require that jCj ≪ 1. From that perspective,
the constraint of Eq. (A5), C ≥ −1=4 is a little more
specific, since it tells us that a positive NLO correction
in (7), whose magnitude is more than 25%, is not allowed if
one assumes that the NLO ξ expansion of Fπ is exact.
Assuming that this is the case, as we do when we fit our
lattice results to this expression, Eq. (A1) imposes a
constraint on the NLO LEC, l̄4, in terms of the LO
LEC, F, and of the pion mass at which the NLO ξ
expression is applied. Note that the RHS of Eq. (A5) is
a monotonically increasing function of Mπ , indicating that
the constraint on l̄4 becomes more and more stringent as
one tries to apply NLO ξ expressions to more and more
massive pions. In particular, if we assume that the expan-
sion must hold up to a value of Mπ ¼ Mmax

π , the lower
bound on l̄4 that must be enforced is the value of the RHS
at Mmax

π . We impose this lower bound dynamically in the
NLO, ξ expansion fits which are described in Sec. III B.

For illustration, in Fig. 20 we plot this bound and its
uncertainty as a function ofMmax

π . The curves correspond to
our final result for F, given in Table IV. This bound is rather
weak. It requires that l̄4 must be positive if one wants a
physical solution above Mπ ∼ 400 MeV at NLO in the ξ
expansion and larger than 4 only forMmax

π ≳ 1.1 GeV. The
latter indicates that the NLO fit of our data that we perform
for Mmax

π ¼ 300 MeV cannot be extended up to 1.1 GeV.
While our study shows that there are many other important
reasons for why this is the case, it is still interesting that
fixed-order ξ expansions have a built-in maximum pion-
mass range.
At NNLO, Eq. (A1) for Fπ is quartic and therefore has up

to four solutions. Moreover, it is easy to show that fðrÞ has
three extrema, one of which is at r ¼ 0. There are two other
real extrema iff

l̄4 ≥ ln

�
Mπ

M̂πþ

�
2

−
9

8

�
2πF
Mπ

�
2

; ðA7Þ

which is slightly less constraining than Eq. (A5). Thus, for
any pion-mass range, the NNLO ξ expansion admits
slightly smaller values of l̄4 than does the NLO expansion.
This is not surprising as we know that bounds on the LECs
must disappear in the limit of infinite order. However,
finding such a value would imply that the NLO expansion
is only applicable in a smaller mass range than the NNLO
one. In turn, this would be a sign that χPT is having trouble.
Now let us consider the possibility that r ¼ 0 is the only

real extremum, i.e. that C < −9=32. Because of the signs of
the terms in fðrÞ, it must be a minimum. Since we want a
solution to Eq. (A1) such that Fπ > F, we must have
jDj > jCj. But for this to be true, the NNLO term in the ξ
expansion must be larger than the NLO term. In that case

FIG. 20 (color online). Illustration of the NLO and NNLO
lower bounds on l̄4 coming from the requirement that there is a
physical solution for Fπ assuming that the NLO or the NNLO ξ
expansion expressions of (7) hold exactly. l̄4 must lie above the
given curve for each order in the expansion. To plot these curves,
we use our final result for F given in Table IV. The dashed curves
delimit the 1σ error band on each bound arising from the total
uncertainty on F.
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the ξ expansion has clearly broken down, which is not an
option of interest here. Thus we assume that (A7) is
satisfied, so that fðrÞ has three real extrema. It is then
straightforward to convince oneself that the absolute
minimum of fðrÞ is at rþ ¼ ð3þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 32C
p Þ=8.

Therefore, Eq. (A1) will have at least one real solution
for Fπ iff fðrþÞ ≤ 0. This translates into a lower bound on
the NNLO LEC cF, in terms of the LO and NLO LECs, F,
l̄4 and l̄12. This upper bound is not necessarily a
monotonic function of Mπ . Therefore, unlike the lower
bound of Eq. (A7) on l̄4, which need only be satisfied at
Mmax

π for the ξ expansion to hold, the minimum of the
bound on cF in the region Mπ ∈ ½0;Mmax

π � must be found
and imposed as an upper bound on cF. Thus,

cF ≤ min
Mπ∈½0;Mmax

π �

�
1

4

�
ln

�
ΩF

M2
π

�
2
	
2

−
�
4πF
Mπ

�
2

r2þ½r2þ − rþ − C�
�
; ðA8Þ

with rþ given above. This bound is very sensitive to the
values of the LECs, and is not very enlightening when LO
and NLO LECs, such as those given in Table IV, are used,
assuming no correlations between them. However, for a
given fit, this bound may be quite constraining. Thus, we
impose this upper bound and the lower bound on l̄4 given
in Eq. (A7) when fitting lattice results to NNLO ξ
expansion expressions.
The fixed-order bounds on LECs discussed above are

mainly of technical use here: they are enforced to avoid that
the fitting routine gets lost in exploring unphysical regions
of parameter space. However, for theories other than QCD
which have SUð2Þ χPT as a low-energy description, one

could imagine being in a situation where these bounds
suggest a failure of the effective theory in a region of pion
masses where it is not entirely clear what is meant by the
requirement that chiral corrections are “small.”
For completeness we also provide here the analytical

expression for the physical Fπ solution of the NNLO
expression for F in Eq. (7). It is given by [49]

Fπ ¼ F

�
1

4
þ Sþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4S2 − 2pþ q

S

r �
; ðA9Þ

with

p ¼ −
3

8
− C; ðA10Þ

q ¼ 1

8
þ C

2
; ðA11Þ

and

S ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
2

3
pþ 1

3

�
Qþ Δ0

Q

�s
; ðA12Þ

Q ¼
�Δ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

1 − 4Δ3
0

q
2

	
; ðA13Þ

where

Δ0 ¼ C2 − 12D; ðA14Þ

Δ1 ¼ −2C3 − 27D − 72CD: ðA15Þ
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