000185743 001__ 185743
000185743 005__ 20210129214734.0
000185743 0247_ $$2DOI$$a10.1016/j.brainres.2014.05.030
000185743 0247_ $$2WOS$$aWOS:000342542100008
000185743 037__ $$aFZJ-2014-07168
000185743 041__ $$aEnglish
000185743 082__ $$a150
000185743 1001_ $$0P:(DE-HGF)0$$aWalberer, M.$$b0$$eCorresponding Author
000185743 245__ $$aIn-vivo detection of inflammation and neurodegeneration in the chronic phase after permanent embolic stroke in rats
000185743 260__ $$aAmsterdam$$bElsevier$$c2014
000185743 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1419256160_32694
000185743 3367_ $$2DataCite$$aOutput Types/Journal article
000185743 3367_ $$00$$2EndNote$$aJournal Article
000185743 3367_ $$2BibTeX$$aARTICLE
000185743 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000185743 3367_ $$2DRIVER$$aarticle
000185743 520__ $$aNeuroinflammation with microglia activation (MA) constitutes a key tissue response in acute stroke. Until now, its course in the chronic stage is less well defined. Here, we investigated (i) neuroinflammation in the chronic stage of a rat model of embolic stroke (n=6), and (ii) whether this process can be visualized in vivo by multimodal imaging using Magnetic Resonance Imaging (MRI) and Positron-Emission-Tomography (PET). Imaging data were verified using histology and immunohistochemistry. Repetitive PET studies until week 6 after stroke reveal poststroke inflammation as a dynamic process that involved the infarct, the surrounding tissue and secondary degenerating areas in a complex fashion. At the end, 7 months after stroke, neuroinflammation had almost completely vanished at the lesion side. In contrast, remote from the primarily infarcted areas, a marked T2⁎- hypointensity was detected in the ipsilateral thalamus. In the corresponding area, [11C]PK11195-PET detected microglia activation. Immunohistochemistry confirmed activated microglia in the ipsilateral thalamus with signs of extensive phagocytosis and iron deposition around plaque-like amyloid deposition. Neuronal staining (NeuN) revealed pronounced neuronal loss as an endpoint of neurodegeneration in these areas.In conclusion, the data demonstrate not only ongoing thalamic neuroinflammation but also marked neurodegeneration remote from the lesion site in the chronic phase after stroke in rats. Both, neuroinflammation and neurodegeneration were accessible to (immuno-) histochemical methods as well as to in vivo methods using [11C]PK11195-PET and T2⁎-weighted MRI. Although the functional roles of these dynamic processes remain to be elucidated, ongoing destruction of neuronal tissue is conceivable. Its inhibition using anti-inflammatory substances may be beneficial in chronic post-stroke conditions, while multimodal imaging can be used to evaluate putative therapeutic effects in vivo.
000185743 536__ $$0G:(DE-HGF)POF2-333$$a333 - Pathophysiological Mechanisms of Neurological and Psychiatric Diseases (POF2-333)$$cPOF2-333$$fPOF II$$x0
000185743 536__ $$0G:(DE-HGF)POF2-89572$$a89572 - (Dys-)function and Plasticity (POF2-89572)$$cPOF2-89572$$fPOF II T$$x1
000185743 7001_ $$0P:(DE-HGF)0$$aJantzen, S. U.$$b1
000185743 7001_ $$0P:(DE-HGF)0$$aBackes, H.$$b2
000185743 7001_ $$0P:(DE-HGF)0$$aRueger, M. A.$$b3
000185743 7001_ $$0P:(DE-HGF)0$$aKeuters, M. H.$$b4
000185743 7001_ $$0P:(DE-HGF)0$$aNeumaier, B.$$b5
000185743 7001_ $$0P:(DE-HGF)0$$aHoehn, M.$$b6
000185743 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon Rudolf$$b7$$ufzj
000185743 7001_ $$0P:(DE-HGF)0$$aGraf, R.$$b8
000185743 7001_ $$0P:(DE-HGF)0$$aSchroeter, M.$$b9
000185743 773__ $$0PERI:(DE-600)1462674-3$$p80-88$$tBrain research$$v1581$$x0006-8993$$y2014
000185743 8564_ $$uhttps://juser.fz-juelich.de/record/185743/files/FZJ-2014-07168.pdf$$yRestricted
000185743 909CO $$ooai:juser.fz-juelich.de:185743$$pVDB
000185743 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000185743 9132_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000185743 9131_ $$0G:(DE-HGF)POF2-333$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vPathophysiological Mechanisms of Neurological and Psychiatric Diseases$$x0
000185743 9131_ $$0G:(DE-HGF)POF2-89572$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$v(Dys-)function and Plasticity$$x1
000185743 9141_ $$y2014
000185743 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000185743 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000185743 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000185743 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000185743 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000185743 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000185743 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000185743 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000185743 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000185743 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000185743 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000185743 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000185743 920__ $$lyes
000185743 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000185743 980__ $$ajournal
000185743 980__ $$aVDB
000185743 980__ $$aI:(DE-Juel1)INM-3-20090406
000185743 980__ $$aUNRESTRICTED