000185878 001__ 185878
000185878 005__ 20240610121044.0
000185878 0247_ $$2doi$$a10.1021/am504988j
000185878 0247_ $$2WOS$$aWOS:000343684200107
000185878 0247_ $$2altmetric$$aaltmetric:21824655
000185878 0247_ $$2pmid$$a25252171
000185878 037__ $$aFZJ-2015-00015
000185878 041__ $$aEnglish
000185878 082__ $$a540
000185878 1001_ $$0P:(DE-Juel1)145316$$aKardynal, Beata$$b0$$eCorresponding Author
000185878 245__ $$aUnderstanding the role of single molecular ZnS precursors in the synthesis of In(Zn)P/ZnS nanocrystals
000185878 260__ $$aWashington, DC$$bSoc.$$c2014
000185878 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1423059101_19681
000185878 3367_ $$2DataCite$$aOutput Types/Journal article
000185878 3367_ $$00$$2EndNote$$aJournal Article
000185878 3367_ $$2BibTeX$$aARTICLE
000185878 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000185878 3367_ $$2DRIVER$$aarticle
000185878 520__ $$aEnvironmentally friendly nanocrystals (NCs) such as InP are in demand for various applications, such as biomedical labeling, solar cells, sensors, and light-emitting diodes (LEDs). To fulfill their potential applications, the synthesis of such high-quality “green” InP NCs required further improvement so as to achieve better stability, higher brightness NCs, and also to have a more robust synthesis route. The present study addresses our efforts on the synthesis of high-quality In(Zn)P/ZnS core–shell NCs using an air- and moisture-stable ZnS single molecular precursor (SMP) and In(Zn)P cores. The SMP method has recently emerged as a promising route for the surface overcoating of NCs due to its simplicity, high reproducibility, low reaction temperature, and flexibility in controlling the reaction. The synthesis involved heating the In(Zn)P core solution and Zn(S2CNR2) (where R = methyl, ethyl, butyl, or benzyl and referred to as ZDMT, ZDET, ZDBT, or ZDBzT, respectively) in oleylamine (OLA) to 90–250 °C for 0.5–2.5 h. In this work, we systematically studied the influence of different SMP end groups, the complex formation and stability between the SMP and oleylamine (OLA), the reaction temperature, and the amount of SMP on the synthesis of high-quality In(Zn)P/ZnS NCs. We found that thiocarbamate end groups are an important factor contributing to the low-temperature growth of high-quality In(Zn)P/ZnS NCs, as the end groups affect the polarity of the molecules and result in a different steric arrangement. We found that use of SMP with bulky end groups (ZDBzT) results in nanocrystals with higher photoluminescence quantum yield (PL QY) and better dispersibility than those synthesized with SMPs with the shorter alkyl chain groups (ZDMT, ZDET, or ZDBT). At the optimal conditions, the PL QY of red emission In(Zn)P/ZnS NCs is 55 ± 4%, which is one of the highest values reported. On the basis of structural (XAS, XPS, XRD, TEM) and optical characterization, we propose a mechanism for the growth of a ZnS shell on an In(Zn)P core.
000185878 536__ $$0G:(DE-HGF)POF2-423$$a423 - Sensorics and bioinspired systems (POF2-423)$$cPOF2-423$$fPOF II$$x0
000185878 536__ $$0G:(EU-Grant)280773$$aNWS4LIGHT - Nanowires for solid state lighting (280773)$$c280773$$fFP7-NMP-2011-SMALL-5$$x1
000185878 536__ $$0G:(DE-HGF)POF2-42G41$$a42G - Peter Grünberg-Centre (PG-C) (POF2-42G41)$$cPOF2-42G41$$fPOF II$$x2
000185878 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000185878 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x1
000185878 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x2
000185878 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
000185878 65017 $$0V:(DE-MLZ)GC-150$$2V:(DE-HGF)$$aNano Science and Technology $$x1
000185878 7001_ $$0P:(DE-HGF)0$$aXi, Li$$b1
000185878 7001_ $$0P:(DE-HGF)0$$aCho, Deok-Yong$$b2
000185878 7001_ $$0P:(DE-Juel1)145413$$aDuchamp, Martial$$b3
000185878 7001_ $$0P:(DE-Juel1)144965$$aBoothroyd, Christopher Brian$$b4
000185878 7001_ $$0P:(DE-HGF)0$$aLek, Jun Yan$$b5
000185878 7001_ $$0P:(DE-Juel1)133839$$aBesmehn, Astrid$$b6
000185878 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b7
000185878 7001_ $$0P:(DE-HGF)0$$aLam, Yeng Ming$$b8
000185878 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/am504988j$$n20$$p18233–18242$$tACS applied materials & interfaces$$v6$$x1944-8244$$y2014
000185878 8564_ $$uhttp://www.pubfacts.com/fulltext_frame.php?PMID=25252171&title=Understanding%20the%20role%20of%20single%20molecular%20ZnS%20precursors%20in%20the%20synthesis%20of%20In%28Zn%29P/ZnS%20nanocrystals.
000185878 8564_ $$uhttps://juser.fz-juelich.de/record/185878/files/FZJ-2015-00015.pdf$$yRestricted
000185878 909CO $$ooai:juser.fz-juelich.de:185878$$pec_fundedresources$$pVDB$$popenaire
000185878 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145316$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000185878 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156151$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000185878 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145413$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000185878 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144965$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000185878 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133839$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000185878 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000185878 9132_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000185878 9132_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000185878 9131_ $$0G:(DE-HGF)POF2-423$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSensorics and bioinspired systems$$x0
000185878 9131_ $$0G:(DE-HGF)POF2-42G41$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vPeter Grünberg-Centre (PG-C)$$x1
000185878 9141_ $$y2014
000185878 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000185878 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000185878 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000185878 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000185878 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000185878 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000185878 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000185878 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000185878 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000185878 920__ $$lno
000185878 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000185878 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x1
000185878 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000185878 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x3
000185878 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x4
000185878 980__ $$ajournal
000185878 980__ $$aVDB
000185878 980__ $$aI:(DE-Juel1)PGI-9-20110106
000185878 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000185878 980__ $$aI:(DE-82)080009_20140620
000185878 980__ $$aI:(DE-Juel1)PGI-7-20110106
000185878 980__ $$aI:(DE-Juel1)PGI-5-20110106
000185878 980__ $$aUNRESTRICTED
000185878 981__ $$aI:(DE-Juel1)ER-C-1-20170209
000185878 981__ $$aI:(DE-Juel1)ZEA-3-20090406
000185878 981__ $$aI:(DE-Juel1)PGI-7-20110106
000185878 981__ $$aI:(DE-Juel1)PGI-5-20110106