001     185878
005     20240610121044.0
024 7 _ |a 10.1021/am504988j
|2 doi
024 7 _ |a WOS:000343684200107
|2 WOS
024 7 _ |a altmetric:21824655
|2 altmetric
024 7 _ |a 25252171
|2 pmid
037 _ _ |a FZJ-2015-00015
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Kardynal, Beata
|0 P:(DE-Juel1)145316
|b 0
|e Corresponding Author
245 _ _ |a Understanding the role of single molecular ZnS precursors in the synthesis of In(Zn)P/ZnS nanocrystals
260 _ _ |a Washington, DC
|c 2014
|b Soc.
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1423059101_19681
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Environmentally friendly nanocrystals (NCs) such as InP are in demand for various applications, such as biomedical labeling, solar cells, sensors, and light-emitting diodes (LEDs). To fulfill their potential applications, the synthesis of such high-quality “green” InP NCs required further improvement so as to achieve better stability, higher brightness NCs, and also to have a more robust synthesis route. The present study addresses our efforts on the synthesis of high-quality In(Zn)P/ZnS core–shell NCs using an air- and moisture-stable ZnS single molecular precursor (SMP) and In(Zn)P cores. The SMP method has recently emerged as a promising route for the surface overcoating of NCs due to its simplicity, high reproducibility, low reaction temperature, and flexibility in controlling the reaction. The synthesis involved heating the In(Zn)P core solution and Zn(S2CNR2) (where R = methyl, ethyl, butyl, or benzyl and referred to as ZDMT, ZDET, ZDBT, or ZDBzT, respectively) in oleylamine (OLA) to 90–250 °C for 0.5–2.5 h. In this work, we systematically studied the influence of different SMP end groups, the complex formation and stability between the SMP and oleylamine (OLA), the reaction temperature, and the amount of SMP on the synthesis of high-quality In(Zn)P/ZnS NCs. We found that thiocarbamate end groups are an important factor contributing to the low-temperature growth of high-quality In(Zn)P/ZnS NCs, as the end groups affect the polarity of the molecules and result in a different steric arrangement. We found that use of SMP with bulky end groups (ZDBzT) results in nanocrystals with higher photoluminescence quantum yield (PL QY) and better dispersibility than those synthesized with SMPs with the shorter alkyl chain groups (ZDMT, ZDET, or ZDBT). At the optimal conditions, the PL QY of red emission In(Zn)P/ZnS NCs is 55 ± 4%, which is one of the highest values reported. On the basis of structural (XAS, XPS, XRD, TEM) and optical characterization, we propose a mechanism for the growth of a ZnS shell on an In(Zn)P core.
536 _ _ |a 423 - Sensorics and bioinspired systems (POF2-423)
|0 G:(DE-HGF)POF2-423
|c POF2-423
|f POF II
|x 0
536 _ _ |a NWS4LIGHT - Nanowires for solid state lighting (280773)
|0 G:(EU-Grant)280773
|c 280773
|f FP7-NMP-2011-SMALL-5
|x 1
536 _ _ |a 42G - Peter Grünberg-Centre (PG-C) (POF2-42G41)
|0 G:(DE-HGF)POF2-42G41
|c POF2-42G41
|f POF II
|x 2
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 0
650 2 7 |a Chemistry
|0 V:(DE-MLZ)SciArea-110
|2 V:(DE-HGF)
|x 1
650 2 7 |a Soft Condensed Matter
|0 V:(DE-MLZ)SciArea-210
|2 V:(DE-HGF)
|x 2
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
650 1 7 |a Nano Science and Technology
|0 V:(DE-MLZ)GC-150
|2 V:(DE-HGF)
|x 1
700 1 _ |a Xi, Li
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Cho, Deok-Yong
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Duchamp, Martial
|0 P:(DE-Juel1)145413
|b 3
700 1 _ |a Boothroyd, Christopher Brian
|0 P:(DE-Juel1)144965
|b 4
700 1 _ |a Lek, Jun Yan
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Besmehn, Astrid
|0 P:(DE-Juel1)133839
|b 6
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 7
700 1 _ |a Lam, Yeng Ming
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1021/am504988j
|0 PERI:(DE-600)2467494-1
|n 20
|p 18233–18242
|t ACS applied materials & interfaces
|v 6
|y 2014
|x 1944-8244
856 4 _ |u http://www.pubfacts.com/fulltext_frame.php?PMID=25252171&title=Understanding%20the%20role%20of%20single%20molecular%20ZnS%20precursors%20in%20the%20synthesis%20of%20In%28Zn%29P/ZnS%20nanocrystals.
856 4 _ |u https://juser.fz-juelich.de/record/185878/files/FZJ-2015-00015.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:185878
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145316
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156151
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145413
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)144965
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)133839
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131022
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 1
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-423
|2 G:(DE-HGF)POF2-400
|v Sensorics and bioinspired systems
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-42G41
|2 G:(DE-HGF)POF2-400
|v Peter Grünberg-Centre (PG-C)
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 3
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209
981 _ _ |a I:(DE-Juel1)ZEA-3-20090406
981 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)PGI-5-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21