000185888 001__ 185888
000185888 005__ 20210129214749.0
000185888 0247_ $$2doi$$a10.1088/0031-8949/2014/T163/014016
000185888 0247_ $$2ISSN$$a0031-8949
000185888 0247_ $$2ISSN$$a1402-4896
000185888 0247_ $$2WOS$$aWOS:000349832400017
000185888 0247_ $$2altmetric$$aaltmetric:3003934
000185888 037__ $$aFZJ-2015-00025
000185888 082__ $$a530
000185888 1001_ $$0P:(DE-HGF)0$$aDe Raedt, H.$$b0
000185888 245__ $$aEvent-by-event simulation of single-neutron experiments to test uncertainty relations
000185888 260__ $$aBristol$$bIoP Publ.$$c2014
000185888 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1420537542_23888
000185888 3367_ $$2DataCite$$aOutput Types/Journal article
000185888 3367_ $$00$$2EndNote$$aJournal Article
000185888 3367_ $$2BibTeX$$aARTICLE
000185888 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000185888 3367_ $$2DRIVER$$aarticle
000185888 520__ $$aResults from a discrete-event simulation of a recent single-neutron experiment that tests Ozawaʼs generalization of Heisenbergʼs uncertainty relation are presented. The event-based simulation algorithm reproduces the results of the quantum theoretical description of the experiment but does not require the knowledge of the solution of a wave equation, nor does it rely on detailed concepts of quantum theory. In particular, the data from these non-quantum simulations satisfy uncertainty relations derived in the context of quantum theory.
000185888 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000185888 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000185888 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, K.$$b1$$eCorresponding Author
000185888 773__ $$0PERI:(DE-600)1477351-x$$a10.1088/0031-8949/2014/T163/014016$$gVol. T163, p. 014016 -$$p014016$$tPhysica scripta$$vT163$$x1402-4896$$y2014
000185888 8564_ $$uhttps://juser.fz-juelich.de/record/185888/files/FZJ-2015-00025.pdf$$yRestricted
000185888 909CO $$ooai:juser.fz-juelich.de:185888$$pVDB
000185888 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000185888 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000185888 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000185888 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000185888 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000185888 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000185888 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000185888 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000185888 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000185888 9141_ $$y2014
000185888 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000185888 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000185888 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000185888 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000185888 980__ $$ajournal
000185888 980__ $$aVDB
000185888 980__ $$aI:(DE-Juel1)JSC-20090406
000185888 980__ $$aUNRESTRICTED