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Abstract We review lattice results related to pion, kaon,
D- and B-meson physics with the aim of making them
easily accessible to the particle-physics community. More
specifically, we report on the determination of the light-
quark masses, the form factor f; (0), arising in semileptonic
K — 7 transition at zero momentum transfer, as well as
the decay-constant ratio fx/fr of decay constants and its
consequences for the CKM matrix elements V,; and V, .
Furthermore, we describe the results obtained on the lattice
for some of the low-energy constants of SU(2); x SU2)r
and SU(3);, x SU(3) g Chiral Perturbation Theory and review
the determination of the Bx parameter of neutral kaon mix-

2e-mail: gilberto@itp.unibe.ch

ing. The inclusion of heavy-quark quantities significantly
expands the FLAG scope with respect to the previous review.
Therefore, we focus here on D- and B-meson decay con-
stants, form factors, and mixing parameters, since these are
most relevant for the determination of CKM matrix elements
and the global CKM unitarity-triangle fit. In addition we
review the status of lattice determinations of the strong cou-
pling constant o.
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1 Introduction

Flavour physics provides an important opportunity for
exploring the limits of the Standard Model of particle physics
and for constraining possible extensions of theories that go
beyond it. As the LHC explores a new energy frontier and
as experiments continue to extend the precision frontier, the
importance of flavour physics will grow, both in terms of
searches for signatures of new physics through precision
measurements and in terms of attempts to unravel the theo-
retical framework behind direct discoveries of new particles.
A major theoretical limitation consists in the precision with
which strong interaction effects can be quantified. Large-
scale numerical simulations of lattice QCD allow for the
computation of these effects from first principles. The scope
of the Flavour Lattice Averaging Group (FLAG) is to review
the current status of lattice results for a variety of physical
quantities in low-energy physics. Set up in November 2007,
it comprises experts in Lattice Field Theory and Chiral Per-
turbation Theory. Our aim is to provide an answer to the

! The original group had been set up in the framework of a European
Network on Flavour Physics (Flavianet).

frequently posed question “What is currently the best lattice
value for a particular quantity?”, in a way which is readily
accessible to non-lattice-experts. This is generally not an easy
question to answer; different collaborations use different lat-
tice actions (discretisations of QCD) with a variety of lattice
spacings and volumes, and with a range of masses for the u-
and d-quarks. Not only are the systematic errors different,
but also the methodology used to estimate these uncertain-
ties varies between collaborations. In the present work we
summarise the main features of each of the calculations and
provide a framework for judging and combining the differ-
ent results. Sometimes it is a single result which provides
the “best” value; more often it is a combination of results
from different collaborations. Indeed, the consistency of val-
ues obtained using different formulations adds significantly
to our confidence in the results.

The first edition of the FLAG review was published in
2011 [1]. It was limited to lattice results related to pion and
kaon physics: light-quark masses (-, d- and s-flavours), the
form factor f, (0) arising in semileptonic K — 7 transi-
tions at zero momentum transfer and the decay constant ratio
fx /fx,as well as their implications for the CKM matrix ele-
ments V,; and V4. Furthermore, results were reported for
some of the low-energy constants of SU(2); ® SU(2) g and
SUB)r ® SU(3)g Chiral Perturbation Theory and the Bg
parameter of neutral kaon mixing. Results for all of these
quantities have been updated in the present paper. More-
over, the scope of the present review has been extended by
including lattice results related to D- and B-meson physics.
We focus on B- and D-meson decay constants, form fac-
tors, and mixing parameters, which are most relevant for
the determination of CKM matrix elements and the global
CKM unitarity-triangle fit. Last but not least, the current sta-
tus of lattice results on the QCD coupling o is also reviewed.
Bottom- and charm-quark masses, though important para-
metric inputs to Standard Model calculations, have not been
covered in the present edition. They will be included in a
future FLAG report.

Our plan is to continue providing FLAG updates, in the
form of a peer-reviewed paper, roughly on a biannual basis.
This effort is supplemented by our more frequently updated
website http://itpwiki.unibe.ch/flag, where figures as well as
pdf-files for the individual sections can be downloaded. The
papers reviewed in the present edition have appeared before
the closing date 30 November 2013.

Finally, we draw attention to a particularly important
point. As stated above, our aim is to make lattice QCD results
easily accessible to non-lattice-experts and we are well aware
that it is likely that some readers will only consult the present
paper and not the original lattice literature. We consider it
very important that this paper is not the only one which
gets cited when the lattice results which are discussed and
analysed here are quoted. Readers who find the review and

@ Springer


http://itpwiki.unibe.ch/flag

2890 Page 4 of 179

Eur. Phys. J. C (2014) 74:2890

compilations offered in this paper useful are therefore kindly
requested to also cite the original sources. The bibliography
at the end of this paper should make this task easier. Indeed
we hope that the bibliography will be one of the most widely
used elements of the whole paper.

This review is organised as follows. In the remainder of
Sect. 1 we summarise the composition and rules of FLAG,
describe the goals of the FLAG effort and general issues that
arise in modern lattice calculations. For the reader’s conve-
nience, Table 1 summarises the main results (averages and
estimates) of the present review. In Sect. 2 we explain our
general methodology for evaluating the robustness of lattice
results which have appeared in the literature. We also describe
the procedures followed for combining results from different
collaborations in a single average or estimate (see Sect. 2.2
for our use of these terms). The rest of the paper consists of
sections, each of which is dedicated to a single (or groups
of closely connected) physical quantity(ies). Each of these
sections is accompanied by an Appendix with explicatory
notes.

1.1 FLAG enlargement

Upon completion of the first review, it was decided to extend
the project by adding new physical quantities and co-authors.
FLAG became more representative of the lattice community,
both in terms of the geographical location of its members and
the lattice collaborations to which they belong. At the time a
parallel effort had been made [2,3]; the two efforts have now
merged in order to provide a single source of information on
lattice results to the particle-physics community.

The experience gained in managing the activities of a
medium-sized group of co-authors taught us that it was nec-
essary to have a more formal structure and a set of rules
by which all concerned had to abide, in order to make the
inner workings of FLAG function smoothly. The collabora-
tion presently consists of an Advisory Board (AB), an Edi-
torial Board (EB), and seven Working Groups (WG). The
role of the Advisory Board is that of general supervision and
consultation. Its members may interfere at any point in the
process of drafting the paper, expressing their opinion and
offering advice. They also give their approval of the final ver-
sion of the preprint before it is rendered public. The Editorial
Board coordinates the activities of FLAG, sets priorities and
intermediate deadlines, and takes care of the editorial work
needed to amalgamate the sections written by the individ-
ual working groups into a uniform and coherent review. The
working groups concentrate on writing up the review of the
physical quantities for which they are responsible, which is
subsequently circulated to the whole collaboration for criti-
cisms and suggestions.

@ Springer

The most important internal FLAG rules are the following:

e members of the AB have a 4-year mandate (to avoid a
simultaneous change of all members, some of the current
members of the AB will have a shorter mandate);

e the composition of the AB reflects the main geographi-
cal areas in which lattice collaborations are active: one
member comes from America, one from Asia/Oceania
and one from Europe;

e the mandate of regular members is not limited in time,
but we expect that a certain turnover will occur naturally;

e whenever a replacement becomes necessary this has to
keep, and possibly improve, the balance in FLAG;

e in all working groups the three members must belong to
three different lattice collaborations;?

e a paper is in general not reviewed (nor colour-coded, as
described in the next section) by one of its authors;

e lattice collaborations not represented in FLAG will be
asked to check whether the colour coding of their calcu-
lation is correct.

The current list of FLAG members and their Working
Group assignments is:
e Advisory Board (AB): S. Aoki, C. Bernard, C. Sachrajda
e Editorial Board (EB): G. Colangelo, H. Leutwyler,

A. Vladikas, U. Wenger
e Working Groups (WG)

(each WG coordinator is listed first):

— Quark masses: L. Lellouch, T. Blum, V. Lubicz

— Vus, Vua: A Jiittner, T. Kaneko, S. Simula

— LEC: S. Diirr, H. Fukaya, S. Necco

— Bg: H. Wittig, J. Laiho, S. Sharpe

— fB(X), fD(S), Bp: A.El-Khadra,Y. Aoki, M. Della Morte

— B(), D semileptonic and radiative decays: R. Van de
Water, E. Lunghi, C. Pena, J. Shigemitsu3

— o5:  R. Sommer, R. Horsley, T. Onogi

1.2 General issues and summary of the main results

The present review aims at two distinct goals:

(a) offer a description of the work done on the lattice con-
cerning low-energy particle physics;

2 The WG on semileptonic D and B decays has currently four members,
but only three of them belong to lattice collaborations.

3 J. Shigemitsu has withdrawn from FLAG, immediately after comple-
tion of the first version of the present paper (arXiv:1310.8555 [hep-lat]),
of which she is a co-author. She is listed here in recognition of her full
involvement in the review of B(s) and D semileptonic and radiative
decays, as well as for her valuable contribution of the whole FLAG
effort.
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Table 1 Summary of the main results of this review, grouped in terms
of Ny, the number of dynamical quark flavours in lattice simulations.
Quark masses and the quark condensate are given in the MS scheme at
running scale © = 2 GeV; the other quantities listed are specified in the
quoted sections. The columns marked M indicate the number of results
that enter our averages for each quantity. We emphasise that these num-

bers only give a very rough indication of how thoroughly the quantity in
question has been explored on the lattice and recommend to consult the
detailed tables and figures in the relevant section for more significant
information. For explanations on the source of the quoted errors for each
quantity, the reader is advised to consult the corresponding section, as
indicated in the second column

Quantity Sect. | Ne=2+4+1+1 [ ] Ne=2+1 | Nf =2
ms (MeV) 3.3 93.8 (1.5) (1.9) 2 101 (3)
muq MeV) 33 3.42 (6) (7) 3.6(2)
Mg/ Myug 33 3 27.46 (15) (41) 1 28.1 (1.2)
mg (MeV) 3.4 4.68 (14) (7) 4.80 (23)
my (MeV) 34 2.16 (9) (7) 2.40 (23)
my/my 3.4 0.46 (2) (2) 0.50 (4)
£ 0 43 2 0.9661 (32) 1 0.9560 (57) (62)
Tt 43 2 1.194 (5) 4 1.192 (5) 1 1.205 (6) (17)
fx (MeV) 4.6 3 156.3 (0.9) 1 158.1 (2.5)
fr MeV) 4.6 3 130.2 (1.4)
 (MeV) 5.1 2 271 (15) 1 269 (8)
Fr/F 5.1 1 1.0760 (28) 2 1.0624 (21) 1 1.0744 (67)
Iz 5.1 1 3.70 (27) 3 3.05 (99) 1 341 (41)
i 5.1 1 4.67 (10) 3 4.02 (28) 1 4.62 (22)
Bk 6.2 4 0.766 (10) 1 0.729 (25) (17)
B%S (2 GeV) 6.2 4 0.560 (7) 1 0.533 (18) (12)
fp MeV) 7.1 2 209.2 (3.3) 1 208 (7)
fp, (MeV) 7.1 2 248.6 (2.7) 1 250 (7)
fp,/fp 7.1 2 1.187 (12) 1 1.20 (2)
27 0) 7.2 1 0.666 (29)
PE ) 7.2 1 0.747 (19)
5 (MeV) 8.1 1 186 (4) 3 190.5 (4.2) 1 189 (8)
fB, MeV) 8.1 1 224 (5) 3 227.7 (4.5) 1 228 (8)
f8,/f8 8.1 1 1.205 (7) 2 1.202 (22) 1 1.206 (24)
Foay/ BB, MeV) 8.2 1 216 (15)
fB,\/ B, MeV) 8.2 1 266 (18)
Bg, 8.2 1 1.27 (10)
Bp, 8.2 1 1.33 (6)
£ 8.2 1 1.268 (63)
Bp,/Bg, 8.2 1 1.06 (11)
ACBT (ps—1) 8.3 2 2.16 (50)
B (g% :aBt 8.3 2 0.453 (33)

aBCL 2 —0.43 (33)

aBCL 2 0.9 (3.9)
FB=D*(1) 8.4 1 0.906 (4) (12)
R(D) 8.4 1 0.316 (12) (7)
a%(MZ) 9.9 4 0.1184 (12)

(b) draw conclusions on the basis of that work, which sum-

marise the results obtained for the various quantities of

physical interest.

The core of the information about the work done on the
lattice is presented in the form of tables, which not only
list the various results, but also describe the quality of the
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data that underlie them. We consider it important that this
part of the review represents a generally accepted description
of the work done. For this reason, we explicitly specify the
quality requirements used and provide sufficient details in
the appendices so that the reader can verify the information
given in the tables.

The conclusions drawn on the basis of the available lat-
tice results, on the other hand, are the responsibility of FLAG
alone. We aim at staying on the conservative side and in sev-
eral cases reach conclusions which are more cautious than
what a plain average of the available lattice results would
give, in particular when this is dominated by a single lat-
tice result. An additional issue occurs when only one lattice
result is available for a given quantity. In such cases one
does not have the same degree of confidence in results and
errors as one has when there is agreement among many differ-
ent calculations using different approaches. Since this degree
of confidence cannot be quantified, it is not reflected in the
quoted errors, but it should be kept in mind by the reader.
At present, the issue of having only a single result occurs
much more often in heavy-quark physics than in light-quark
physics. We are confident that the heavy-quark calculations
will soon reach the state that pertains in light-quark physics.

Several general issues concerning the present review are
thoroughly discussed in Sect. 1.1 of our initial paper [1] and
we encourage the reader to consult the relevant pages. In the
remainder of the present section, we focus on a few important
points.

Each discretisation has its merits but also its shortcom-
ings. For the topics covered already in the first edition of the
FLAG review, we have by now a remarkably broad data base,
and for most quantities lattice calculations based on totally
different discretisations are now available. This is illustrated
by the dense population of the tables and figures shown in the
first part of this review. Those calculations which do satisfy
our quality criteria indeed lead to consistent results, confirm-
ing universality within the accuracy reached. In our opinion,
the consistency between independent lattice results, obtained
with different discretisations, methods and simulation param-
eters, is an important test of lattice QCD, and observing such
consistency then also provides further evidence that system-
atic errors are fully under control.

In the sections dealing with heavy quarks and with o,
the situation is not the same. Since the b-quark mass cannot
be resolved with current lattice spacings, all lattice meth-
ods for treating b quarks use effective field theory at some
level. This introduces additional complications not present in
the light-quark sector. An overview of the issues specific to
heavy-quark quantities is given in the introduction of Sect. 8.
For B- and D-meson leptonic decay constants, there already
exist a good number of different independent calculations
that use different heavy-quark methods, but there are only
one or two independent calculations of semileptonic B- and

@ Springer

D-meson form factors and B meson mixing parameters. For
o, most lattice methods involve a range of scales that need
to be resolved and controlling the systematic error over a
large range of scales is more demanding. The issues specific
to determinations of the strong coupling are summarised in
Sect. 9.

The lattice spacings reached in recent simulations go down
to 0.05 fm or even smaller. In that region, growing autocorre-
lation times slow down the sampling of the configurations [4—
8]. Many groups check for autocorrelations in a number of
observables, including the topological charge, for which a
rapid growth of the autocorrelation time is observed if the
lattice spacing becomes small. In the following, we assume
that the continuum limit can be reached by extrapolating the
existing simulations.

Lattice simulations of QCD currently involve at most four
dynamical quark flavours. Moreover, most of the data con-
cern simulations for which the masses of the two lightest
quarks are set equal. This is indicated by the notation Ny =
2+ 141 which, in this case, denotes a lattice calculation with
four dynamical quark flavours and m, = mg # mg; # me.
Note that calculations with Ny = 2 dynamical flavours often
include strange valence quarks interacting with gluons, so
that bound states with the quantum numbers of the kaons can
be studied, albeit neglecting strange sea quark fluctuations.
The quenched approximation (Ny = 0), in which the sea
quarks are treated as a mean field, is no longer used in mod-
ern lattice simulations. Accordingly, we will review results
obtained with Ny =2, Ny =2+ 1land Ny =2+ 1+ 1, but
we omit earlier results with Ny = 0. On the other hand, the
dependence of the QCD coupling constant s on the number
of flavours is a theoretical issue of considerable interest, and
we therefore include results obtained for gluodynamics in the
o section. We stress, however, that only results with Ny > 3
are used to determine the physical value of g at a high scale.

The remarkable recent progress in the precision of lat-
tice calculations is due to improved algorithms, better com-
puting resources and, last but not least, conceptual develop-
ments, such as improved actions which reduce lattice arte-
facts, actions which preserve (remnants of) chiral symmetry,
understanding finite-size effects, non-perturbative renormal-
isation, etc. A concise characterisation of the various dis-
cretisations that underlie the results reported in the present
review is given in Appendix A.1.

Lattice simulations are performed at fixed values of the
bare QCD parameters (gauge coupling and quark masses)
and physical quantities with mass dimensions (e.g. quark
masses, decay constants...) are computed in units of the lat-
tice spacing; i.e. they are dimensionless. Their conversion to
physical units requires knowledge of the lattice spacing at
the fixed values of the bare QCD parameters of the simula-
tions. This is achieved by requiring agreement between the
lattice calculation and experimental measurement of a known
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quantity, which “sets the scale” of a given simulation. A few
details on this procedure are provided in Appendix A.2.

Several of the results covered by this review, such as quark
masses, the gauge coupling, and B-parameters, are quanti-
ties defined in a given renormalisation scheme and scale. The
schemes employed are often chosen because of their specific
merits when combined with the lattice regularisation. For a
brief discussion of their properties, see Appendix A.3. The
conversion of the results, obtained in these so-called interme-
diate schemes, to more familiar regularisation schemes, such
as the MS-scheme, is done with the aid of perturbation the-
ory. It must be stressed that the renormalisation scales acces-
sible by the simulations are subject to limitations, naturally
arising in Field-Theory computations at finite UV and small
non-zero IR cutoff. Typically, such scales are of the order of
the UV cutoff, or Agcp, depending on the chosen scheme.
To safely match to MS, a scheme defined in perturbation the-
ory, Renormalisation Group (RG) running to higher scales is
performed, either perturbatively, or non-perturbatively (the
latter using finite-size scaling techniques).

Because of limited computing resources, lattice simula-
tions are often performed at unphysically heavy pion masses,
although results at the physical point have recently become
available. Further, numerical simulations must be done at
finite lattice spacing. In order to obtain physical results, lat-
tice data are generated at a sequence of pion masses and a
sequence of lattice spacings, and then extrapolated to M, ~
135 MeV and a — 0. To control the associated systematic
uncertainties, these extrapolations are guided by effective
theory. For light-quark actions, the lattice-spacing depen-
dence is described by Symanzik’s effective theory [9,10];
for heavy quarks, this can be extended and/or supplemented
by other effective theories such as Heavy-Quark Effective
Theory (HQET). The pion-mass dependence can be parame-
terised with Chiral Perturbation Theory (x PT), which takes
into account the Nambu—Goldstone nature of the lowest exci-
tations that occur in the presence of light quarks; similarly
one can use Heavy-Light Meson Chiral Perturbation Theory
(HMxPT) to extrapolate quantities involving mesons com-
posed of one heavy (b or c) and one light quark. One can
combine Symanzik’s effective theory with x PT to simulta-
neously extrapolate to the physical pion mass and continuum;
in this case, the form of the effective theory depends on the
discretisation. See Appendix A.4 for a brief description of
the different variants in use and some useful references.

2 Quality criteria

The essential characteristics of our approach to the problem
of rating and averaging lattice quantities reported by different
collaborations have been outlined in our first publication [1].
Our aim is to help the reader assess the reliability of a par-
ticular lattice result without necessarily studying the original

article in depth. This is a delicate issue, which may make
things appear simpler than they are. However, it safeguards
against the common practice of using lattice results and draw-
ing physics conclusions from them, without a critical assess-
ment of the quality of the various calculations. We believe
that despite the risks, it is important to provide some compact
information about the quality of a calculation. However, the
importance of the accompanying detailed discussion of the
results presented in the bulk of the present review cannot be
underestimated.

2.1 Systematic errors and colour-coding

In Ref. [1], we identified a number of sources of systematic
errors, for which a systematic improvement is possible, and
assigned one of three coloured symbols to each calculation:
green star, amber disc or red square. The appearance of a red
tag, even in a single source of systematic error of a given
lattice result, disqualified it from the global averaging. Since
results with green and amber tags entered the averages, and
since this policy has been retained in the present edition, we
have decided to substitute the amber disc by a green unfilled
circle. Thus the new colour coding is as follows:

Y the systematic error has been estimated in a satisfactory
manner and convincingly shown to be under control;

O a reasonable attempt at estimating the systematic error
has been made, although this could be improved;

® no or a clearly unsatisfactory attempt at estimating the
systematic error has been made. We stress once more that
only results without a red tag in the systematic errors are
averaged in order to provide a given FLAG estimate.

The precise criteria used in determining the colour cod-
ing is unavoidably time-dependent; as lattice calculations
become more accurate the standards against which they are
measured become tighter. For quantities related to the light-
quark sector, which have been dealt with in the first edition
of the FLAG review [1], some of the quality criteria have
remained the same, while others have been tightened up. We
will compare them to those of Ref. [1], case-by-case, below.
For the newly introduced physical quantities, related to heavy
quark physics, the adoption of new criteria was necessary.
This is due to the fact that, in most cases, the discretisation
of the heavy quark action follows a very different approach
to that of light flavours. Moreover, the two Working Groups
dedicated to heavy flavours have opted for a somewhat dif-
ferent rating of the extrapolation of lattice results to the con-
tinuum limit. Finally, the strong coupling being in a class of
its own, as far as methods for its computation are concerned,
led to the introduction of dedicated rating criteria for it.

Of course any colour coding has to be treated with cau-
tion; we repeat that the criteria are subjective and evolving.

@ Springer
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Sometimes a single source of systematic error dominates the
systematic uncertainty and it is more important to reduce this
uncertainty than to aim for green stars for other sources of
error. In spite of these caveats we hope that our attempt to
introduce quality measures for lattice results will prove to be
a useful guide. In addition we would like to stress that the
agreement of lattice results obtained using different actions
and procedures evident in many of the tables presented below
provides further validation.

For a coherent assessment of the present situation, the
quality of the data plays a key role, but the colour coding can-
not be carried over to the figures. On the other hand, simply
showing all data on equal footing would give the misleading
impression that the overall consistency of the information
available on the lattice is questionable. As a way out, the
figures do indicate the quality in a rudimentary way:

M results included in the average;

[ results that are not included in the average but pass all
quality criteria;

[J all other results.

The reason for not including a given result in the average
is not always the same: the paper may fail one of the quality
criteria, may not be published, be superseded by other results
or not offer a complete error budget. Symbols other than
squares are used to distinguish results with specific properties
and are always explained in the caption.

There are separate criteria for light-flavour, heavy-flavour,
and o results. In the following the criteria for the former two
are discussed in detail, while the criteria for the o results will
be exposed separately in Sect. 9.2.

2.1.1 Light-quark physics

The colour code used in the tables is specified as follows:
o Chiral extrapolation:

K My min < 200 MeV
0 200 MeV < My min < 400 MeV
® 400 MeV < Mz min

It is assumed that the chiral extrapolation is done with at
least a three-point analysis; otherwise this will be explicitly
mentioned. Note that, compared to Ref. [1], chiral extrapo-
lations are now treated in a somewhat more stringent man-
ner and the cutoff between green star and green open circle
(formerly amber disc), previously set at 250 MeV, is now
lowered to 200 MeV.

e Continuum extrapolation:

& three or more lattice spacings, at least two points below
0.1 fm

@ Springer

O two or more lattice spacings, at least one point below
0.1 fm

® otherwise

Itis assumed that the action is O (a)-improved (i.e. the dis-
cretisation errors vanish quadratically with the lattice spac-
ing); otherwise this will be explicitly mentioned. More-
over, for non-improved actions an additional lattice spac-
ing is required. This criterion is the same as the one adopted
in Ref. [1].

e Finite-volume effects:

K Mz minL > 4 or at least three volumes

O Mz minL > 3 and at least two volumes

® otherwise

These ratings apply to calculations in the p-regime and it is
assumed that L, > 2 fm; otherwise this will be explicitly

mentioned and a red square will be assigned.
e Renormalisation (where applicable):

Y% non-perturbative

O one-loop perturbation theory or higher with a reasonable
estimate of truncation errors

B otherwise

In Ref. [1], we assigned a red square to all results which
were renormalised at one loop in perturbation theory. We
now feel that this is too restrictive, since the error arising
from renormalisation constants, calculated in perturbation
theory at one loop, is often estimated conservatively and
reliably.

e Running (where applicable):

For scale-dependent quantities, such as quark masses or
Bk, itis essential that contact with continuum perturbation
theory can be established. Various different methods are
used for this purpose (cf. Appendix A.3): Regularisation-
independent Momentum  Subtraction (RI/MOM),
Schrodinger  functional, direct comparison with
(resummed) perturbation theory. Irrespective of the par-
ticular method used, the uncertainty associated with the
choice of intermediate renormalisation scales in the con-
struction of physical observables must be brought under
control. This is best achieved by performing comparisons
between non-perturbative and perturbative running over
a reasonably broad range of scales. These comparisons
were initially only made in the Schrédinger functional
(SF) approach, but they are now also being performed in
RI/MOM schemes. We mark the data for which informa-
tion about non-perturbative running checks is available and
give some details, but we do not attempt to translate this
into a colour-code.
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The pion mass plays an important role in the criteria rel-
evant for chiral extrapolation and finite volume. For some
of the regularisations used, however, it is not a trivial matter
to identify this mass. In the case of twisted-mass fermions,
discretisation effects give rise to a mass difference between
charged and neutral pions even when the up- and down-quark
masses are equal, with the charged pion being the heavier of
the two. The discussion of the twisted-mass results presented
in the following sections assumes that the artificial isospin-
breaking effects which occur in this regularisation are under
control. In addition, we assume that the mass of the charged
pion may be used when evaluating the chiral-extrapolation
and finite-volume criteria. In the case of staggered fermions,
discretisation effects give rise to several light states with the
quantum numbers of the pion.* The mass splitting among
these “taste” partners represents a discretisation effect of
O(a?), which can be significant at big lattice spacings but
shrinks as the spacing is reduced. In the discussion of the
results obtained with staggered quarks given in the follow-
ing sections, we assume that these artefacts are under control.
When evaluating the chiral-extrapolation criteria, we conser-
vatively identify My iy, with the root-mean square (RMS)
of the mass of all taste partners. These masses are also used
in Sects. 4 and 6 when evaluating the finite-volume criteria,
while in Sects. 3, 5, 7 and 8, a more stringent finite-volume
criterion is applied: My mi, is identified with the mass of the
lightest state.

2.1.2 Heavy-quark physics

This subsection discusses the criteria adopted for the heavy-
quark quantities included in this review, characterised by
non-zero charm and bottom quantum numbers. There are
several different approaches to treating heavy quarks on the
lattice, each with their own issues and considerations. In gen-
eral all b-quark methods rely on the use of Effective Field
Theory (EFT) at some point in the computation, either via
direct simulation of the EFT, use of the EFT to estimate the
size of cutoff errors, or use of the EFT to extrapolate from
the simulated lattice quark mass up to the physical b-quark
mass. Some simulations of charm-quark quantities use the
same heavy-quark methods as for bottom quarks, but there
are also computations that use improved light-quark actions
to simulate charm quarks. Hence, with some methods and
for some quantities, truncation effects must be considered
together with discretisation errors. With other methods, dis-
cretisation errors are more severe for heavy-quark quantities
than for the corresponding light-quark quantities.

In order to address these complications, we add a new
heavy-quark treatment category to the ratings system. The

4 We refer the interested reader to a number of good reviews on the
subject [11-15].

purpose of this criterion is to provide a guideline for the
level of action and operator improvement needed in each
approach to make reliable calculations possible, in principle.
In addition, we replace the rating criteria for the continuum
extrapolations of Sect. 2.1.1 with a new empirical approach
based on the size of observed discretisation errors in the lat-
tice simulation data. This accounts for the fact that whether
discretisation and truncation effects in a given calculation
are sufficiently small as to be controllable depends not only
on the range of lattice spacings used in the simulations, but
also on the simulated heavy-quark masses and on the level of
action and operator improvement. For the other categories,
we adopt the same strict criteria as in Sect. 2.1.1, with one
minor modification, as explained below.

e Heavy-quark treatment

A description of the different approaches to treating heavy
quarks on the lattice is given in Appendix A.1.3 including
a discussion of the associated discretisation, truncation,
and matching errors. For truncation errors we use HQET
power counting throughout, since this review is focussed
on heavy quark quantities involving B and D mesons. Here
we describe the criteria for how each approach must be
implemented in order to receive an acceptable (v') rat-
ing for both the heavy quark actions and the weak oper-
ators. Heavy-quark implementations without the level of
improvement described below are rated not acceptable ( ®).
The matching is evaluated together with renormalisation,
using the renormalisation criteria described in Sect. 2.1.1.
‘We emphasise that the heavy-quark implementations rated
as acceptable and described below have been validated in a
variety of ways, such as via phenomenological agreement
with experimental measurements, consistency between
independent lattice calculations, and numerical studies of
truncation errors. These tests are summarised in Sect. 8.

Relativistic heavy quark actions:

v at least tree-level O (a) improved action and weak oper-
ators

This is similar to the requirements for light quark actions. All
current implementations of relativistic heavy quark actions
satisfy these criteria.

NRQCD:

v tree-level matched through O(1/my) and improved
through 0@

The current implementations of NRQCD satisfy these cri-
teria, and also include tree-level corrections of O (1/ m,zl) in
the action.

HQET:

v tree-level matched through O (1/my,) with discretisation
errors starting at O (a?)

The current implementation of HQET by the ALPHA
collaboration satisfies these criteria with an action and

@ Springer
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weak operators that are non-perturbatively matched through
O(1/my). Calculations that exclusively use a static-limit
action do not satisfy theses criteria, since the static-limit
action, by definition, does notinclude 1/mj, terms. However,
for SU(3)-breaking ratios such as & and fp, /fp truncation
errors start at O ((my —mg)/my,). We therefore consider lat-
tice calculations of such ratios that use a static-limit action
to still have controllable truncation errors.

Light-quark actions for heavy quarks:

/ discretisation errors starting at O (a?) or higher

This applies to calculations that use the tmWilson action,
a non-perturbatively improved Wilson action, or the HISQ
action for charm quark quantities. It also applies to calcula-
tions that use these light quark actions in the charm region
and above together with either the static limit or with an
HQET-inspired extrapolation to obtain results at the physical
b quark mass. In these cases, the continuum-extrapolation
criteria must be applied to the entire range of heavy quark
masses used in the calculation.

e Continuum extrapolation:

First we introduce the following definitions:

D == = 1
@ 0(a) )

where (Q(a) denotes the central value of quantity Q
obtained at lattice spacing a and Q(0) denotes the con-
tinuum extrapolated value. D(a) is a measure of how far
the continuum extrapolated result is from the lattice data.
We evaluate this quantity on the smallest lattice spacing
used in the calculation, amin.

0@~ 0(0)
- 2OE0,

8(a) (2)

where o is the combined statistical and systematic (due
to the continuum extrapolation) error. §(a) is a measure
of how well the continuum-extrapolated result agrees with
the lattice data within the statistical and systematic errors
of the calculation. Again, we evaluate this quantity on the
smallest lattice spacing used in the calculation, ampjp.

% (i) Three or more lattice spacings,
(ii) arznax/arznin =2,
(iii) D(amin) < 2 %, and
(iv) d(amin) <1

O (i) Two or more lattice spacings,

(i) a2,y /aZ. > 1.4,

(ii)) D(amin) < 10 %,
(iv) 8(amin) < 2,

@ Springer

® otherwise.

For the time being, these new criteria for the quality of
the continuum extrapolation have only been adopted for the
heavy-quark quantities, but their use may be extended to all
FLAG quantities in future reviews.

e Finite-volume:

K My minL 2 3.7 or two volumes at fixed parameters
O Mz minL >3
® otherwise

Here the boundary between green star and open circle is
slightly relaxed compared to that in Sect. 2.1.1 to account
for the fact that heavy-quark quantities are less sensitive to
this systematic error than light-quark quantities. A J rat-
ing requires an estimate of the finite-volume error either by
analysing data on two or more physical volumes (with all
other parameters fixed) or by using finite-volume chiral per-
turbation theory. In the case of staggered sea quarks, My min
refers to the lightest (taste Goldstone) pion mass.

2.2 Averages and estimates

For many observables there are enough independent lattice
calculations of good quality that it makes sense to average
them and propose such an average as the best current lattice
number. In order to decide whether this is true for a certain
observable, we rely on the colour coding. We restrict the
averages to data for which the colour code does not contain
any red tags. In some cases, the averaging procedure never-
theless leads to a result which in our opinion does not cover
all uncertainties. This is related to the fact that procedures
for estimating errors and the resulting conclusions necessar-
ily have an element of subjectivity, and would vary between
groups even with the same data set. In order to stay on the
conservative side, we may replace the average by an estimate
(or a range), which we consider as a fair assessment of the
knowledge acquired on the lattice at present. This estimate is
not obtained with a prescribed mathematical procedure, but
it is based on a critical analysis of the available information.

There are two other important criteria which also play
a role in this respect, but which cannot be colour coded,
because a systematic improvement is not possible. These
are: (i) the publication status, and (ii) the number of flavours
Nt. As far as the former criterion is concerned, we adopt
the following policy: we average only results which have
been published in peer-reviewed journals, i.e. they have been
endorsed by referee(s). The only exception to this rule con-
sists in obvious updates of previously published results, typ-
ically presented in conference proceedings. Such updates,
which supersede the corresponding results in the published



Eur. Phys. J. C (2014) 74:2890

Page 11 of 179 2890

papers, are included in the averages. Nevertheless, all results
are listed and their publication status is identified by the fol-
lowing symbols:

e Publication status:

A published or plain update of published results
P preprint
C conference contribution

Note that updates of earlier results rely, at least partially,
on the same gauge-field configuration ensembles. For this
reason, we do not average updates with earlier results. In the
present edition, the publication status on November 30, 2013
is relevant. If the paper appeared in print after that date this
is accounted for in the bibliography, but it does not affect the
averages.

In this review we present results from simulations with
Nf =2, Nf =2+ 1and Nf = 2 + 1 + 1 (for ro Agg also
with Ny = 0). We are not aware of an a priori way to quan-
titatively estimate the difference between results produced
in simulations with a different number of dynamical quarks.
We therefore average results at fixed Ny separately; averages
of calculations with different Ny will not be provided.

To date, no significant differences between results with
different values of N¢ have been observed. In the future, as
the accuracy and the control over systematic effects in lattice
calculations will increase, it will hopefully be possible to see
adifference between Ny = 2 and Ny = 2+ 1 calculations and
so determine the size of the Zweig-rule violations related to
strange quark loops. This is a very interesting issue per se, and
one which can be quantitatively addressed only with lattice
calculations.

2.3 Averaging procedure and error analysis

In [1], the FLAG averages and their errors were estimated
through the following procedure: Having added in quadrature
statistical and systematic errors for each individual result,
we obtained their weighted x2 average. This was our cen-
tral value. If the fit was of good quality ( Xr%lin /dof < 1), we
calculated the net uncertainty 8 from y2 = Xr%lin + 1; other-
wise, we inflated the result obtained in this way by the factor
S = /(x?/dof). Whenever this x> minimisation procedure
resulted in a total error which was smaller than the smallest
systematic error of any individual lattice result, we assigned
the smallest systematic error of that result to the total sys-
tematic error in the average.

One of the problems arising when forming such averages
is that not all of the data sets are independent; in fact, some
rely on the same ensembles. In particular, the same gauge-
field configurations, produced with a given fermion discreti-
sation, are often used by different research teams with differ-
ent valence quark lattice actions, obtaining results which are

not really independent. In the present paper we have mod-
ified our averaging procedure, in order to account for such
correlations. To start with, we examine error budgets for indi-
vidual calculations and look for potentially correlated uncer-
tainties. Specific problems encountered in connection with
correlations between different data sets are commented in
the text. If there is any reason to believe that a source of
error is correlated between two calculations, a 100 % cor-
relation is assumed. We then obtain the central value from
a x2 weighted average, evaluated by adding statistical and
systematic errors in quadrature (just as in Ref. [1]): for a set
of individual measurements x; with error o; and correlation
matrix C;;, central value and error of the average are given
by

Xaverage = E X wj, ;= 1—_2» 3)
; .
2 — E i O s
Uaverage - W W;j Cl]' (4)
i,j

The correlation matrix for the set of correlated lattice results
is estimated with Schmelling’s prescription [16]. When nec-
essary, the statistical and systematic error bars are stretched
by a factor S, as specified in the previous paragraph.

3 Masses of the light quarks

Quark masses are fundamental parameters of the Standard
Model. An accurate determination of these parameters is
important for both phenomenological and theoretical appli-
cations. The charm and bottom masses, for instance, enter
the theoretical expressions of several cross sections and decay
rates in heavy-quark expansions. The up-, down- and strange-
quark masses govern the amount of explicit chiral symmetry
breaking in QCD. From a theoretical point of view, the values
of quark masses provide information about the flavour struc-
ture of physics beyond the Standard Model. The Review of
Particle Physics of the Particle Data Group contains a review
of quark masses [17], which covers light as well as heavy
flavours. The present summary only deals with the light-
quark masses (those of the up, down and strange quarks),
but it discusses the lattice results for these in more detail.
Quark masses cannot be measured directly with experi-
ment because quarks cannot be isolated, as they are confined
inside hadrons. On the other hand, quark masses are free
parameters of the theory and, as such, cannot be obtained on
the basis of purely theoretical considerations. Their values
can only be determined by comparing the theoretical predic-
tion for an observable, which depends on the quark mass of
interest, with the corresponding experimental value. What
makes light-quark masses particularly difficult to determine
is the fact that they are very small (for the up and down) or

@ Springer



2890 Page 12 of 179

Eur. Phys. J. C (2014) 74:2890

small (for the strange) compared to typical hadronic scales.
Thus, their impact on typical hadronic observables is minute
and it is difficult to isolate their contribution accurately.

Fortunately, the spontaneous breaking of SU(3);, ®SU(3) g
chiral symmetry provides observables which are particularly
sensitive to the light-quark masses: the masses of the resulting
Nambu—Goldstone bosons (NGB), i.e. pions, kaons and etas.
Indeed, the Gell-Mann—Oakes—Renner relation [18] predicts
that the squared mass of a NGB is directly proportional to the
sum of the masses of the quark and antiquark which compose
it, up to higher-order mass corrections. Moreover, because
these NGBs are light and are composed of only two valence
particles, their masses have a particularly clean statistical sig-
nal in lattice-QCD calculations. In addition, the experimental
uncertainties on these meson masses are negligible.

Three flavour QCD has four free parameters: the strong
coupling, oy (alternatively Aqcp) and the up, down and
strange quark masses, m,, mg and mg. However, present day
lattice calculations are often performed in the isospin limit,
and the up and down quark masses (especially those in the
sea) usually get replaced by a single parameter: the isospin-
averaged up- and down-quark mass, m,q = %(mu + mg).
A lattice determination of these parameters requires two
steps:

1. Calculations of three experimentally measurable quanti-
ties are used to fix the three bare parameters. As already
discussed, NGB masses are particularly appropriate for
fixing the light-quark masses. Another observable, such
as the mass of a member of the baryon octet, can be used
to fix the overall scale. It is important to note that until
recently, most calculations were performed at values of
m,q which were still substantially larger than its physical
value, typically four times as large. Reaching the phys-
ical up- and down-quark mass point required a signifi-
cant extrapolation. This situation is changing fast. The
PACS-CS [19-21] and BMW [22,23] calculations were
performed with masses all the way down to their physical
value (and even below in the case of BMW), albeit in very
small volumes for PACS-CS. More recently, MILC [24]
and RBC/UKQCD [25] have also extended their simu-
lations almost down to the physical point, by consider-
ing pions with M, > 170 MeV.> Regarding the strange
quark, modern simulations can easily include them with
masses that bracket its physical value, and only interpo-
lations are needed.

2. Renormalisations of these bare parameters must be
performed to relate them to the corresponding cutoff-

> In the case of MILC, we are referring to the staggered root-mean-
square average mass of the taste partners (see discussion in Sect. 2.1).
The mass of the corresponding taste-Goldstone pion in these simulations
is the physical value.
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independent, renormalised parameters.® These are short-
distance calculations, which may be performed perturba-
tively. Experience shows that one-loop calculations are
unreliable for the renormalisation of quark masses: usu-
ally at least two loops are required to have trustworthy
results. Therefore, it is best to perform the renormalisa-
tions non-perturbatively to avoid potentially large pertur-
bative uncertainties due to neglected higher-order terms.
However, we will include in our averages one-loop results
which carry a solid estimate of the systematic uncertainty
due to the truncation of the series.

Of course, in quark mass ratios the renormalisation factor
cancels, so that this second step is no longer relevant.

3.1 Contributions from the electromagnetic interaction

As mentioned in Sect. 2.1, the present review relies on the
hypothesis that, at low energies, the Lagrangian Locp +
Lqep describes nature to a high degree of precision. More-
over, we assume that, at the accuracy reached by now and
for the quantities discussed here, the difference between
the results obtained from simulations with three dynamical
flavours and full QCD is small in comparison with the quoted
systematic uncertainties. This will soon no longer be the case.
The electromagnetic (e.m.) interaction, on the other hand,
cannot be ignored. Quite generally, when comparing QCD
calculations with experiment, radiative corrections need to
be applied. In lattice simulations, where the QCD parame-
ters are fixed in terms of the masses of some of the hadrons,
the electromagnetic contributions to these masses must be
accounted for.”

The electromagnetic interaction plays a crucial role in
determinations of the ratio m, /mg4, because the isospin-
breaking effects generated by this interaction are comparable
to those from m, # my (see Sect. 3.4). In determinations
of the ratio mg/m,4, the electromagnetic interaction is less
important, but at the accuracy reached, it cannot be neglected.
The reason is that, in the determination of this ratio, the pion
mass enters as an input parameter. Because M, represents a

67Throughout this review, the quark masses m,,, my4 and m refer to the
MS scheme at running scale @ = 2 GeV and the numerical values are
given in MeV units.

7 Since the decomposition of the sum Lqcp +LoED into two parts is not
unique, specifying the QCD part requires a convention. In order to give
results for the quark masses in the Standard Model at scale © = 2 GeV,
on the basis of a calculation done within QCD, it is convenient to match
the two theories at that scale. We use this convention throughout the
present review. Note that a different convention is used in the analysis of
the precision measurements carried out in low-energy pion physics (e.g.
[26]). When comparing lattice results with experiment, it is important
to fix the QCD parameters in accordance with the convention used in
the analysis of the experimental data (for a more detailed discussion,
see [27-30]).
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small symmetry-breaking effect, it is rather sensitive to the
perturbations generated by QED.

We distinguish the physical mass Mp, P € {x+, 7%, KT,
K}, from the mass M p within QCD alone. The e.m. self-
energy is the difference between the two, M }f, = Mp— Mp.
Because the self-energy of the Nambu—Goldstone bosons
diverges in the chiral limit, it is convenient to replace it by
the contribution of the e.m. interaction to the square of the
mass,

AV =M} — M} =2MpM}, + O(eh). Q)

The main effect of the e.m. interaction is an increase in the
mass of the charged particles, generated by the photon cloud
that surrounds them. The self-energies of the neutral ones are
comparatively small, particularly for the Nambu—Goldstone
bosons, which do not have a magnetic moment. Dashen’s
theorem [31] confirms this picture, as it states that, to lead-
ing order (LO) of the chiral expansion, the self-energies
of the neutral NGBs vanish, while the charged ones obey
A2+ = Aj;+. It is convenient to express the self-energies of
the neutral particles as well as the mass difference between
the charged and neutral pions within QCD in units of the
observed mass difference, A, = Mﬁ — Mio:

Ay =0 Mg, Al y=€go Mg, M2, — M2 = € Ay, (6)

In this notation, the self-energies of the charged particles
are given by

AV, =(1+ €0 —€m) A,
AY, =(1+€e+ego—en) Ag, )

where the dimensionless coefficient € parameterises the vio-
lation of Dashen’s theorem,3

Ay =AYy — Al + AT =€y (8)

Any determination of the light-quark masses based on a
calculation of the masses of 77, KT and K° within QCD
requires an estimate for the coefficients €, €0, €go and €.

The first determination of the self-energies on the lattice
was carried out by Duncan et al. [33]. Using the quenched
approximation, they arrived at M};+ — M};O = 1.9MeV.
Actually, the parameterisation of the masses given in that
paper yields an estimate for all but one of the coefficients
introduced above (since the mass splitting between the
charged and neutral pions in QCD is neglected, the param-
eterisation amounts to setting €,, = 0 ab initio). Evaluating
the differences between the masses obtained at the physical
value of the electromagnetic coupling constant and ate = 0,
we obtain € = 0.50(8), €,0 = 0.034(5) and exo = 0.23(3).

8 Sometimes, e.g. in [32], the violation of Dashen’s theorem is given
in terms of a different quantity, € = (A%, — A%o)/(AL =AY —1.
This parameter is related to € used here through € = (1 — ¢,,)€. Given
the value of €, (see (9)), these two quantities differ by only 4 %.

The errors quoted are statistical only: an estimate of lattice
systematic errors is not possible from the limited results of
Duncan et al. [33]. The result for € indicates that the viola-
tion of Dashen’s theorem is sizeable: according to this calcu-
lation, the non-leading contributions to the self-energy dif-
ference of the kaons amount to 50 % of the leading term.
The result for the self-energy of the neutral pion cannot be
taken at face value, because it is small, comparable to the
neglected mass difference M+ — ]l;lﬂo. To illustrate this, we
note that the numbers quoted above are obtained by match-
ing the parameterisation with the physical masses for 70, K+
and K°. This gives a mass for the charged pion that is too
high by 0.32 MeV. Tuning the parameters instead such that
M .+ comes out correctly, the result for the self-energy of the
neutral pion becomes larger: €,0 = 0.10(7) where, again,
the error is statistical only.

In an update of this calculation by the RBC collaboration
[34] (RBC 07), the electromagnetic interaction is still treated
in the quenched approximation, but the strong interaction is
simulated with Ny = 2 dynamical quark flavours. The quark
masses are fixed with the physical masses of 7°, K and K°.
The outcome for the difference in the electromagnetic self-
energy of the kaons reads M};+ — M};O = 1.443(55) MeV.
This corresponds to a remarkably small violation of Dashen’s
theorem. Indeed, a recent extension of this work to Ny =
2 4 1 dynamical flavours [32] leads to a significantly larger
self-energy difference: M, — My, = 1.87(10)MeV, in
good agreement with the estimate of Eichten et al. Expressed
in terms of the coefficient € that measures the size of the
violation of Dashen’s theorem, it corresponds to € = 0.5(1).

The input for the electromagnetic corrections used by
MILC is specified in [35]. In their analysis of the lattice
data, €0, €xo and €,, are set equal to zero. For the remain-
ing coefficient, which plays a crucial role in determinations
of the ratio m, /my, the very conservative range € = 1 £ 1
was used in MILC 04 [36], while in more recent work, in
particular in MILC 09 [15] and MILC 09A [37], this input is
replaced by € = 1.2 £0.5, as suggested by phenomenologi-
cal estimates for the corrections to Dashen’s theorem [38,39].
Results of an evaluation of the electromagnetic self-energies
based on Ny = 2 4 1 dynamical quarks in the QCD sector
and on the quenched approximation in the QED sector are
also reported by MILC [40-42]. Their preliminary result is
€ = 0.65(7)(14)(10), where the first error is statistical, the
second systematic, and the third a separate systematic for the
combined chiral and continuum extrapolation. The estimate
of the systematic error does not yet include finite-volume
effects. With the estimate for €, given in (9), this result cor-
respondstoe = 0.62(7)(14)(10). Similar preliminary results
were previously reported by the BMW collaboration in con-
ference proceedings [43,44].

The RM123 collaboration employs a new technique to
compute e.m. shifts in hadron masses in two-flavour QCD:

@ Springer
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the effects are included at leading order in the electromag-
netic coupling o through simple insertions of the fundamental
electromagnetic interaction in quark lines of relevant Feyn-
man graphs [45]. They find € = 0.79(18)(18) where the first
error is statistical and the second is the total systematic error
resulting from chiral, finite-volume, discretisation, quench-
ing and fitting errors all added in quadrature.

The effective Lagrangian that governs the self-energies to
next-to-leading order (NLO) of the chiral expansion was set
up in [46]. The estimates in [38,39] are obtained by replacing
QCD with a model, matching this model with the effective
theory and assuming that the effective coupling constants
obtained in this way represent a decent approximation to
those of QCD. For alternative model estimates and a detailed
discussion of the problems encountered in models based on
saturation by resonances, see [47-49]. In the present review
of the information obtained on the lattice, we avoid the use
of models altogether.

There is an indirect phenomenological determination of
€, which is based on the decay n — 37 and does not rely on
models. The result for the quark mass ratio Q, defined in (24)
and obtained from a dispersive analysis of this decay, implies
€ = 0.70(28) (see Sect. 3.4). While the values found in older
lattice calculations [32—-34] are a little less than one standard
deviation lower, the most recent determinations [40-45,50],
though still preliminary, are in excellent agreement with this
result and have significantly smaller error bars. However,
even in the more recent calculations, e.m. effects are treated
in the quenched approximation. Thus, we choose to quote
€ = 0.7(3), which is essentially the n — 3m result and
covers generously the range of post 2010 lattice results. Note
that this value has an uncertainty which is reduced by about
40 % compared to the result quoted in the first edition of the
FLAG review [1].

We add a few comments concerning the physics of the
self-energies and then specify the estimates used as an input
in our analysis of the data. The Cottingham formula [51]
represents the self-energy of a particle as an integral over
electron scattering cross sections; elastic as well as inelastic
reactions contribute. For the charged pion, the term due to
elastic scattering, which involves the square of the e.m. form
factor, makes a substantial contribution. In the case of the
79, this term is absent, because the form factor vanishes on
account of charge conjugation invariance. Indeed, the con-
tribution from the form factor to the self-energy of the ™
roughly reproduces the observed mass difference between
the two particles. Furthermore, the numbers given in [52-
54] indicate that the inelastic contributions are significantly
smaller than the elastic contributions to the self-energy of
the w+. The low energy theorem of Das et al. [55] ensures
that, in the limit m,, my — 0, the e.m. self-energy of the pad
vanishes, while the one of the 7T is given by an integral over
the difference between the vector and axial-vector spectral

@ Springer

functions. The estimates for €0 obtained in [33] are consis-
tent with the suppression of the self-energy of the 7° implied
by chiral SU(2) x SU(2). In our opinion, €;0 = 0.07(7) is
a conservative estimate for this coefficient. The self-energy
of the K9 is suppressed less strongly, because it remains dif-
ferent from zero if m, and m, are taken massless and only
disappears if m; is turned off as well. Note also that, since
the e.m. form factor of the K is different from zero, the self-
energy of the K does pick up an elastic contribution. The
lattice result for € zo indicates that the violation of Dashen’s
theorem is smaller than in the case of €. In the following, we
use €xo = 0.3(3).

Finally, we consider the mass splitting between the
charged and neutral pions in QCD. This effect is known to
be very small, because it is of second order in m, — my.
There is a parameter-free prediction, which expresses the
difference ]\;Ii+ - A;Iio in terms of the physical masses of the
pseudoscalar octet and is valid to NLO of the chiral perturba-
tion series. Numerically, the relation yields €,, = 0.04 [56],
indicating that this contribution does not play a significant
role at the present level of accuracy. We attach a conserva-
tive error also to this coefficient: €,, = 0.04(2). The lattice
result for the self-energy difference of the pions, reported in
[32], M), — M, = 4.50(23) MeV, agrees with this esti-
mate: expressed in terms of the coefficient €, that measures
the pion mass splitting in QCD, the result corresponds to
€m = 0.04(5). The corrections of next-to-next-to-leading
order (NNLO) have been worked out [57], but the numeri-
cal evaluation of the formulae again meets with the problem
that the relevant effective coupling constants are not reliably
known.

In summary, we use the following estimates for the
e.m. corrections:

€ =0.73), €;0 =0.07(7), ego = 0.3(3), €, = 0.04(2).
€))

While the range used for the coefficient € affects our anal-
ysis in a significant way, the numerical values of the other
coefficients only serve to set the scale of these contributions.
The range given for €0 and € g0 may be overly generous, but
because of the exploratory nature of the lattice determina-
tions, we consider it advisable to use a conservative estimate.

Treating the uncertainties in the four coefficients as sta-
tistically independent and adding errors in quadrature, the
numbers in equation (9) yield the following estimates for the
e.m. self-energies,

M), =473)MeV, M), =0.3(3) MeV,
M), - M:;O = 4.4(1)MeV,
My, =25(5)MeV, My, =0.4(4) MeV,
M. — M]V(0 =2.1(4) MeV, (10)
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and for the pion and kaon masses occurring in the QCD sector
of the Standard Model,

My = 134.8(3) MeV, Mo = 134.6(3) MeV,
Mn+ — 710 =0.2(1)MeV,

Mg+ =491.2(5)MeV, Myo = 497.2(4) MeV,
Mg+ — Mygo = —6.1(4) MeV. (11

The self-energy difference between the charged and neu-
tral pion involves the same coefficient €, that describes
the mass difference in QCD—this is why the estimate for
M. — M, is so sharp.

3.2 Pion and kaon masses in the isospin limit

As mentioned above, most of the lattice calculations con-
cerning the properties of the light mesons are performed in
the isospin limit of QCD (m,, —my4 — 0 at fixed m,, + my).
We denote the pion and kaon masses in that limit by M,
and M g, respectively. Their numerical values can be esti-
mated as follows. Since the operation u <> d interchanges
7t with 7~ and KT with K9, the expansion of the quanti-
ties M§+ and %(1\;1?(4r + MIZ(O) in powers of m, — my only
contains even powers. As shown in [58], the effects gener-
ated by m,, — mg in the mass of the charged pion are strongly
suppressed: the difference M 2 Mz represents a quantity
of O[(m, — md) (my + md)] and is therefore small com-
pared to the difference M 2 M2 ~0> for which an estimate

was given above. In the case of Z(MK+ + MI2(0) — MK, the
expansion does contain a contribution at NLO, determined
by the combination 2Lg — Ls of low-energy constants, but
the lattice results for that combination show that this con-
tribution is very small, too. Numerlcally, the effects gener-
ated by m,, — my in Mz+ and in 2(M + MKO) are neg-
ligible compared to the uncertainties in the electromagnetic
self-energies. The estimates for these given in Eq. (11) thus

imply
My = M,+ = 134.8(3) MeV,

e = 3 (i

This shows that, for the convention used above to spec-
ify the QCD sector of the Standard Model, and within the
accuracy to which this convention can currently be imple-
mented, the mass of the pion in the isospin limit agrees with
the physical mass of the neutral pion: M; — Mo = —0.2(3)
MeV.

+ M}(O) — 494.2(4) MeV. (12)

3.3 Lattice determination of mg and m,,4

We now turn to a review of the lattice calculations of the
light-quark masses and begin with mg, the isospin-averaged

up- and down-quark mass, m,4, and their ratio. Most groups
quote only m,4, not the individual up- and down-quark
masses. We then discuss the ratio m, /my and the individ-
ual determination of m, and m,.

Quark masses have been calculated on the lattice since the
mid-1990s. However, early calculations were performed in
the quenched approximation, leading to unquantifiable sys-
tematics. Thus in the following, we only review modern,
unquenched calculations, which include the effects of light
sea-quarks.

Tables 2 and 3 list the results of Ny =2 and Ny =2 + 1
lattice calculations of mg and m,4. These results are given
in the MS scheme at 2 GeV, which is standard nowadays,
though some groups are starting to quote results at higher
scales (e.g. [25]). The tables also show the colour-coding of
the calculations leading to these results. The corresponding
results for mg/m,q are given in Table 4. As indicated earlier
in this review, we treat Ny = 2 and Ny = 2 + 1 calculations
separately. The latter include the effects of a strange sea-
quark, but the former do not.

3.3.1 Nf =2 lattice calculations

We begin with Ny = 2 calculations. A quick inspection
of Table 2 indicates that only the most recent calculations,
ALPHA 12 [59] and ETM 10B [60], control all systematic
effects—the special case of Diirr 11 [61] is discussed below.
Only ALPHA 12 [59], ETM 10B [60] and ETM 07 [62]
really enter the chiral regime, with pion masses down to about
270 MeV for ALPHA and ETM. Because this pion mass is
still quite far from the physical pion mass, ALPHA 12 refrain
from determining m,4 and give only mg. All the other cal-
culations have significantly more massive pions, the lightest
being about 430 MeV, in the calculation by CP-PACS 01 [63].
Moreover, the latter calculation is performed on very coarse
lattices, with lattice spacings a > 0.11 fm and only one-loop
perturbation theory is used to renormalise the results.

ETM 10B’s [60] calculation of m,4 and m is an update
of the earlier twisted-mass determination of ETM 07 [62].
In particular, they have added ensembles with a larger vol-
ume and three new lattice spacings, a = 0.054, 0.067 and
0.098 fm, allowing for a continuum extrapolation. In addi-
tion, it presents analyses performed in SU(2) and SU(3)
x PT.

The new ALPHA 12 [59] calculation of m is an update of
ALPHA 05 [64], which pushes computations to finer lattices
and much lighter pion masses. It also importantly includes
a determination of the lattice spacing with the decay con-
stant Fx, whereas ALPHA 05 converted results to physical
units using the scale parameter r( [65], defined via the force
between static quarks. In particular, the conversion relied on
measurements of ro/a by QCDSF/UKQCD 04 [66] which
differ significantly from the new determination by ALPHA

@ Springer



2890 Page 16 of 179 Eur. Phys. J. C (2014) 74:2890

Table 2 Ny = 2 lattice results for the masses n,4 and ms (MeV, run-
ning masses in the MS scheme at scale 2 GeV). The significance of the
colours is explained in Sect. 2. If information about non-perturbative

running is available, this is indicated in the column “running”, with
details given at the bottom of the table

Collaboration Ref. Publication Chiral Continuum Finite Renormalisation Running Myd my
status extrapolation extrapolation volume
ALPHA 12 [59] A o) * * * ab 102 (3) (1)
Diirr 11% 611 A o) * o) - - 3.52(10)(9)  97.0 (2.6) (2.5)
ETM 10B [60] A o) * o) * c 3.6 (1) (2) 95 (2) (6)
JLQCD/ TWQCD 08A [67] A o) [ | [ * - 4.452 (81) -
(38) ()
RBC 077 [34] A ] [ * * - 425(23)26)  119.5(5.6)
7.4)
ETM 07 [62] A (0] u (@] * - 3.85(12) (40) 105 (3) (9)
QCDSF/UKQCD 06  [68] A [ ] * [ * - 4.08(23)(19) 111 (6) (4) (6)
(23)
SPQcdR 05 (691 A u o o) * - 434 Cho) 101 ©®) ()
ALPHA 05 [64] A u o) * * a 97 (4) (18)}
QCDSF/UKQCD 04  [66] A ] * ] * - 4.7(2)(3) 119 (5) (8)
JLQCD 02 [70] A u ] o) ] _ 3203 (tgg) 84.5 (ﬂ.zio)
CP-PACS 01 [63] A [ ] [ ] * ] - 3.45(10) (1 89(2) (F2)*

¥ What is calculated is m, /ms = 11.27(30)(26). m, is then obtained using lattice and phenomenological determinations of m, which rely on
perturbation theory. Finally, m,  is determined from mg using BMW 10A, 10B’s Ny = 2 + 1 result for my/m,q [22,23]. Since m./m; is
renormalisation group invariant in QCD, the renormalisation and running of the quark masses enter indirectly through that of m., a mass that we

do not review here
T The calculation includes quenched e.m. effects

§ The data used to obtain the bare value of m; are from UKQCD/QCDSF 04 [66]

* This value of m was obtained using the kaon mass as input. If the ¢-meson mass is used instead, the authors find m; = 901’? |

2 The masses are renormalised and run non-perturbatively up to a scale of 100 GeV in the Ny = 2 SF scheme. In this scheme, non-perturbative and
NLO running for the quark masses are shown to agree well from 100 GeV all the way down to 2 GeV [64]

Y The running and renormalisation results of [64] are improved in [59] with higher statistical and systematic accuracy

¢ The masses are renormalised non-perturbatively at scales 1/a ~ 2 + 3 GeV in the Ny = 2 RI/MOM scheme. In this scheme, non-perturbative
and N3LO running for the quark masses are shown to agree from 4 GeV down 2 GeV to better than 3 % [71]

12. As in ALPHA 05, in ALPHA 12 both non-perturbative
running and non-perturbative renormalisation are performed
in a controlled fashion, using Schrodinger functional meth-
ods.

The conclusion of our analysis of Ny = 2 calculations
is that the results of ALPHA 12 [59] and ETM 10B [60]
(which update and extend ALPHA 05 [64] and ETM 07 [62],
respectively), are the only ones to date which satisfy our
selection criteria. Thus we average those two results for m,
obtaining 101(3) MeV. Regarding m,,4, for which only ETM
10B [60] gives a value, we do not offer an average but simply
quote ETM’s number. Because ALPHA'’s result induces an
increase by 7 % of our earlier average for m [1], while m, 4
remains unchanged, our average for mg/m,4 also increases
by 7 %. For the latter, however, we retain the percent error
quoted by ETM, who directly estimates this ratio, and add it
in quadrature to the percent error on ALPHA’s m;. Thus, we
quote as our estimates:

Ne =2 :my = 101(3) MeV, myuq = 3.6(2) MeV,

mg
= 28.1(1.2).
myd

13)

@ Springer

The errors on these results are 3, 6 and 4 %, respectively.
The error is smaller in the ratio than one would get from
combining the errors on m 4 and m, because statistical and
systematic errors cancel in ETM’s result for this ratio, most
notably those associated with renormalisation and the setting
of the scale. It is worth noting that thanks to ALPHA 12 [59],
the total error on my has reduced significantly, from 7 % in
the last edition of our report to 3 % now. It is also interesting
to remark that ALPHA 12’s [59] central value for m is about
1 o larger than that of ETM 10B [60] and nearly 2 o larger
than our present Ny = 2 + | determination given in (14).
Moreover, this larger value for m; increases our Ny = 2
determination of m/m,q, making it larger than ETM 10B’s
direct measurement, though compatible within errors.

We have not discussed yet the precise results of Diirr 11
[61] which satisfy our selection criteria. This is because Diirr
11 pursue an approach which is sufficiently different from the
one of other calculations that we prefer not to include it in an
average at this stage. Following HPQCD 09A, 10 [72,73],
the observable which they actually compute is m./m; =
11.27(30)(26), with an accuracy of 3.5 %. This result is about
1.5 combined standard deviations below ETM 10B’s [60]
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Table 4 Lattice results for the ratio m /myq

Collaboration Ref. Nt Publication Chiral Continuum Finite mg/myq
status extrapolation extrapolation volume

RBC/UKQCD 12° [25] 2+1 A * O * 27.36 (39) (31) (22)
PACS-CS 12* [76] 241 A * L] L] 26.8 (2.0)
Laiho 11 [77] 241 C O * * 28.4(0.5) (1.3)
BMW 10A, 10B* [22,23] 241 A * * * 27.53 (20) (8)
RBC/UKQCD 10A [78] 2+1 A O e} * 26.8 (0.8) (1.1)
Blum 107 [32] 2+1 A o L] o 28.31(0.29) (1.77)
PACS-CS 09 [20] 241 A * L] L] 31.2(2.7)
MILC 09A [37] 241 C (@) * * 27.41 (5) (22) (0) (4)
MILC 09 [15] 241 A O * * 27.2 (1) (3) (0) (0)
PACS-CS 08 [19] 241 A * u L] 28.8 (4)
RBC/UKQCD 08 [79] 241 A O u * 28.8 (0.4) (1.6)
MILC 04, HPQCD/ [36,82] 2+1 A (@) O e} 27.4 (1) (4) (0) (1)

MILC/UKQCD 04
ETM 10B [60] 2 A (@) * o 27.3(5) (7)
RBC 07F [34] 2 A L] L] * 28.10 (38)
ETM 07 [62] 2 A O L] o 27.3(0.3)(1.2)
QCDSF/UKQCD 06 [68] 2 A L] * L] 27.2(3.2)

© The errors are statistical, chiral and finite-volume

* The calculation includes e.m. and m, # my effects through reweighting

T The fermion action used is tree-level improved
T The calculation includes quenched e.m. effects

result m./mg; = 12.0(3). my is subsequently obtained using
lattice and phenomenological determinations of m, which
rely on perturbation theory. The value of the charm-quark
mass which they use is an average of those determinations,
which they estimate to be m.(2GeV) = 1.093(13) GeV,
with a 1.2 % total uncertainty. Note that this value is con-
sistent with the PDG average m (2 GeV) = 1.094(21) GeV
[74], though the latter has a larger 2.0 % uncertainty. Diirr
11°s value of m, leads to my; = 97.0(2.6)(2.5) MeV given in
Table 2, which has a total error of 3.7 %. The use of the PDG
value for m, [74] would lead to a very similar result. The
result for m; is perfectly compatible with our estimate given
in (13) and has a comparable error bar. To determine m,4,
Diirr 11 combine their result for m with the Ny = 2+ 1 cal-
culation of mg/my,q of BMW 10A, 10B [22,23] discussed
below. They obtain m,; = 3.52(10)(9) MeV with a total
uncertainty of less than 4 %, which is again fully consistent
with our estimate of (13) and its uncertainty.

3.3.2 Nf = 2+ 1 lattice calculations

We turn now to Ny = 2 + 1 calculations. These and the cor-
responding results are summarised in Tables 3 and 4. Some-
what paradoxically, these calculations are more mature than
those with Ny = 2. This is thanks, in large part, to the head
start and sustained effort of MILC, who have been perform-
ing Ny = 2+ 1 rooted staggered fermion calculations for the

past ten or so years. They have covered an impressive range of
parameter space, with lattice spacings which, today, go down
to 0.045 fm and valence pion masses down to approximately
180 MeV [37]. The most recent updates, MILC 10A [75] and
MILC 09A [37], include significantly more data and use two-
loop renormalisation. Since these data sets subsume those of
their previous calculations, these latest results are the only
ones that must be kept in any world average.

Since our last report [1] the situation for Ny = 2 + 1
determinations of light quarks has undergone some evolu-
tion. There are new computations by RBC/UKQCD 12 [25],
PACS-CS 12 [76] and Laiho 11 [77]. Furthermore, the results
of BMW 10A, 10B [22,23] have been published and can now
be included in our averages.

The RBC/UKQCD 12 [25] computation improves on
the one of RBC/UKQCD 10A [78] in a number of ways.
In particular it involves a new simulation performed at a
rather coarse lattice spacing of 0.144 fm, but with uni-
tary pion masses down to 171(1) MeV and valence pion
masses down to 143(1) MeV in a volume of (4.6 fm)3, com-
pared, respectively, to 290 MeV, 225 MeV and (2.7 fm)3
in RBC/UKQCD 10A. This provides them with a signifi-
cantly better control over the extrapolation to physical M,
and to the infinite-volume limit. As before, they perform
non-perturbative renormalisation and running in RI/SMOM
schemes. The only weaker point of the calculation comes
from the fact that two of their three lattice spacings are larger
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than 0.1 fm and correspond to different discretisations, while
the finest is only 0.085 fm, making it difficult to convinc-
ingly claim full control over the continuum limit. This is
mitigated by the fact that the scaling violations which they
observe on their coarsest lattice are for many quantities small,
around 5 %.

The Laiho 11 results [77] are based on MILC staggered
ensembles at the lattice spacings 0.15, 0.09 and 0.06 fm, on
which they propagate domain-wall quarks. Moreover, they
work in volumes of up to (4.8 fm)>. These features give
them full control over the continuum and infinite-volume
extrapolations. Their lightest RMS sea pion mass is 280 MeV
and their valence pions have masses down to 210 MeV. The
fact that their sea pions do not enter deeply into the chiral
regime penalises somewhat their extrapolation to physical
M. Moreover, to renormalise the quark masses, they use
one-loop perturbation theory for Z 4 / Z g — 1 which they com-
bine with Z4 determined non-perturbatively from the axial-
vector Ward identity. Although they conservatively estimate
the uncertainty associated with the procedure to be 5 %,
which is the size of their largest one-loop correction, this
represents a weaker point of this calculation.

The new PACS-CS 12 [76] calculation represents an
important extension of the collaboration’s earlier 2010 com-
putation [21], which already probed pion masses down to

= =~ 135MeV, i.e. down to the physical-mass point. This
was achieved by reweighting the simulations performed in
PACS-CS 08 [19] at M, =~ 160MeV. If adequately con-
trolled, this procedure eliminates the need to extrapolate
to the physical-mass point and, hence, the corresponding
systematic error. The new calculation now applies simi-
lar reweighting techniques to include electromagnetic and
my, # mg isospin-breaking effects directly at the physical
pion mass. It technically adds to Blum 10 [32] and BMW’s
preliminary results of [43,44] by including these effects not
only for valence but also for sea-quarks, as is also done in
[86]. Further, as in PACS-CS 10 [21], renormalisation of
quark masses is implemented non-perturbatively, through
the Schrodinger functional method [87]. As it stands, the
main drawback of the calculation, which makes the inclu-
sion of its results in a world average of lattice results inap-
propriate at this stage, is that for the lightest quark mass
the volume is very small, corresponding to LM, ~ 2.0, a
value for which finite-volume effects will be difficult to con-
trol. Another problem is that the calculation was performed
at a single lattice spacing, forbidding a continuum extrap-
olation. Further, it is unclear at this point what might be
the systematic errors associated with the reweighting pro-
cedure.

As shown by the colour-coding in Tables 3 and 4, the
BMW 10A, 10B [22,23] calculation is still the only one
to have addressed all sources of systematic effects while
reaching the physical up- and down-quark mass by inter-

@ Springer

polation instead of by extrapolation. Moreover, their calcu-
lation was performed at five lattice spacings ranging from
0.054 to 0.116 fm, with full non-perturbative renormalisa-
tion and running and in volumes of up to (6 fm)* guaran-
teeing that the continuum limit, renormalisation and infinite-
volume extrapolation are controlled. It does neglect, how-
ever, isospin-breaking effects, which are small on the scale
of their error bars.

Finally we come to another calculation which satis-
fies our selection criteria, HPQCD 10 [73] (which updates
HPQCD 09A [72]). The strange-quark mass is computed
using a precise determination of the charm-quark mass,
me(m.) = 1.273(6) GeV [73,85], whose accuracy is bet-
ter than 0.5 %, and a calculation of the quark-mass ratio
me/mg = 11.85(16) [72], which achieves a precision sligh-
tly above 1 %. The determination of m; via the ratio m/my
displaces the problem of lattice renormalisation in the com-
putation of m; to one of renormalisation in the continuum for
the determination of m.. To calculate m,; HPQCD 10 [73]
use the MILC 09 determination of the quark-mass ratio
ms/myg [15].

The high precision quoted by HPQCD 10 on the strange-
quark mass relies in large part on the precision reached in
the determination of the charm-quark mass [73,85]. This
calculation uses an approach based on the lattice determi-
nation of moments of charm-quark pseudoscalar, vector and
axial-vector correlators. These moments are then combined
with four-loop results from continuum perturbation theory to
obtain a determination of the charm-quark mass in the MS
scheme. In the preferred case, in which pseudoscalar corre-
lators are used for the analysis, there are no lattice renormal-
isation factors required, since the corresponding axial-vector
current is partially conserved in the staggered lattice formal-
ism.

Instead of combining the result for m./mg of [72] with
m. from [73], one can use it with the PDG [74] average
me(m¢) = 1.275(25) GeV, whose error is four times as large
as the one obtained by HPQCD 10. If one does so, one obtains
ms = 92.3(2.2) in lieu of the value my; = 92.2(1.3) given in
Table 3, thereby nearly doubling HPQCD 10’s error. Though
we plan to do so in the future, we have not yet performed
a review of lattice determinations of m.. Thus, as for the
results of Diirr 11 [61] in the Ny = 2 case, we postpone
its inclusion in our final averages until we have performed
an independent analysis of m., emphasizing that this novel
strategy for computing the light-quark masses may very well
turn out to be the best way to determine them.

This discussion leaves us with three results for our final
average for myg, those of MILC 09A [37], BMW 10A,
10B [22,23] and RBC/UKQCD 12 [25], and the result of
HPQCD 10 [73] as an important cross-check. Thus, we first
check that the three other results which will enter our final
average are consistent with HPQCD 10’s result. To do this
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we implement the averaging procedure described in Sect. 2.2
on all four results. This yields m; = 93.0(1.0) MeV with a
x?/dof = 3.0/3 = 1.0, indicating overall consistency. Note
that in making this average, we have accounted for correla-
tions in the small statistical errors of HPQCD 10 and MILC
09A. Omitting HPQCD 10 in our final average results in an
increase by 50 % of the average’s uncertainty and by 0.8 o of
its central value. Thus, we obtain my; = 93.8(1.5) MeV with
a x2/dof = 2.26/2 = 1.13. When repeating the exercise
for m,q, we replace MILC 09A by the more recent anal-
ysis reported in MILC 10A [75]. A fit of all four results
yields m,q = 3.41(5) MeV with a x?/dof = 2.6/3 = 0.9
and including only the same three as above gives m,q =
3.42(6) MeV with a x2/dof = 2.4/2 = 1.2. Here the results
are barely distinguishable, indicating full compatibility of all
four results. Note that the outcome of the averaging proce-
dure amounts to a determination of my and m,4 of 1.6 and
1.8 %, respectively.

The heavy sea-quarks affect the determination of the light-
quark masses only through contributions of order 1/ mg,
which moreover are suppressed by the Okubo—Zweig—
lizuka-rule. We expect these contributions to be small. How-
ever, note that the effect of omitted sea quarks on a given
quantity is not uniquely defined: the size of the effect depends
on how the theories with and without these flavours are
matched. One way to set conventions is to ensure that the
bare parameters common to both theories are fixed by the
same physical observables and that the renormalisations are
performed in the same scheme and at the same scale, with
the appropriate numbers of flavours.

An upper bound on the heavy-quark contributions can be
obtained by looking at the presumably much larger effect
associated with omitting the strange quark in the sea. Within
errors, the average value m,; = 3.42(6) MeV obtained
above from the data with Ny = 2 + 1 agrees with the result
myq = 3.6(2) MeV for Ny = 2 quoted in (13): assuming
that the underlying calculations more or less follow the above
matching prescription, the effects generated by the quench-
ing of the strange quark in m,, are within the noise. Inter-
preting the two results as Gaussian distributions, the proba-
bility distribution of the difference Am,q = (Myq|N=2) —
(mug|Np=3) is also Gaussian, with Am,; = 0.18(21) MeV.
The corresponding root-mean-square (Ami ) > = 0.28MeV
provides an upper bound for the size of the effects due to
strange quark quenching; it amounts to 8 % of m,,4. In the case
of mg, the analogous calculation yields (Am?)% = 7.9 MeV
and thus also amounts to an upper bound of about 8 %. Tak-
ing any of these numbers as an upper bound on the omission
of charm effects in the Ny = 2 + 1 results is, we believe, a
significant overestimate.

An underestimate of the upper bound on the sea-charm
contributions to m can be obtained by transposing, to the s5

system, the perturbative, heavy quarkonium arguments put
forward in [94] to determine the effect of sea charm on the
ne and J/y¥ masses. An estimate using constituent quark
masses [95] leads very roughly to a 0.05 % effect on my,
from which [95] concludes that the error on m and m,,4 due
to the omission of charm is of order 0.1 %.

One could also try to estimate the effect by analysing
the relation between the parameters of QCD3 and those of
full QCD in perturbation theory. The 8- and y-functions,
which control the renormalisation of the coupling constants
and quark masses, respectively, are known to four loops
[83,84,96,97]. The precision achieved in this framework for
the decoupling of the 7- and b-quarks is excellent, but the
c-quark is not heavy enough: at the percent level, we believe
that the corrections of order 1/m?2 cannot be neglected and the
decoupling formulae of perturbation theory do not provide
a reliable evaluation, because the scale m.(m.) >~ 1.28 GeV
is too low for these formulae to be taken at face value. Con-
sequently, the accuracy to which it is possible to identify
the running masses of the light quarks of full QCD in terms
of those occurring in QCD3 is limited. For this reason, it is
preferable to characterise the masses m,,, mg, mg in terms of
QCDy4, where the connection with full QCD is under good
control.

The role of the c-quarks in the determination of the light-
quark masses will soon be studied in detail—some simula-
tions with 2 + 1 4+ 1 dynamical quarks have already been
carried out [24,98]. For the moment, we choose to consider
a crude, and hopefully reasonably conservative, upper bound
on the size of the effects due to the neglected heavy quarks
that can be established within the Ny = 2 + 1 simulations
themselves, without invoking perturbation theory. In [99] it
is found that when the scale is set by Mgz, the result for My
agrees well with experiment within the 2.3 % accuracy of the
calculation. Because of the very strong correlations between
the statistical and systematic errors of these two masses, we
expect the uncertainty in the difference Mg — My to also be of
order 2 %. To leading order in the chiral expansion this mass
difference is proportional to m; — m,4. Barring accidental
cancellations, we conclude that the agreement of Ny = 2+ 1
calculations with experiment suggests an upper bound on the
sensitivity of m; to heavy sea-quarks of order 2 %.

Taking this uncertainty into account yields the following
averages:

Ne=2+1: myuq =3.42(6)(7); MeV, ms=93.8(1.5)(1.9); MeV,
(14)

where the first error comes from the averaging of the lattice
results, and the second is the one that we add to account for
the neglect of sea effects from the charm and more massive
quarks. This corresponds to determinations of m,q and m
with a precision of and 2.6 and 2.7 %, respectively. These
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Fig. 1 Mass of the strange quark (MS scheme, running scale 2 GeV).
The central and top panels show the lattice results listed in Tables 2
and 3. For comparison, the bottom panel collects a few sum rule results
and also indicates the current PDG estimate. Diamonds represent results
based on perturbative renormalisation, while squares indicate that, in the
relation between the lattice regularised and renormalised MS masses,
non-perturbative effects are accounted for. The black squares and the
grey bands represent our estimates (13) and (14). The significance of
the colours is explained in Sect. 2
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Fig. 2 Mean mass of the two lightest quarks, m,4 = %(m” +myg) (for
details see Fig. 1)

estimates represent the conclusions we draw from the infor-
mation gathered on the lattice until now. They are shown as
vertical bands in Figs. 1 and 2, together with the Ny = 2
results (13).

In the ratio mgs/m,q, one of the sources of systematic
error—the uncertainties in the renormalisation factors—
drops out. Also, we can compare the lattice results with the
leading-order formula of x PT,
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=0 AKO g 7 (15)

which relates the quantity m /m 4 to aratio of meson masses
in QCD. Expressing these in terms of the physical masses
and the four coefficients introduced in (6)—(8), linearizing
the result with respect to the corrections and inserting the
observed mass values, we obtain

M 9559 0.1e+1.9¢0 —0.1ego — 1.8€m.  (16)

myd

If the coefficients €, €0, €xo and €, are set equal to zero,
the right hand side reduces to the value mg/m,; = 25.9
that follows from Weinberg’s leading-order formulae for
my /mg and mg/mg [100], in accordance with the fact that
these do account for the e.m. interaction at leading chiral
order, and neglect the mass difference between the charged
and neutral pions in QCD. Inserting the estimates (9) gives
the effect of chiral corrections to the e.m. self-energies
and of the mass difference between the charged and neu-
tral pions in QCD. With these, the LO prediction in QCD
becomes

Ms LO95.9(1). (17)
myq

The quoted uncertainty does not include an estimate for
the higher-order contributions, but it only accounts for the
error bars in the coefficients, which is dominated by the one
in the estimate given for € 0. The fact that the central value
remains unchanged indicates that chiral corrections to the
e.m. self-energies and mass-difference corrections are small
in this particular quantity. However, given the high accuracy
reached in lattice determinations of the ratio mg/myq, the
uncertainties associated with e.m. corrections are no longer
completely irrelevant. This is seen by comparing the 0.1 in
(17) with the 0.15 in (18). Nevertheless, this uncertainty is
still smaller than our ~ 1. = 1.5 % upper bound on possible
1/m? corrections (Fig. 3).

The lattice results in Table 4, which satisfy our selection
criteria, indicate that the corrections generated by the non-
leading terms of the chiral perturbation series are remarkably
small, in the range 3—10 %. Despite the fact that the SU(3)-
flavour-symmetry-breaking effects in the Nambu—Goldstone
boson masses are very large (M2 ~ 13 Mg), the mass spec-
trum of the pseudoscalar octet obeys the SU(3) x SU(3)
formula (15) very well.

Our average for mg/m,q is based on the results of MILC
09A, BMW 10A, 10B and RBC/UKQCD 12—the value
quoted by HPQCD 10 does not represent independent infor-
mation as it relies on the result for mg/m,, obtained by the
MILC collaboration. Averaging these results according to
the precription of Sect. 2.3 gives my/m,q = 27.46(15) with
x%/dof = 0.2/2. The fit is dominated by MILC 09A and
BMW 10A, 10B. Since the errors associated with renor-



Eur. Phys. J. C (2014) 74:2890

Page 23 of 179 2890

FIAG2013 Ms/Mug
T T T T
our estimate for Ny=2+1
RBC/UKQCD 12
— PACS-CS 12
- KO+— Laiho 11
+ || BMW 10A
o~ H RBC/UKQCD 10A
1] H— Blum 10
“ —T{t PACS-CS 09
P4 MILC 09A
MILC 09
e PACS-CS 08
—H RBC/UKQCD 08
MILC 04, HPQCD/MILC/UKQCD 04
our estimate for Ny=2
N ETM 10B
Il HH RBC 07
Z“' i ETM 07
{1 QCDSF/UKQCD 06
R — PDG [74]
o| —e— Oller 07 [101]
= ® Narison 06 [91]
g e Kaiser 98 [102]
S —e— Leutwyler 96 [103]
[} Weinberg 77 [100]

22 24 26 28 30 32 34
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results listed in Table 4. The lower part shows results obtained from y PT
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malisation drop out in the ratio, the uncertainties are even
smaller than in the case of the quark masses themselves:
the above number for mg/m,; amounts to an accuracy of
0.5 %.

At this level of precision, the uncertainties in the elec-
tromagnetic and strong isospin-breaking corrections are not
completely negligible. The error estimate in the LO result
(17) indicates the expected order of magnitude. The uncer-
tainties in m; and m,4 associated with the heavy sea-quarks
cancel at least partly. In view of this, we ascribe a total 1.5 %
uncertainty to these two sources of error. Thus, we are con-
vinced that our final estimate,

M 27.46(15)(41), (18)
Mmyd

Ne=2+41:

is on the conservative side, with a total 1.5 % uncertainty.
It is also fully consistent with the ratio computed from our
individual quark masses in (14), mg/m,4 = 27.6(6), which
has a larger 2.2 % uncertainty. In (18) the first error comes
from the averaging of the lattice results, and the second is the
one that we add to account for the neglect of isospin-breaking
and heavy sea-quark effects.

The lattice results show that the LO prediction of xPT in
(17) receives only small corrections from higher orders of
the chiral expansion: according to (18), these generate a shift
of 5.7 £ 1.5 %. Our estimate does therefore not represent a
very sharp determination of the higher-order contributions.

The ratio mg/m,4 can also be extracted from the masses
of the neutral Nambu—Goldstone bosons: neglecting effects

of order (m, — mg)* also here, the leading-order for-

LO

mula reads mg/m,q = %M%/M}T — % Numerically, this

gives mg/myq Lo 24.2. The relation has the advantage that

the e.m. corrections are expected to be much smaller
here, but it is more difficult to calculate the n-mass on
the lattice. The comparison with (18) shows that, in this
case, the contributions of NLO are somewhat larger:
14 +2 %.

3.4 Lattice determination of m, and mg4

The determination of m, and m, separately requires addi-
tional input. MILC 09A [37] uses the mass difference
between K° and KT, from which they subtract electromag-
netic effects using Dashen’s theorem with corrections, as dis-
cussed in Sect. 3.1. The up- and down- sea-quarks remain
degenerate in their calculation, fixed to the value of m,q4
obtained from M o.

To determine m,, /mg, BMW 10A, 10B [22,23] follow a
slightly different strategy. They obtain this ratio from their
result for mg /m, 4 combined with a phenomenological deter-
mination of the isospin-breaking quark-mass ratio Q =
22.3(8), defined below in (24), from n — 37 decays [30]
(thedecay n — 3 is very sensitive to QCD isospin-breaking
but fairly insensitive to QED isospin-breaking). As discussed
in Sect. 3.5, the central value of the e.m. parameter € in (9)
is taken from the same source.

RM123 11 [105] actually uses the e.m. parameter € =
0.7(5) from the first edition of the FLAG review [1]. How-
ever, they estimate the effects of strong isospin-breaking
at first non-trivial order, by inserting the operator %(mu —
mq) f (itu — dd) into correlation functions, while perform-
ing the gauge averages in the isospin limit. Applying these
techniques, they obtain (MIZ(O — Mlzﬁ)/(md - my) =
2.57(8) MeV. Combining this result with the phenomeno-
logical (M2, — M%) = 6.05(63) x 103 determined with
the above value of €, they get (mg—m,,) = 2.35(8)(24) MeV,
where the first error corresponds to the lattice statistical and
systematic uncertainties combined in quadrature, while the
second arises from the uncertainty on €. Note that below
we quote results from RM123 11 for m,, mg and m,/mg.
As described in Table 5, we obtain them by combining
RM123 11°s result for (my — m,) with ETM 10B’s result
for myg.

Instead of subtracting electromagnetic effects using phe-
nomenology, RBC 07 [34] and Blum 10 [32] actually include
a quenched electromagnetic field in their calculation. This
means that their results include corrections to Dashen’s the-
orem, albeit only in the presence of quenched electromag-
netism. Since the up- and down-quarks in the sea are treated
as degenerate, very small isospin corrections are neglected,
as in MILC’s calculation.

PACS-CS 12 [76] takes the inclusion of isospin-breaking
effects one step further. Using reweighting techniques, it also
includes electromagnetic and m, — my effects in the sea.
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Lattice results for m,, my and m, /mg4 are summarised in
Table 5. In order to discuss them, we consider the LO formula

72 2 2
mu]i)MK+—MK0+Mn+

oo 2 2
mq MKO—MK++M]T+

19)

Using Eqgs. (6)—(8) to express the meson masses in QCD in
terms of the physical ones and linearizing in the corrections,
this relation takes the form

my 1O
— =0.558 - 0.084€ —0.02¢€,0 + 0.11¢,. (20)

mq
Inserting the estimates (9) and adding errors in quadrature,
the LO prediction becomes

"Mu L0 50(3). Q1)
mg

Again, the quoted error exclusively accounts for the errors
attached to the estimates (9) for the epsilons—contributions
of non-leading order are ignored. The uncertainty in the
leading-order prediction is dominated by the one in the coef-
ficient €, which specifies the difference between the meson
squared-mass splittings generated by the e.m. interaction in
the kaon and pion multiplets. The reduction in the error on this
coefficient since the previous review [1] results in a reduction
of a factor of a little less than 2 in the uncertainty on the LO
value of m, /mg given in (21).

It is interesting to compare the assumptions made or
results obtained by the different collaborations for the vio-
lation of Dashen’s theorem. The input used in MILC 09A
is € = 1.2(5) [37], while the Ny = 2 computation of
RM123 13 finds € = 0.79(18)(18) [45]. As discussed in
Sect. 3.5, the value of Q used by BMW 10A, 10B [22,23]
gives € = 0.70(28) at NLO (see (31)). On the other hand,
RBC 07 [34] and Blum 10 [32] obtain the results € = 0.13(4)
and € = 0.5(1). Note that PACS-CS 12 [76] do not pro-
vide results which allow us to determine € directly. However,
using their result for m,, /my, together with (20), and neglect-
ing NLO terms, one finds ¢ = —1.6(6), which is difficult
to reconcile with what is known from phenomenology (see
Sects. 3.1 and 3.5). Since the values assumed or obtained for
€ differ, it does not come as a surprise that the determinations
of m, /mg are different.

These values of € are also interesting because they allow
us to estimate the chiral corrections to the LO prediction (21)
for m, /mg. Indeed, evaluating the relation (20) for the val-
ues of € given above, and neglecting all other corrections in
this equation, yields the LO values (m, /mq)"° = 0.46(4),
0.547(3), 0.52(1), 0.50(2), 0.49(2) for MILC 09A, RBC 07,
Blum 10,BMW 10A, 10B and RM 123 13, respectively. How-
ever, in comparing these numbers to the non-perturbative
results of Table 5 one must be careful not to double count the
uncertainty arising from €. One way to obtain a sharp com-
parison is to consider the ratio of the results of Table 5 to the

LO values (m,/m4)"C, in which the uncertainty from € can-
cels to good accuracy. Here we will assume for simplicity that
they cancel completely and will drop all uncertainties related
to €. For Ny = 2 we consider RM 123 13 [45], which updates
RM123 11 and has no red dots. Since the uncertainties com-
mon to € and m,, /mg are not explicitly given in [45], we have
to estimate them. For that we use the leading-order result for
my /mg, computed with RM 123 13’s value for €. Its error bar
is the contribution of the uncertainty on € to (m,,/ mg)C. To
good approximation this contribution will be the same for
the value of m, /mg4 computed in [45]. Thus, we subtract it
in quadrature from RM123 13’s result in Table 5 and com-
pute (m,/mg)/(m,/m OFC, dropping uncertainties related
to €. We find (my/mg)/(my/mq)"° = 1.02(6). This result
suggests that chiral corrections in the case of Ny = 2 are
negligible. For the two most accurate Ny = 2 + 1 calcula-
tions, those of MILC 09A and BMW 10A, 10B, this ratio of
ratios is 0.94(2) and 0.90(1), respectively. Though these two
numbers are not fully consistent within our rough estimate
of the errors, they indicate that higher-order corrections to
(21) are negative and about 8 % when Ny = 2+ 1. In the fol-
lowing, we will take them to be —8(4) %. The fact that these
corrections are seemingly larger and of opposite sign than in
the Ny = 2 case is not understood at this point. It could be an
effect associated with the quenching of the strange quark. It
could also be due to the fact that the RM123 13 calculation
does not probe deeply enough into the chiral regime—it has
M, 2 270 MeV—to pick up on important chiral corrections.
Of course, being less than a two standard deviation effect, it
may be that there is no problem at all and that differences
from the LO result are actually small.

Given the exploratory nature of the RBC 07 calculation,
its results do not allow us to draw solid conclusions about
the e.m. contributions to m, /mg for Ny = 2. As discussed in
Sect. 3.3.2, the Ny = 2 + 1 results of Blum 10 and PACS-CS
12 do not pass our selection criteria either. We therefore resort
to the phenomenological estimates of the electromagnetic
self-energies discussed in Sect. 3.1, which are validated by
recent, preliminary lattice results.

Since RM123 13 [45] includes a lattice estimate of e.m.
corrections, for the Ny = 2 final results we simply quote
the values of m,, mg and m, /m4 from RM123 13 given in
Table 5:

Ni =2 :my =2.40(23) MeV, my = 4.80(23) MeV,

ny

— =0.504), 22)
mgq

with errors of roughly 10, 5 and 8 %, respectively. In these
results, the errors are obtained by combining the lattice sta-
tistical and systematic errors in quadrature.

For Ny = 2 + 1 there is to date no final, published com-
putation of e.m. corrections. Thus, we take the LO estimate
for m, /mg of (21) and use the —8(4) % obtained above as an
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estimate of the size of the corrections from higher orders in
the chiral expansion. This gives m, /mg = 0.46(3). The two
individual masses can then be worked out from the estimate
(14) for their mean. Therefore, for Ny = 2 4+ 1 we obtain

Ne=2+1:my, = 2.16(9)(7) MeV,
my = 4.68(14)(7) MeV, 2% — 0.46(2)(2). (23)
mq

In these results, the first error represents the lattice sta-
tistical and systematic errors, combined in quadrature, while
the second arises from the uncertainties associated with e.m.
corrections of (9). The estimates in (23) have uncertainties
of order 5, 3 and 7 %, respectively.

Naively propagating errors to the end, we obtain
(my/mg) Ne=2/ My /mg) N;=2+1 = 1.09(10). If instead of
(22) we use the results from RM 123 11, modified by the e.m.
corrections in (9), as was done in our previous review, we
obtain (my/ma)Ny=2/(my/ma)ne=241 = 1.11(7)(1), con-
firming again the strong cancellation of e.m. uncertainties in
the ratio. The Ny = 2 and 2 + 1 results are compatible at the
1to 1.5 o level.

It is interesting to note that in the results above, the errors
are no longer dominated by the uncertainties in the input used
for the electromagnetic corrections, though these are still sig-
nificant at the level of precision reached in the Ny = 2 + 1
results. This is due to the reduction in the error on € discussed
in Sect. 3.1. Nevertheless, the comparison of Egs. (21) and
(23) indicates that more than half of the difference between
the prediction m, /mg = 0.558 obtained from Weinberg’s
mass formulae [100] and the result for m, /m, obtained on
the lattice stems from electromagnetism, the higher orders in
the chiral perturbation generating a comparable correction.

In view of the fact that a massless up-quark would solve
the strong CP-problem, many authors have considered this an
attractive possibility, but the results presented above exclude
this possibility: the value of m,, in (23) differs from zero by
20 standard deviations. We conclude that nature solves the
strong CP-problem differently. This conclusion relies on lat-
tice calculations of kaon masses and on the phenomenologi-
cal estimates of the e.m. self-energies discussed in Sect. 3.1.
The uncertainties therein currently represent the limiting fac-
tor in determinations of m,, and m;. As demonstrated in [32—
34,40-44,50], lattice methods can be used to calculate the
e.m. self-energies. Further progress on the determination of
the light-quark masses hinges on an improved understanding
of the e.m. effects.

3.5 Estimates for R and Q

The quark-mass ratios

mg — Myq
——* and Q*=——u (24)
mg —my md—mg

R

@ Springer

compare SU(3)-breaking with isospin-breaking. The quan-
tity Q is of particular interest because of a low-energy theo-
rem [106], which relates it to a ratio of meson masses,

2
0} = ok

TR iR
MZ M%,— M.

M2 — M2 . 1/~ .
K 2 _ 2 2
. =5 (M”+ + Mﬂo),

~ 1/~ ~
Wy =3 (Ml,z{+ + M,2<0> . (25)

Chiral symmetry implies that the expansion of Qﬁ,[ in pow-
ers of the quark masses (i) starts with Q2 and (ii) does not
receive any contributions at NLO:

NLO
Ou = 0. (26)
Inserting the estimates for the mass ratios mg/m,4 and
m, /mg given for Ny = 2 in Egs. (13) and (22), respectively,
we obtain

R =40.7(3.7)(2.2), O =24.3(1.4)(0.6), 27)

where the errors have been propagated naively and the e.m.
uncertainty has been separated out, as discussed in the third
paragraph after (21). Thus, the meaning of the errors is the
same as in (23). These numbers agree within errors with those
reported in [45] where values for mg and m,,4 are taken from
ETM 10B [60].

For N = 2 + 1, we use Egs. (18) and (23) and obtain

R =35.8(1.9)(1.8), Q = 22.6(7)(6), (28)

where the meaning of the errors is the same as above. The
Nt = 2 and Ny = 2 + 1 results are compatible within
20, even taking the correlations between e.m. effects into
account.

It is interesting to use these results to study the size of
chiral corrections in the relations of R and Q to their expres-
sions in terms of meson masses. To investigate this issue, we
use x PT to express the quark-mass ratios in terms of the pion
and kaon masses in QCD and then again use Eqgs. (6)—(8) to
relate the QCD masses to the physical ones. Linearizing in
the corrections, this leads to

RLRy=439—108¢+0.2€,0—0.2¢ex0—10.7 6,
(29)
NLO

Q = 0u=243-3.06+09€,0—0.1€xo+2.6€,. (30)

70—

While the first relation only holds to LO of the chiral
perturbation series, the second remains valid at NLO, on
account of the low energy theorem mentioned above. The
first terms on the right hand side represent the values of R
and Q obtained with the Weinberg leading-order formulae
for the quark-mass ratios [100]. Inserting the estimates (9),
we find that the e.m. corrections lower the Weinberg values
to Ry = 36.7(3.3) and Qy = 22.3(9), respectively.
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Comparison of Ry and Qs with the full results quoted
above gives a handle on higher-order terms in the chi-
ral expansion. Indeed, the ratios Ry /R and Qp/Q give
NLO and NNLO (and higher) corrections to the relations

RZR v and Q NLO O m, respectively. The uncertainties due
to the use of the e.m. corrections of (9) are highly corre-
lated in the numerators and denominators of these ratios,
and we make the simplifying assumption that they can-
cel in the ratio. Thus, for Ny = 2 we evaluate (29) and
(30) using € = 0.79(18)(18) from RM123 13 [45] and the
other corrections from (9), dropping all uncertainties. We
divide them by the results for R and Q in (27), omitting the
uncertainties due to e.m. We obtain Ry;/R =~ 0.88(8) and
Owm/0 = 0.91(5). We proceed analogously for Ny =241,
using € = 0.70(3) from (9) and R and Q from (28), and
find Ryy/R =~ 1.02(5) and Qpn /0 =~ 0.99(3). The chi-
ral corrections appear to be small for Ny = 2 + 1, espe-
cially those in the relation of Q to Q. This is less true
for Ny = 2, where the NNLO and higher corrections to
Q = Q) could be significant. However, as for other quan-
tities which depend on m,, /mg, this difference is not signif-
icant.

As mentioned in Sect. 3.1, there is a phenomenological
determination of Q based on the decay n — 37 [107,108].
The key point is that the transition n — 37 violates isospin-
conservation. The dominating contribution to the transition
amplitude stems from the mass difference m, —m4. At NLO
of xPT, the QCD part of the amplitude can be expressed in a
parameter-free manner in terms of Q. It is well-known that
the electromagnetic contributions to the transition amplitude
are suppressed (a thorough recent analysis is given in [109]).
This implies that the result for Q is less sensitive to the elec-
tromagnetic uncertainties than the value obtained from the
masses of the Nambu—Goldstone bosons. For a recent update
of this determination and for further references to the litera-
ture, we refer to [110]. Using dispersion theory to pin down
the momentum-dependence of the amplitude, the observed
decay rate implies Q = 22.3(8) (since the uncertainty quoted
in [110] does not include an estimate for all sources of error,
we have retained the error estimate given in [104], which is
twice as large). The formulae for the corrections of NNLO
are available also in this case [111]—the poor knowledge of
the effective coupling constants, particularly of those that are
relevant for the dependence on the quark masses, is currently
the limiting factor encountered in the application of these
formulae.

As was to be expected, the central value of Q obtained
from n-decay agrees exactly with the central value obtained
from the low-energy theorem: we have used that theorem
to estimate the coefficient €, which dominates the e.m. cor-
rections. Using the numbers for €,,, €0 and €xo in (9) and
adding the corresponding uncertainties in quadrature to those

Table 6 Our estimates for the strange and the average up-down quark
masses in the MS scheme at running scale u = 2GeV for Ny = 3.
Numerical values are given in MeV. In the results presented here, the first
error is the one which we obtain by applying the averaging procedure of
Sect. 2.2 to the relevant lattice results. We have added an uncertainty to
the Ny = 241 results, which is associated with the neglect of heavy sea-
quark and isospin-breaking effects, as discussed around (14) and (18).
This uncertainty is not included in the Ny = 2 results, as it should be
smaller than the uncontrolled systematic associated with the neglect of
strange sea-quark effects which we choose not to estimate, as it cannot
be done so reliably

N Mya mg mg/myq

241 3.42(6) (7)
2 3.6(2)

93.8 (1.5) (1.9)
101 (3)

27.46 (15) (41)
28.1(1.2)

in the phenomenological result for Q, we obtain

"E20.70(28). 31)

The estimate (9) for the size of the coefficient € is taken
from here, as it is confirmed by the most recent, preliminary
lattice determinations [40-45].

Our final results for the masses m,,, mg, my,q, m and the
mass ratios my, /mg, mg/myq, R, Q are collected in Tables 6
and 7. We separate m,, my, m,/mq, R and Q from m,q,
my and mg/m,q, because the latter are completely domi-
nated by lattice results while the former still include some
phenomenological input.

4 Leptonic and semileptonic kaon and pion decay
and |V,4| and [ V|

This section summarises state of the art lattice calculations
of the leptonic kaon and pion decay constants and the kaon
semileptonic decay form factor and provides an analysis in
view of the Standard Model. With respect to the previous
edition of the FLAG review [1] the data in this section have
been updated, correlations of lattice data are now taken into
account in all the analysis and a subsection on the individ-
ual decay constants fx and f; (rather than only the ratio)
has been included. Furthermore, when combining lattice data
with experimental results we now take into account the strong
SU(2) isospin correction in chiral perturbation theory for the
ratio of leptonic decay constants fx /fr.

4.1 Experimental information concerning | V4|, | Visl,

f+(0) and fg+/fr+

The following review relies on the fact that precision exper-
imental data on kaon decays very accurately determine
the product |Vys|f+(0) and the ratio |Vis/Vialfx=/frt
[112]:
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Table 7 Our estimates for the masses of the two lightest quarks and
related, strong isospin-breaking ratios. Again, the masses refer to the
MS scheme at running scale i = 2 GeV for Ny = 3 and the numerical
values are given in MeV. In the results presented here, the first error
is the one that comes from lattice computations while the second for
Nf = 2 4 1 is associated with the phenomenological estimate of e.m.
contributions, as discussed after (23). The second error on the Ny = 2

results for R and Q is also an estimate of the e.m. uncertainty, this time
associated with the lattice computation of [45], as explained after (27).
We present these results in a separate table, because they are less firmly
established than those in Table 6. For Ny = 2 4 1 they still include
information coming from phenomenology, in particular on e.m. correc-
tions, and for Ny = 2 the e.m. contributions are computed neglecting
the feedback of sea-quarks on the photon field

Ny my my my /mq R 0
241 2.16 9) (7) 4.68 (14) (7) 0.46 (2) (2) 35.8(1.9) (1.8) 22.6 (7) (6)
2 2.40 (23) 4.80 (23) 0.50 (4) 40.7 (3.7) (2.2) 24.3 (1.4) (0.6)
v .
[Vis| £1.(0) = 0.2163(5), ‘ us | Sx* = 0.2758(5). (32) Mgltman et al.. [1.24,127,128] and Gamiz et al. [129,130]
ud | Jrt arrive at very similar values.

Here and in the following fx+ and f,+ are the isospin-
broken decay constants, respectively, in QCD (the electro-
magnetic effects have already been subtracted in the exper-
imental analysis using chiral perturbation theory). We will
refer to the decay constants in the SU(2) isospin-symmetric
limit as fx and f;. |V,q| and |V,s| are elements of the
Cabibbo—Kobayashi—-Maskawa matrix and f, (¢) represents
one of the form factors relevant for the semileptonic decay
KO — ¢ v, which depends on the momentum transfer ¢
between the two mesons. What matters here is the value at
t =0: f+(0) = ffoﬂf(t) (—0- The pion and kaon decay
constants are defined by’

(Ol dypysulm ™ (p)) = ipy frrs  (OI5yuysul KT (p)) = ipy fi+

In this normalisation, f;+ >~ 130 MeV, fgx+ >~ 155 MeV.

The measurement of |V,,4| based on superallowed nuclear
B transitions has now become remarkably precise. The result
of the update of Hardy and Towner [115], which is based on
20 different superallowed transitions, reads'”

[Viual = 0.97425(22). (33)

The matrix element | V5| can be determined from semiin-
clusive T decays [122—125]. Separating the inclusive decay
T — hadrons + v into non-strange and strange final states,
e.g. HFAG 12 [126] obtain

[Vus| = 0.2173(22). (34)

9 The pion decay constant represents a QCD matrix element—in the
full Standard Model, the one-pion state is not a meaningful notion: the
correlation function of the charged axial current does not have a pole at
pr = M§+, but a branch cut extending from M§+ to oo. The analytic
properties of the correlation function and the problems encountered in
the determination of f, are thoroughly discussed in [113]. The “exper-
imental” value of f; depends on the convention used when splitting
the sum Lqocp + LgEep into two parts (compare Sect. 3.1). The lattice
determinations of f;; do not yet reach the accuracy where this is of sig-
nificance, but at the precision claimed by the Particle Data Group [114],
the numerical value does depend on the convention used [27-29,113].

10 1t is not a trivial matter to perform the data analysis at this precision.
In particular, isospin-breaking effects need to be properly accounted for
[116-120]. For a review of recent work on this issue, we refer to [121].

@ Springer

In principle, t decay offers a clean measurement of | V|,
but a number of open issues yet remain to be clarified. In
particular, the value of |V,| as determined from inclusive
T decays differs from the result one obtains from assum-
ing three-flavour SM-unitarity by more than three standard
deviations [126]. It is important to understand this appar-
ent tension better. The most interesting possibility is that
T decay involves new physics, but more work both on the
theoretical (see e.g. [131-134]) and experimental side is
required.

The experimental results in Eq. (32) are for the semilep-
tonic decay of a neutral kaon into a negatively charged pion
and the charged pion and kaon leptonic decays, respectively,
in QCD. In the case of the semileptonic decays the cor-
rections for strong and electromagnetic isospin breaking in
chiral perturbation theory at NLO have allowed for aver-
aging the different experimentally measured isospin chan-
nels [112]. This is quite a convenient procedure as long
as lattice QCD does not include strong or QED isospin-
breaking effects. Lattice results for fx/f; are typically
quoted for QCD with (squared) pion and kaon masses of
M2 = MZ% and My = 5(My. + M%, — M2, + M2) for
which the leading strong and electromagnetic isospin vio-
lations cancel. While progress is being made for including
strong and electromagnetic isospin breaking in the simula-
tions (e.g. [19,86,105,135-137]), for now contact to exper-
imental results is made by correcting leading SU(2) isospin
breaking guided by chiral perturbation theory.

In the following we will start by presenting the lattice
results for isospin-symmetric QCD. For any Standard Model
analysis based on these results we then utilise chiral per-
turbation theory to correct for the leading isospin-breaking
effects.

4.2 Lattice results for f1 (0) and fx /fx

The traditional way of determining |V,,s| relies on using the-
ory for the value of f (0), invoking the Ademollo—Gatto the-
orem [150]. Since this theorem only holds to leading order
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Table 8 Colour code for the data on f4 (0)

Collaboration Ref. N Publication Chiral Continuum Finite volume f4+(0)

status extrapolation extrapolation erTors
FNAL/MILC 13C [138] 24+1+1 C * * * 0.9704 (24) (32)
RBC/UKQCD 13 [139] 2+1 A * @) @) 0.9670 (20) (ﬂg)
FNAL/MILC 12 [140] 2+1 A e} @) * 0.9667 (23) (33)
JLQCD 12 [141] 2+1 C o} | * 0.959 (6) (5)
JLQCD 11 [142] 2+1 C o} | * 0.964 (6)
RBC/UKQCD 10 [143] 2+1 A e} | * 0.9599 (34) (ﬁ;) (14)
RBC/UKQCD 07 [144] 2+1 A e} | * 0.9644 (33) (34) (14)
ETM 10D [145] 2 C o} * @) 0.9544 (68)stat
ETM 09A [146] 2 A o} @) @) 0.9560 (57) (62)
QCDSF 07 [147] 2 C | | * 0.9647 (15)stat
RBC 06 [148] 2 A | | * 0.968 (9) (6)
JLQCD 05 [149] 2 C | | * 0.967 (6), 0.952 (6)

of the expansion in powers of m,, mg and my, theoretical
models are used to estimate the corrections. Lattice meth-
ods have now reached the stage where quantities like f (0)
or fx/fr can be determined to good accuracy. As a conse-
quence, the uncertainties inherent in the theoretical estimates
for the higher-order effects in the value of f (0) do not rep-
resent a limiting factor any more and we shall therefore not
invoke those estimates. Also, we will use the experimental
results based on nuclear B decay and t decay exclusively for
comparison—the main aim of the present review is to assess
the information gathered with lattice methods and to use it for
testing the consistency of the SM and its potential to provide
constraints for its extensions.

The data base underlying the present review of the
semileptonic form factor and the ratio of decay constants
is listed in Tables 8 and 9. The properties of the lattice data
play a crucial role for the conclusions to be drawn from these
results: range of My, size of LM, continuum extrapola-
tion, extrapolation in the quark masses, finite-size effects,
etc. The key features of the various data sets are charac-
terised by means of the colour code specified in Sect. 2.1.
More detailed information on individual computations are
compiled in Appendix B.2.

The quantity f4(0) represents a matrix element of a
strangeness changing null plane charge, f4(0) =(K|Q"|r).
The vector charges obey the commutation relations of the
Lie algebra of SU(3), in particular [Q"*, Q4] = Q"*~5.
This relation implies the sum rule ), [(K|Q" > —
> (KO |n)|? = 1. Since the contribution from the one-
pion intermediate state to the first sum is given by £, (0)2, the
relation amounts to an exact representation for this quantity
[151]:

FrO)F =1=Y " [(KIQ“m + ) I(KIQ™m)*. (35)

n#mw n

While the first sum on the right extends over non-strange
intermediate states, the second runs over exotic states with
strangeness &2 and is expected to be small compared to the
first.

The expansion of f (0) in SU(3) chiral perturbation the-
ory in powers of my,, mg and my starts with f,(0) =
1+ fo+ fa+--- [56]. Since all of the low energy constants
occurringin f> can be expressed in terms of M, Mg, M, and
S [152],the NLO correction is known. In the language of the
sum rule (35), f> stems from non-strange intermediate states
with three mesons. Like all other non-exotic intermediate
states, it lowers the value of 5 (0): f> = —0.023 when using
the experimental value of f; as input. The corresponding
expressions have also been derived in quenched or partially
quenched (staggered) chiral perturbation theory [140,153].
At the same order in the SU(2) expansion [154], f4(0) is
parameterised in terms of M, and two a priori unknown
parameters. The latter can be determined from the depen-
dence of the lattice results on the masses of the quarks. Note
that any calculation that relies on the x PT formula for f; is
subject to the uncertainties inherent in NLO results: instead
of using the physical value of the pion decay constant fy,
one may, for instance, work with the constant fy that occurs
in the effective Lagrangian and represents the value of f;
in the chiral limit. Although trading f,; for fy in the expres-
sion for the NLO term affects the result only at NNLO, it
may make a significant numerical difference in calculations
where the latter are not explicitly accounted for (the lattice
results concerning the value of the ratio f5 /fo are reviewed
in Sect. 5.2).

The lattice results shown in the left panel of Fig. 4 indicate
that the higher-order contributions Af = f,(0) — 1 — f»
are negative and thus amplify the effect generated by f>.
This confirms the expectation that the exotic contributions
are small. The entries in the lower part of the left panel rep-
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Table 9 Colour code for the data on the ratio of decay constants: fx /fr is the pure QCD SU(2)-symmetric ratio and fg=/f,+ is in pure QCD
with the SU(2) isospin breaking applied after simulation

Collaboration Ref. N¢ Publication  Chiral Continuum Finite-volume  fx /fz Sr+/frnt
status extrapolation extrapolation errors
ETM 13F [155] 2+1+1 C (@] * (@] 1.193 (13) (10) 1.183 (14) (10)
HPQCD 13A [156] 2+14+1 A * (@) * 1.1916 (15) (16)
MILC 13A [157] 241+1 A * o) * 1.1947 (26) (37)
MILC 11 [24] 24141 C o o) o 1.1872 (42),,
ETM 10E [158] 24+1+1 C (0] (@) (@) 1.224 (13)sar
RBC/UKQCD 12 [25] 241 A * (@) * 1.199 (12) (14)
Laiho 11 [77] 241 C ) e} o) 1.202 (11)(9)(2)(5) 1"
MILC 10 [159] 241 C (@] * * 1.197 (2) (*_'3)
JLQCD/TWQCD 10 [160] 2+1 C (@] | * 1.230 (19)
RBC/UKQCD 10A  [78] 2+ 1 A o e} * 1.204 (7) (25)
PACS-CS 09 [20] 2+1 A * | | 1.333 (72)
BMW 10 [161] 241 A * * * 1.192 (7) (6)
JLQCD/TWQCD 09A [162] 241 C (@] | | 1.210 (12)gtat
MILC 09A [37] 2+1 C (0] * * 1.198 (2) (fg)
MILC 09 [15] 241 A (@] * * 1.197 (3) (fg)
Aubin 08 [163] 241 C o (@] o 1.191 (16) (17)
PACS-CS 08, 08A [19,164] 2+1 A * | | 1.189 (20)
RBC/UKQCD 08 [79] 2+1 A (@] | * 1.205 (18) (62)
HPQCD/UKQCD 07  [165] 241 A (@] * O 1.189 (2) (7)
NPLQCD 06 [166]  2+1 A o | [ 1.218 2) (3
MILC 04 [36] 2+1 A (0] (e} (@) 1.210 (4) (13)
ALPHA 13 [167] 2 c * * * 1.1874 (57) (30)
BGR 11 [168] 2 A * [ ] [ ] 1.215 (41)
ETM 10D [145] 2 C (@] * (@] 1.190 (8)star
ETM 09 [169] 2 A (0] * O 1.210 (6) (15) (9)
QCDSF/UKQCD 07  [170] 2 C (@] (e} * 1.21 (3)
 Result with statistical error only from polynomial interpolation to the physical point
T This work is the continuation of Aubin 08
1— FTAG2013 f+(0) FTAG2013 fK /f"
: HCH FNAL/MILC 13C : our estimate for Ne=2+1+1
Il T - ETM 13F
i i = HPQCD 13A
our estimate for Ny=2+1 tﬁl HEH m:tg BA ot \
- RBC/UKQCD 13 P | ETM 10E((Sstaa€.eer|':i'.oonn¥y))
+ FNAL/MILC 12 z -
N JLQCD 12 our estimate for Ny =2+1
U_ JLQCD 11 RBC/UKQCD 12
z RBC/UKQCD 10 Laifo 11
RBC/UKQCD 07 — JLQCD/TWQCD 10
— Ho—— RBC/UKQCD 10A
H——H our estimate for N¢=2 : Ly BMW 10
ETM 10D (stat. err. only) Il =y JLQCD/TWQCD 094 (stat. err. only)
o L ETM 09A z - ILC 05
e eDsr o7 et e o) . PScwmom
1 JLQCD 05 HPQCD/UKQCD 07
i~ JLQCD 05 H— NPLOCD 06
8 H—@—H Kastner 08 [170] - our estimate for N¢=2
e —e— Cirigliano 05 (171] N WA ALPHA 13
B —e— Jamin 04 H%} n = BT 10D (stat y)
_' —— Bijnens 03 4 stat. err. only.
< —0— L ler 8 174 Emoe
S| ‘ ‘ | Leutwylerss [174] ‘ %'jm.-‘:a ‘ QCDSF/UKQCD 07
0.94 0.96 0.98 1.00 1.14 1.18 1.22 1.26

Fig. 4 Comparison of lattice results (squares) for f1(0) and fx /fr with various model estimates based on x PT (blue circles). The black squares
and grey bands indicate our estimates. The significance of the colours is explained in Sect. 2

@ Springer



Eur. Phys. J. C (2014) 74:2890

Page 31 of 179 2890

resent various model estimates for f4.In[175] the symmetry-
breaking effects are estimated in the framework of the quark
model. The more recent calculations are more sophisticated,
as they make use of the known explicit expression for the
K3 form factors to NNLO in xPT [174,176]. The corre-
sponding formula for f4 accounts for the chiral logarithms
occurring at NNLO and is not subject to the ambiguity men-
tioned above.!! The numerical result, however, depends on
the model used to estimate the low-energy constants occur-
ring in fy [171-174]. The figure indicates that the most
recent numbers obtained in this way correspond to a pos-
itive rather than a negative value for Af. We note that
FNAL/MILC 12 [140] have made an attempt at determining
some of the low-energy constants appearing in f4 from lattice
data.

4.3 Direct determination of f4 (0) and fg=/fr=

All lattice results for the form factor and the ratio of decay
constants that we summarise here (Tables 8, 9) have been
computed in isospin-symmetric QCD. The reason for this
unphysical parameter choice is that simulations of SU(2)
isospin-breaking effects in lattice QCD, while ultimately the
cleanest way for predicting these effects, are still rare and
in their infancy [32,33,40,43,105,136,137]. In the mean-
time one relies either on chiral perturbation theory [36,56]
to estimate the correction to the isospin limit or one cal-
culates the breaking at leading order in (m, — my) in the
valence quark sector by making a suitable choice of the
physical point to which the lattice data are extrapolated.
Aubin 08, MILC and Laiho 11 for example extrapolate their
simulation results for the kaon decay constant to the phys-
ical value of the up-quark mass (the results for the pion
decay constant are extrapolated to the value of the average
light-quark mass ). This then defines their prediction for
it/ .

Aslong as the majority of collaborations present their final
results in the isospin-symmetric limit (as we will see this
comprises the majority of results which qualify for inclusion
into a FLAG average) we prefer to provide the overview of
world data in Fig. 4 in this limit.

To this end we compute the isospin-symmetric ratio
Sfx /fx for Aubin 08, MILC and Laiho 11 using NLO chiral
perturbation theory [56,177] where

Jx _ ) < (36)

fr Bsu@) +1 frt'

I Fortran programs for the numerical evaluation of the form fac-
tor representation in [174] are available on request from Johan
Bijnens.

and where [177],

4
Ssue) & V3 esu) [— 3 (fxx/fret— 1)

T Mz — M2 —M}[lnM—’z( . (37)
3(4m)2 £} M?

We use as input esyp) = \/5/4/ R with the FLAG
result for R of Eq. (28), Fo = fo/~/2 = 80(20) MeV,
M, = 135MeV and Mg = 495 MeV (we decided to choose
a conservative uncertainty on fj in order to reflect the mag-
nitude of potential higher-order corrections) and obtain for
example

Sr=/frx

Aubin 08 1.202(11)(9)(2)(5)
MILC 10 1.197(2)(73)
Laiho 11 1.191(16)(17)

Tk /fx

—0.0044(8)  1.205(11)(2)(9)(2)(5)
—0.0043(7)  1.2002)2)("3)
—0.0041(9) 1.193(16)(2)(17)

dsu(2)

(and similarly also for all other Ny = 2+1and Ny = 2+1+1
results where applicable). In the last column the first error is
statistical and the second is the one from the isospin cor-
rection (the remaining errors are quoted in the same order
as in the original data). For Ny = 2 a dedicated study
of the strong-isospin correction in lattice QCD does exist.
The result of the RM123 collaboration [105] amounts to
dsu(2) = —0.0078(7) and we will later use this result for the
correction in the case of Ny = 2. We note that this value for
the strong-isospin correction is incompatible with the above
results based on SU(3) chiral perturbation theory. One would
not expect the strange sea-quark contribution to be respon-
sible for such a large effect. Whether higher-order effects in
chiral perturbation theory or other sources are responsible
still needs to be understood. To remain on the conservative
side we attach the difference between the two- and three-
flavour result as an additional uncertainty to the result based
on chiral perturbation theory. For the further analysis we add
both errors in quadrature.

The plots in Fig. 4 illustrate our compilation of data for
f+(0) and fx/fr. In both cases the lattice data are largely
consistent even when comparing simulations with different
Nt. We now proceed to form the corresponding averages,
separately for the data with Ny =2+ 1+ 1, Ny =2+ 1 and
Nt = 2 dynamical flavours and in the following will refer to
these averages as the “direct” determinations.

For f4(0) there are currently two computational strate-
gies: FNAL/MILC 12 and FNAL/MILC 13 use the Ward
identity relating the K — & form factor at zero momen-
tum transfer to the matrix element (7 |S|K) of the flavour-
changing scalar current. Peculiarities of the staggered
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fermion discretisation (see [140]) which FNAL/MILC is
using makes this the favoured choice. The other collabora-
tions are instead computing the vector-current matrix element
(|V,|K). Apart from MILC 13C all simulations in Table 8
involve unphysically heavy quarks and therefore the lattice
data need to be extrapolated to the physical pion and kaon
masses corresponding to the K — 7~ channel. We note that
all state of the art computations of f4 (0) are using partially
twisted boundary conditions which allow one to determine
the form factor results directly at the relevant kinematical
point g2 = 0 [178,179].

The colour code in Table 8 shows that for f (0), presently
only the result of ETM (we will be using ETM 09A [146])
with Ny = 2 and the results by the FNAL/MILC and RBC/
UKQCD collaborations with Ny = 2 + 1 dynamical flavours
of fermions, respectively, are without a red tag. The lat-
ter two results, £1(0) = 0.9670(20)("1%) (RBC/UKQCD
13) and f4(0) = 0.9667(23)(33) (FNAL/MILC 12), agree
very well. This is nice to observe given that the two col-
laborations are using different fermion discretisations (stag-
gered fermions in the case of FNAL/MILC and domain-wall
fermions in the case of RBC/UKQCD). Moreover, in the
case of FNAL/MILC the form factor has been determined
from the scalar-current matrix element while in the case of
RBC/UKQCD it has been determined from the matrix ele-
ment of the vector current. To a certain extent both simu-
lations are expected to be affected by different systematic
effects.

The result FNAL/MILC 12 is from simulations reach-
ing down to a lightest RMS pion mass of about 380 MeV
(the lightest valence pion mass for one of their ensembles
is about 260 MeV). Their combined chiral and continuum
extrapolation (results for two lattice spacings) is based on
NLO staggered chiral perturbation theory supplemented by
the continuum NNLO expression [174] and a phenomenolog-
ical parameterisation of the breaking of the Ademollo—Gatto
theorem at finite lattice spacing inherent in their approach.
The p* low-energy constants entering the NNLO expression
have been fixed in terms of external input [57].

RBC/UKQCD 13 has analysed results on ensembles with
pion masses down to 170MeV, mapping out nearly the com-
plete range from the SU(3)-symmetric limit to the physi-
cal point. Although no finite volume or cutoff effects were
observed in the simulation results, the expected residual sys-
tematic effects for finite-volume effects in NLO chiral per-
turbation theory and an order of magnitude estimate for cut-
off effects were included into the overall error budget. The
dominant systematic uncertainty is the one due to the extrap-
olation in the light quark mass to the physical point which
RBC/UKQCD did with the help of a model motivated and
partly based on chiral perturbation theory. The model depen-
dence is estimated by comparing different ansétze for the
mass extrapolation.

@ Springer

The ETM collaboration which uses the twisted-mass dis-
cretisation provides a comprehensive study of the systemat-
ics by presenting results for three lattice spacings [180] and
simulating at light pion masses (down to M; = 260 MeV).
This allows one to constrain the chiral extrapolation, using
both SU(3) [152] and SU(2) [154] chiral perturbation theory.
Moreover, a rough estimate for the size of the effects due to
quenching the strange quark is given, based on the compari-
son of the result for Ny = 2 dynamical quark flavours [169]
with the one in the quenched approximation, obtained earlier
by the SPQcdR collaboration [181]. We note for complete-
ness that ETM extrapolate their lattice results to the point cor-
responding to M 12( and M% as defined at the end of Sect. 4.1.
At the current level of precision though this is expected to be
a tiny effect.

‘We now compute the Ny = 241 FLAG-average for f (0)
based on FNAL/MILC 13 and RBC/UKQCD 12, which we
consider uncorrelated, and for Ny = 2 the only result fulfill-
ing the FLAG criteria is ETM 09A,

f+(0) =0.9661(32), (direct, Nf =2+ 1),
J+(0) = 0.9560(57)(62), (direct, Nf = 2). (38)

The brackets in the second line indicate the statistical and
systematic errors, respectively. The dominant source of sys-
tematic uncertainty in these simulations of f (0), the chi-
ral extrapolation, will soon be removed by simulations with
physical light quark masses (see FNAL/MILC 13C[138] and
RBC/UKQCD [182])

In the case of the ratio of decay constants the data sets
that meet the criteria formulated in the introduction are MILC
13A[157]and HPQCD 13A [156] with Ny = 24141, MILC
10 [159], BMW 10 [161], HPQCD/UKQCD 07 [165] and
RBC/UKQCD 12 [25] (which is an update of RBC/UKQCD
10A [78]) with Nf =2 4+ 1 and ETM 09 [169] with Nf = 2
dynamical flavours.

MILC 13A have determined the ratio of decay con-
stants from a comprehensive set of ensembles of Highly
Improved Staggered Quarks (HISQ) which have been tay-
lored to reduce staggered taste-breaking effects. They have
generated ensembles for four values of the lattice spacing
(0.06-0.15 fm, scale set with f;) and with the Goldstone
pion masses approximately tuned to the physical point which
at least on their finest lattice approximately agrees with the
RMS pion mass (i.e. the difference in mass between dif-
ferent pion species which originates from staggered taste
splitting). Supplementary simulations with slightly heavier
Goldstone pion mass allow one to extract the ratio of decay
constants for the physical value of the light-quark masses
by means of polynomial interpolations. In a second step
MILC extrapolates the data to the continuum limit where
eventually the ratio fg+/ f;+ is extracted. The final result of
their analysis is fx=/ fr+ = 1.1947(26)(33)(17)(2) where
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the errors are statistical, due to the continuum extrapola-
tion, due to finite volume effects and due to electromag-
netic effects. MILC has found an increase in the central
value of the ratio when going from the second finest to
their finest ensemble and from this observation they derive
the quoted 0.28 % uncertainty in the continuum extrap-
olation. They use NLO staggered chiral perturbation the-
ory to correct for finite-volume effects and estimate the
uncertainty in this approach by comparing to the alterna-
tive correction in NLO and NNLO continuum chiral per-
turbation theory. Although MILC and HPQCD are indepen-
dent collaborations, MILC shares its gauge-field ensembles
with HPQCD 13A, whose study of fx=/f,+ is therefore
based on the same set of ensembles bar the one for the
finest lattice spacing (a = 0.09-0.15 fm, scale set with f;+
and relative scale set with the Wilson flow [183,184]) sup-
plemented by some simulation points with heavier quark
masses. HPQCD employed a global fit based on contin-
uum NLO SU(3) chiral perturbation theory for the decay
constants supplemented by a model for higher-order terms
including discretisation and finite-volume effects (61 param-
eters for 39 data points supplemented by Bayesian priors).
Their final result is fx+/fr= = 1.1916(15)(12)(1)(10),
where the errors are statistical, due to the continuum
extrapolation, due to finite-volume effects and the last
error contains the combined uncertainties from the chi-
ral extrapolation, the scale-setting uncertainty, the exper-
imental input in terms of f,+ and from the uncertainty
inm,/mgy.

Despite the large overlap in primary lattice data both col-
laborations arrive at surprisingly different error budgets. In
the preparation of this report we interacted with both collab-
orations trying to understand the origin of the differences.
HPQCD is using a rather new method to set the relative
lattice scale for their ensembles which together with their
more aggressive binning of the statistical samples, could
explain the reduction in statistical error by a factor of 1.7
compared to MILC. Concerning the cutoff dependence, the
finest lattice included into MILC’s analysis is a = 0.06 fm
while the finest lattice in HPQCD’s case is a = 0.09 fm.
MILC estimates the residual systematic after extrapolat-
ing to the continuum limit by taking the split between the
result of an extrapolation with up to quartic and only up
to quadratic terms in a as their systematic. HPQCD on the
other hand models cutoff effects within their global fit ansatz
up to including terms in a®. In this way HPQCD arrives
at a systematic error due to the continuum limit which is
smaller than MILC’s estimate by about a factor 2.8. HPQCD
explains'? that in their setup, despite lacking the informa-
tion from the fine ensemble (¢ = 0.06 fm), the approach

12 Email exchange between HPQCD and FLAG.

to the continuum limit is reliably described by the chosen
fit formula leaving no room for the shift in the result on
the finest lattice observed by MILC. They further explain
that their different way of setting the relative lattice scale
leads to reduced cutoff effects compared to MILC’s study.
We now turn to finite-volume effects which in the MILC
result is the second-largest source of systematic uncertainty.
NLO staggered chiral perturbation theory (MILC) or con-
tinuum chiral perturbation theory (HPQCD) was used for
correcting the lattice data towards the infinite-volume limit.
MILC then compared the finite-volume correction to the one
obtained by the NNLO expression and took the difference as
their estimate for the residual finite-volume error. In addition
they checked the compatibility of the effective theory pre-
dictions (NLO continuum, staggered and NNLO continuum
chiral perturbation theory) against lattice data of different
spatial extent. The final verdict on the related residual sys-
tematic uncertainty on fx=+/ f,+ made by MILC is larger
by an order of magnitude than the one made by HPQCD.
We note that only HPQCD allows for taste-breaking terms in
their fit model while MILC postpones such studies to future
work.

The above comparison shows that MILC and HPQCD
have studied similar sources of systematic uncertainties, e.g.
by varying parts of the analysis procedure or by chang-
ing the functional form of a given fit ansatz. One observa-
tion worth mentioning in this context is the way in which
the resulting variations in the fit result are treated. MILC
tends to include the spread in central values from differ-
ent ansitze into the systematic errors. HPQCD on the other
hand determines the final result and attached errors from
preferred fit-ansatz and then confirms that it agrees within
errors with results from other ansétze without including the
spreads into their error budget. In this way HPQCD is lift-
ing the calculation of fg+/f,+ to a new level of preci-
sion. FLAG is looking forward to independent confirma-
tions of the result for fx=/f,+ at the same level of preci-
sion. For now we will only provide a range for the result for
Nr = 24141 that covers the result of both HPQCD 13A and
MILC 13A,

frxx/frt=1.194(5) (our estimate, direct, Ny=2+1+1)
(39)

Concerning simulations with Ny = 2 + 1, MILC 10 and
HPQCD/UKQCD 07 are based on staggered fermions,
BMW 10 has used improved Wilson fermions and RBC/
UKQCD 12’s result is based on the domain-wall formula-
tion. For Ny = 2 ETM has simulated twisted-mass fermions.
In contrast to MILC 13A all these latter simulations are for
unphysically heavy quark masses (corresponding to small-
est pion masses in the range 240-260 MeV in the case of
MILC 10, HPQCD/UKQCD 07 and ETM 09 and around
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170 MeV for RBC/UKQCD 12) and therefore slightly more
sophisticated extrapolations needed to be controlled. Vari-
ous ansitze for the mass and cutoff dependence compris-
ing SU(2) and SU(3) chiral perturbation theory or simply
polynomials were used and compared in order to estimate
the model dependence.

We now provide the FLAG average for these data. While
BMW 10 and RBC/UKQCD 12 are entirely independent
computations, subsets of the MILC gauge ensembles used
by MILC 10 and HPQCD/UKQCD 07 are the same. MILC
10 is certainly based on a larger and more advanced set of
gauge configurations than HPQCD/UQKCD 07. This allows
them for a more reliable estimation of systematic effects. In
this situation we consider only their statistical but not their
systematic uncertainties to be correlated. For Ny = 2 the
FLAG average is just the result by ETM 09 and this is illus-
trated in terms of the vertical grey band in the r.h.s. panel of
Fig. 4. For the purpose of this plot only, the isospin correction
has been removed along the lines laid out earlier. For the aver-
age indicated in the case of Ny = 2 4 1 we take the original
data of BMW 10, HPQCD/UKQCD 07 and RBC/UKQCD
12 and use the MILC 10 result as computed above. The
resulting fit is of good quality, with fx/fr = 1.194(4) and
x?%/dof = 0.4. The systematic errors of the individual data
sets are larger for MILC 10, BMW 10, HPQCD/UKQCD
07 and RBC/UKQCD 12, respectively, and following again
the prescription of Sect. 2.3 we replace the error by the
smallest one of these leading to fx/fr = 1.194(5) for
Nf=2+1.

Before determining the average for fg=+/f,+ which
should be used for applications to Standard Model phe-
nomenology we apply the isospin correction individually to
all those results which have been published in the isospin-
symmetric limit, i.,e. BMW 10, HPQCD/UKQCDO07 and
RBC/UKQCD 12. To this end we invert Eq. (36) and
use

4
Ssu@) ® V3esuw) [— §(fl(/fn -1

PR M,%—Mi—MrzrlnM—’% . (40)
3(4m)2 £} M?

The results are:

Sk /fx Srx/frt

HPQCD/UKQCD 07 1.189(2)(7)  —0.0040(7) 1.187(2) (2)(7)
BMW 10 1.192(7)(6)  —0.0041(7) 1.190(7) (2)(6)
RBC/UKQCD 12 1.199(12)(14) —0.0043(9) 1.196(12)(2)(14)

Isu()

As before, in the last column the first error is statistical and
the second error is due to the isospin correction. Using these
results we obtain
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Fig. 5 The plot compares the information for |V,4|, |V,s| obtained
on the lattice with the experimental result extracted from nuclear f
transitions. The dotted arc indicates the correlation between |V,,4| and
| Vius| that follows if the three-flavour CKM-matrix is unitary

frt/fet = 1.192(5), (direct, Ny =2+ 1), @n
Srt/frt = 1.205(6)(17), (direct, Ny = 2),
for QCD with broken isospin.

It is instructive to convert the above results for 4 (0) and
Sfx=/ fx= into a corresponding range for the CKM matrix
elements | V4| and | V|, using the relations (32). Consider
first the results for Ny = 2 + 1. The range for f (0) in (38)
is mapped into the interval |V,s| = 0.2239(7), depicted as a
horizontal green band in Fig. 5, while the one for fx+/ f;= in
(41) is converted into |V,;5|/| Vil = 0.2314(11), shown as a
tilted green band. The smaller green ellipse is the intersection
of these two bands.

More precisely, it represents the 68 % likelihood contour
(note also that the ellipses shown in Fig. 5 of Ref.[1] have
to be interpreted as 39 % likelihood contours), obtained by
treating the above two results as independent measurements.
Values of | V5|, |V,a| in the region enclosed by this contour
are consistent with the lattice data for Ny = 2 + 1, within
one standard deviation. In particular, the plot shows that the
nuclear § decay result for |V,4| is in good agreement with
these data. We note that with respect to the previous edition
of the FLAG review the reanalysis including new results has
moved the ellipse representing QCD with Ny = 241 slightly
down and to the left.

Repeating the exercise for Ny = 2 leads to the larger
blue ellipse. The figure indicates a slight tension between
the Ny = 2 and N = 2 + 1 results, which, at the current
level of precision is not visible if considering the Ny = 2 and
Nf = 2+ 1 results for f1(0) and fg=/ f+ in Fig. 4 on their
own. It remains to be seen if this is a first indication of the
effect of quenching the strange quark.
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In the case of Ny = 24141 only results for fx+/ f,+ are
without red tags. In this case we have therefore only plotted
the corresponding band for | V5| from fx=+/f;+ correspond-
ing to |Vis|/IVual = 0.2310(11).

4.4 Testing the Standard Model

In the Standard Model, the CKM matrix is unitary. In partic-
ular, the elements of the first row obey

IVil? = [Vaal? + Vus* + Vs> = 1. (42)

The tiny contribution from |V,,;| is known much better than
needed in the present context: | V,,;| = 4.15(49) - 1073 [74].
In the following, we first discuss the evidence for the validity
of the relation (42) and only then use it to analyse the lattice
data within the Standard Model.

In Fig. 5, the correlation between | V4| and | V,,5| imposed
by the unitarity of the CKM matrix is indicated by a dotted
arc (more precisely, in view of the uncertainty in |V,;|, the
correlation corresponds to a band of finite width, but the effect
is too small to be seen here).

The plot shows that there is a slight tension with unitarity
in the data for Ny = 2 + 1: Numerically, the outcome for
the sum of the squares of the first row of the CKM matrix
reads |Vu|2 = 0.987(10). Still, it is fair to say that at this
level the Standard Model passes a non-trivial test that exclu-
sively involves lattice data and well-established kaon decay
branching ratios. Combining the lattice results for f(0) and
fx=/fz= in (38) and (41) with the 8 decay value of |V, 4|
quoted in (33), the test sharpens considerably: the lattice
result for £ (0) leads to |V,|?> = 0.9993(5), while the one
for fx+/fr= implies |V,|> = 1.0000(6), thus confirming
CKM unitarity at the permille level.

Repeating the analysis for Ny = 2, we find |V,|> =
1.029(35) with the lattice data alone. This number is fully
compatible with 1, in accordance with the fact that the dot-
ted curve penetrates the blue contour. Taken by themselves,
these results are perfectly consistent with the value of |V,4|
found in nuclear 8 decay: combining this value with the data
on f1(0) yields |V, |2 = 1.0004(10), combining it with the
data on fy=/ fr+ gives |V,|* = 0.9989(16). With respect to
the first edition of the FLAG report the ellipse for Ny = 2 has
moved slightly to the left because we have now taken into
account isospin-breaking effects.

For Ny = 2 4+ 1 + 1 we can carry out the test of unitar-
ity only with input from fx+/f,= which leads to |V,|*> =
0.9998(7).

Note that the above tests also offer a check of the basic
hypothesis that underlies our analysis: we are assuming that
the weak interaction between the quarks and the leptons
is governed by the same Fermi constant as the one that

—FIAG2013 us ud
T T
+ our estimate for Ny =2+1+1
7 FNAUMILC 13C
+ ETM 13F
HPQCD 13A
o~ MILC 13A
I MILC 11 (stat. err. only)
ETM 10E (stat. err. only)
bd our estimate for =241
RBC/UKQCD 13
RBC/UKQCD 12
FNAL/MILC 12
JLQCD 12
Laiho 11
Jiqcp 11
— MILC 10
+ JLQCD/TWQCD 10 —T—
RBC/UKQCD 10A
~ RBC/UKQCD 10
1l PACS-CS 09 —
o JLQCD/TWQCD 094 (stat. err. only)
MILC 09A
P4 MILC 09
Au
PA
————Recukaco 08 e
RBC/UKQCD 07
HPQCD/UKQCD 08 HilH
NPLQCD 06
MILC 04
our estimate for Ny =2
ALPHA 13
o~ BGR 11 ; {t
ETM 10D (stat. err. only)
Il ETM 10D (stat. err. only)
o ETM 09A H-A—
pd ETM 09
QCDSF/UKQCD 07 H
QCDSF 07 (stat. err. only)
RBC 06
JLQCD 05
125
HFAG 12 « decay —e—
Maltman 09 r decay and e*e 127 —e——
Gamiz 08 r decay 128 —o—
) Y] ) Hardy 09 nuclear g decay | 114] 1@+ )

* Estimates obtained from an analysis of the lattice data
within the Standard Model, see section 4.5

Fig. 6 Results for |V,,| and |V,4| that follow from the lattice data for
f+(0) (triangles) and fx=/ fr+ (squares), on the basis of the assump-
tion that the CKM matrix is unitary. The black squares and the grey
bands represent our estimates, obtained by combining these two differ-
ent ways of measuring | V,s| and | V,,4| on a lattice. For comparison, the
figure also indicates the results obtained if the data on nuclear g decay
and 7 decay are analysed within the Standard Model

determines the strength of the weak interaction among the
leptons and determines the lifetime of the muon. In cer-
tain modifications of the Standard Model, this is not the
case. In those models it need not be true that the rates of
the decays # — fv, K — (v and K — mfv can be
used to determine the matrix elements |V, q fx |, | Vus fx | and
| Vs f+(0)], respectively and that | V4| can be measured in
nuclear B decay. The fact that the lattice data are consistent
with unitarity and with the value of | V,,4| found in nuclear g
decay indirectly also checks the equality of the Fermi con-
stants.

4.5 Analysis within the Standard Model

The Standard Model implies that the CKM matrix is uni-
tary. The precise experimental constraints quoted in (32) and
the unitarity condition (42) then reduce the four quantities
[Viudls [Vusl, f+(Q0), fx+/ fr= to a single unknown: any one
of these determines the other three within narrow uncertain-
ties.

Figure 6 shows that the results obtained for | V,,s| and | V4|
from the data on fx+/f,+ (squares) are quite consistent
with the determinations via fy(0) (triangles). In order to
calculate the corresponding average values, we restrict our-
selves to those determinations that we have considered best
in Sect. 4.3. The corresponding results for | V5| are listed in
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Table 10 Values of | V|

obtained from lattice Collaboration Ref. N¢ From [Vis |

determinations of f, (0) or -

fx+/ ot with CKM unitarity. HPQCD 13A [156] 24+ 1+1 Sr=/ fat 0.2255 (5) (3)

The first (second) number in MILC 13A [157] 24141 Sr=/ fnt 0.2249 (6) (7)

brackets represents the RBC/UKQCD 13 [139] 241 f1+(0) 0.2237 (7) (7)

statistical (systematic) error MILC 12 [140] 241 £10) 02238 (7) (8)
MILC 10 [159] 2+1 Sr=/ fat 0.2249 (5) (9)
RBC/UKQCD 10A [78] 2+1 Sr=/ fat 0.2246 (22) (25)
BMW 10 [161] 2+1 Srx/ fot 0.2259 (13) (12)
HPQCD/UKQCD 07 [165] 2+1 Tr=/ fat 0.2264 (5) (13)
ETM 09 [169] 2 Srx/ fot 0.2231 (11) (31)
ETM 09A [146] 2 f+(0) 0.2263 (14) (15)

Table 10 (the error in the experimental numbers used to con-
vert the values of f4(0) and fg=/ f,+ into values for | V|
is included in the statistical error).

‘We consider the fact that the results from the five Ny = 2+
1 data sets FNAL/MILC 12 [140], RBC/UKQCD 13 [139],
RBC/UKQCD 12 [25], BMW 10 [161], MILC 10 [159] and
HPQCD/UKQCD 07 [165] are consistent with each other to
be an important reliability test of the lattice work. Applying
the prescription of Sect. 2.3, where we consider MILC 10,
FNAL/MILC 12 and HPQCD/UKQCD 07 on the one hand
and RBC/UKQCD 12 and RBC/UKQCD 13 on the other
hand, as mutually statistically correlated since the analysis in
the two cases starts from partly the same set of gauge ensem-
bles, we arrive at | Vs | = 0.2247(7) with x2/dof = 0.8. This
result is indicated on the left hand side of Fig. 6 by the narrow
vertical band. The value for Ny = 2, |V,s| = 0.2253(21),
with X2 /dof = 0.9, where we have considered ETM 09
and ETM 09A as statistically correlated is also indicated
by a band. For Ny = 2 + 1 4+ 1 we only consider the
data for fx+/fr+ yielding |V,s] = 0.2251(10). The fig-
ure shows that the result obtained for the data with Ny = 2,
N = 2+ 1and Nf = 2+ 1 + 1 are perfectly consis-
tent.

Alternatively, we can solve the relations for |V,4| instead
of |Vys|. Again, the result |V, 4| = 0.97434(22) which fol-
lows from the lattice data with Ny = 2 4 1 4 1 is per-
fectly consistent with the values |V,4| = 0.97447(18) and
|Vial = 0.97427(49) obtained from those with Ny = 2 + 1
and Ny = 2, respectively. The reduction of the uncertain-
ties in the result for |V,4| due to CKM unitarity is to be
expected from Fig. 5: the unitarity condition reduces the
region allowed by the lattice results to a nearly vertical
interval.

Next, we determine the value of f (0) that follows from
the lattice data within the Standard Model. Using CKM uni-
tarity to convert the lattice determinations of fg+/ f,+ into
corresponding values for f; (0) and then combining these
with the direct determinations of f4(0), we find f4(0) =

@ Springer

0.9634(32) from the data with Ny = 2 + 1 and f4(0) =
0.9595(90) for Ny = 2.1Inthe case Ny = 2+ 1+ 1 we obtain
J+(0) =0.9611(47).

Finally, we work out the analogous Standard Model
fits for fyx=/fr+, converting the direct determinations
of f+(0) into corresponding values for fgx+/f,+ and
combining the outcome with the direct determinations of
that quantity. The results read fx=/f,+ = 1.197(4) for
Ny = 2+ 1 and fg+/frt = 1.192(12) for Ny = 2,
respectively.

The results obtained by analysing the lattice data in the
framework of the Standard Model are collected in the upper
half of Table 11. In the lower half of this table, we list the
analogous results, found by working out the consequences
of CKM unitarity for the experimental values of |V,4| and
|V.s| obtained from nuclear 8 decay and t decay, respec-
tively. The comparison shows that the lattice result for | V,,4|
not only agrees very well with the totally independent deter-
mination based on nuclear 8 transitions, but it is also remark-
ably precise. On the other hand, the values of |V,4]|, f+(0)
and fg=/ f,= which follow from the 7 decay data if the Stan-
dard Model is assumed to be valid, are not in good agreement
with the lattice results for these quantities. The disagreement
is reduced considerably if the analysis of the t data is supple-
mented with experimental results on electroproduction [128]:
the discrepancy then amounts to little more than one standard
deviation.

4.6 Direct determination of fx and f

It is useful for flavour physics to provide not only the lattice
average of fx /fr,but also the average of the decay constant
fk-Indeed, the AS = 2 hadronic matrix element for neutral
kaon mixing is generally parameterised by Mg, fx and the
kaon bag parameter Bk . The knowledge of both fx and By
is therefore crucial for a precise theoretical determination of
the CP-violation parameter €x and for the constraint on the
apex of the CKM unitarity triangle.
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Table 11 The upper half of the table shows our final results for | V],
[Vial, f+(0) and fg=+/ f+, which are obtained by analysing the lattice
data within the Standard Model. For comparison, the lower half lists the

values that follow if the lattice results are replaced by the experimental
results on nuclear 8 decay and t decay, respectively

Ref. [Vus| [Vl f+0) Sr*/ fat
Ne=2+1+1 0.2251 (10) 0.97434 (22) 0.9611 (47) 1.194 (5)
Ny=2+1 0.2247 (7) 0.97447 (18) 0.9634 (32) 1.197 (4)
Ne =2 0.2253 (21) 0.97427 (49) 0.9595 (90) 1.192 (12)
B decay [115] 0.22544 (95) 0.97425 (22) 0.9595 (46) 1.1919 (57)
7 decay [129] 0.2165 (26) 0.9763 (6) 0.999 (12) 1.244 (16)
7 decay [128] 0.2208 (39) 0.9753 (9) 0.980 (18) 1.218 (23)

The case of the decay constant f; is somehow differ-
ent, since the experimental value of this quantity is often
used for setting the scale in lattice QCD (see Appendix A.2).
However, the physical scale can be set in different ways,
namely by using as input the mass of the Q2-baryon (mg)
or the Y-meson spectrum (A M~), which are less sensitive
to the uncertainties of the chiral extrapolation in the light-
quark mass with respect to fr. In such cases the value of
the decay constant f;; becomes a direct prediction of the lat-
tice QCD simulations. It is therefore interesting to provide
also the average of the decay constant f,, obtained when
the physical scale is set through another hadron observable,
in order to check the consistency of different scale-setting
procedures.

Our compilation of the values of f; and fx with the cor-
responding colour code is presented in Table 12. With respect
to the case of fx/fr we have added two columns indicat-
ing which quantity is used to set the physical scale and the
possible use of a renormalisation constant for the axial cur-
rent. Indeed, for several lattice formulations the use of the
non-singlet axial-vector Ward identity allows one to avoid
the use of any renormalisation constant.

One can see that the determinations of f; and fx suffer
from larger uncertainties with respect to the ones of the ratio
fx/f~, which is less sensitive to various systematic effects
(including the uncertainty of a possible renormalisation con-
stant) and, moreover, is not so exposed to the uncertainties
of the procedure used to set the physical scale.

According to the FLAG rules three data sets can form
the average of f; and fx for Ny = 2 + 1: RBC/UKQCD
12 [25] (update of RBC/UKQCD 10A), HPQCD/UKQCD
07 [165] and MILC 10 [159], which is the latest update of
the MILC program.'3 We consider HPQCD/UKQCD 07 and

13 Since the MILC result is obtained for a charged kaon, we remove
the isospin-breaking effect according to the formula fx = fx+(1 —
dsu(2)/2), valid at NLO in ChPT, with §5y(2) for MILC 10 computed
using Eq. (37).

MILC 10 as statistically correlated and use the prescription
of Sect. 2.3 to form an average. For Ny = 2 the average
cannot be formed for f,;, and only one data set (ETM 09)
satisfies the FLAG rules in the case of fx. Following the
discussion around the Ny = 2 + 1 + 1 result for fx+/f;=
we refrain from providing a FLAG-average for fx for this
case.

Thus, our estimates (in the isospin-symmetric limit of
QCD) read

fz = 130.2 (1.4) MeV (Nf =2+ 1), (43)
fx = 156.3 (0.9) MeV (Nf =2+ 1),
fx = 158.1 (2.5) MeV (Ng = 2). (44)

The lattice results of Table 12 and our estimates (43-44)
are reported in Fig. 7. The latter ones compare positively
within the errors with the latest experimental determinations
of fr and fx from the PDG:

FPPO) — 130.41 (0.20) MeV,
P9 — 1561 (0.8) MeV, @

which, we recall, do not correspond, however, to pure QCD
results in the isospin-symmetric limit. Moreover, the val-
ues of f and fx quoted by the PDG are obtained assum-
ing Eq. (32) for the value of |V,4| and adopting the RBC-
UKQCD 07 result for f(0).

5 Low-energy constants

In the study of the quark-mass dependence of QCD observ-
ables calculated on the lattice it is common practice to invoke
Chiral Perturbation Theory (xPT). For a given quantity this
framework predicts the non-analytic quark-mass dependence
and it provides symmetry relations among different observ-
ables. These relations are best expressed with the help of
a set of linearly independent and universal (i.e. process-
independent) low-energy constants (LECs), which appear as
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Fig. 7 Valuesof f; and fx . The black squares and grey bands indicate
our estimates (43) and (44). The blue dots represent the experimental
values quoted by the PDG (45)

coefficients of the polynomial terms (in m, or M%) in differ-
ent observables. If one expands around the SU(2) chiral limit,
in the Chiral Effective Lagrangian there appear two LECs at
order p?

h))
FEF]T‘ , B = — where
my,mq—>0 F2
= —(uu) , (46)
my,mq—>0
and seven at order p4, indicated by Zi withi =1,...,7.In

the analysis of the SU(3) chiral limit there are also just two
LECs at order p?

Fo=F; By = —

2
FO

b
my ,mg,mg—0

where Xo = —(uu) 47

9
my,mq,msg—0

but ten at order p*, indicated by the capital letter L;(u)
withi = 1, ..., 10. These constants are independent of the
quark masses'#, but they become scale dependent after renor-
malisation (sometimes a superscript 7 is added). The SU(2)
constants ¢; are scale independent, since they are defined at
= M (as indicated by the bar). For the precise definition
of these constants and their scale dependence we refer the
reader to [56,58].

14 More precisely, they are independent of the two or three light quark
masses which are explicitly considered in the respective framework.
However, all low-energy constants depend on the masses of the remain-
ing quarks s, ¢, b, t orc, b, t inthe SU(2) and SU(3) framework, respec-
tively.

First of all, lattice calculations can be used to test if chi-
ral symmetry is indeed broken as SU(N¢); xSU(Nf)g —
SU(Nr) +r by measuring non-zero chiral condensates and
by verifying the validity of the GMOR relation M,zr X m
close to the chiral limit. If the chiral extrapolation of quan-
tities calculated on the lattice is made with the help of xPT,
apart from determining the observable at the physical value
of the quark masses one also obtains the relevant LECs. This
is a very important by-product for two reasons:

1. AIlLECs up to order p* (with the exception of B and By,
since only the product of these times the quark masses
can be estimated from phenomenology) have either been
determined by comparison to experiment or estimated
theoretically. A lattice determination of the better known
ones thus provides a test of the y PT approach.

2. The less well-known LECs are those which describe the
quark-mass dependence of observables—these cannot be
determined from experiment, and therefore the lattice
provides unique quantitative information. This informa-
tion is essential for improving phenomenological xPT
predictions in which these LECs play a role.

We stress that this program is based on the non-obvious
assumption that xPT is valid in the region of masses used
in the lattice simulations under consideration.

The fact that, at large volume, the finite-size effects, which
occur if a system undergoes spontaneous symmetry break-
down, are controlled by the Nambu—Goldstone modes, was
first noted in solid-state physics, in connection with magnetic
systems [187,188]. As pointed out in [189] in the context of
QCD, the thermal properties of such systems can be studied
in a systematic and model-independent manner by means of
the corresponding effective field theory, provided the temper-
ature is low enough. While finite volumes are not of physical
interest in particle physics, lattice simulations are necessar-
ily carried out in a finite box. As shown in [190-192], the
ensuing finite-size effects can also be studied on the basis of
the effective theory—x PT in the case of QCD—provided the
simulation is close enough to the continuum limit, the volume
is sufficiently large and the explicit breaking of chiral sym-
metry generated by the quark masses is sufficiently small.
Indeed, xPT represents also a useful tool for the analysis of
the finite-size effects in lattice simulations.

In the following two subsections we summarise the lat-
tice results for the SU(2) and SU(3) LECs, respectively. In
either case we first discuss the O( pz) constants and then
proceed to their O( p4) counterparts. The O( pz) LECs are
determined from the chiral extrapolation of masses and decay
constants or, alternatively, from a finite-size study of correla-
tors in the e-regime. At order p* some LECs affect two-point
functions while other appear only in three- or four-point func-
tions; the latter need to be determined from form factors or
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scattering amplitudes. The x PT analysis of the (non-lattice)
phenomenological quantities is nowadays'> based on O (p%)
formulae. At this level the number of LECs explodes and we
will not discuss any of these. We will, however, discuss how
comparing different orders and different expansions (in par-
ticular x versus &-expansion; see below) can help to assess
the theoretical uncertainties of the LECs determined on the
lattice.

5.1 SU(2) low-energy constants

5.1.1 Quark-mass dependence of pseudoscalar masses and
decay constants

The expansions'® of Mﬁ and F; in powers of the quark mass
are known to next-to-next-to-leading order in the SU(2) chiral
effective theory. In the isospin limit, m, = mgy = m, the
explicit expressions may be written in the form [193]

+x%ky + 03§,

2

2 2

5 ,( A2
1+Xlnm—zx <1 M2>

+x2kF + O(x3) . (48)

Fy =F

Here the expansion parameter is given by

Mm? ) 2%m
M?* =2Bm =

" Grby iz @

but there is another option as discussed below. The scales
A3, A4 are related to the effective coupling constants 3, £4

of the chiral Lagrangian at running scale M, = M};hys by

15 Some of the O (p®) formulae presented below have been derived in
an unpublished note by three of us (GC, SD and HL) and Jiirg Gasser.
We thank him for allowing us to publish them here.

16 Here and in the following, we stick to the notation used in the
papers where the xPT formulae were established, i.e. we work with
Fr = fn/ﬁ =92.2(1)MeV and Fx = fK/\/E. The occurrence of
different normalisation conventions is not convenient, but avoiding it
by reformulating the formulae in terms of f;;, fx is not a good way out.
Since we are using different symbols, confusion cannot arise.
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_ A2
z,,zlnM’;, n=1,...,7. (50)

e

Note that in Eq. (48) the logarithms are evaluated at M 2
not at MJ%. The coupling constants ky, kg in Eq. (48) are
mass-independent. The scales of the squared logarithms can
be expressed in terms of the O (p*) coupling constants as

Ay 1 A2 A3 A}
In—24 = — (28In—% +32In o3 =9 n—32 +49

M? 51 M? M?
| A2 ! 141 A2—i—161 A2—i—61 A2
n—Lf - — n—-

M2 30 M?

A

Hence by analysing the quark-mass dependence of Mj%
and F, with Eq. (48), possibly truncated at NLO, one can
determine!” the O (p?) LECs B and F, as well as the O (p*)
LECs 3 and £4. The quark condensate in the chiral limit is
givenby ¥ = F2B. With precise enough data at several small
enough pion masses, one could in principle also determine
Ay, Ar and kyy, kp. To date this is not yet possible. The
results for the LO and NLO constants will be presented in
Sect. 5.1.6.

Alternatively, one can invert Eq. (48) and express M2 and
F as an expansion in

My
1672 F2

e
ll

(52)

and the corresponding expressions then take the form

2 2
M2 =M

Mz 8 M.

e

2
A; 5 Q2
« A4l &5 -2 2(1n—"§> +&2 ey + 0D T,

M2

e

2 2\ 2
x 1—$1n%—%§2(1n&> + &%+ 0@
(53)

The scales of the quadratic logarithms are determined by
A1, ..., A4 through

17 Notice that one could analyse the quark-mass dependence entirely
in terms of the parameter M? defined in Eq. (49) and determine equally
well all other LECs. Using the determination of the quark masses
described in Sect. 3 one can then extract B or X.
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Q2 1
ln—}g=—
M2 15
A2 A2 A3 A}
X 281n—2+321n——331n——121n—+52 ,
Mz Mz Mz M3
QL 1 A? A2 A2 29
n—t=—(-7ln—L -8In—2+18In—3 -],
M2 3 M2 M2 M2 2

(54)

5.1.2 Two-point correlation functions in the epsilon-regime

The finite-size effects encountered in lattice calculations can
be used to determine some of the LECs of QCD. In order to
illustrate this point, we focus on the two lightest quarks, take
the isospin limit m,, = my = m and consider a box of size
L in the three space directions and size L; in the time direc-
tion. If m is sent to zero at fixed box size, chiral symmetry
is restored. The behaviour of the various observables in the
symmetry-restoration region is controlled by the parameter
u=mxXV,where V = L?L, is the four-dimensional vol-
ume of the box. Up to a sign and a factor of two, the parameter
w represents the minimum of the classical action that belongs
to the leading-order effective Lagrangian of QCD.

For 1« > 1, the system behaves qualitatively as if the box
was infinitely large. In that region, the p-expansion, which
counts 1/Lg, 1/L, and M as quantities of the same order,
is adequate. In view of yu = %F 2M?V, this region includes
configurations with M L 2 1, where the finite-size effects due
to pion loop diagrams are suppressed by the factor e =~

If 1« is comparable to or smaller than 1, however, the chi-
ral perturbation series must be reordered. The e-expansion
achieves this by counting 1/Lg, 1/L; as quantities of O (¢),
while the quark mass m is booked as a term of O(e*). This
ensures that the symmetry-restoration parameter p repre-
sents a term of order O(e), so that the manner in which
chiral symmetry is restored can be worked out.

As an example, we consider the correlator of the axial
charge carried by the two lightest quarks, g (x) = {u(x), d(x)}.
The axial current and the pseudoscalar density are given by

. 1 . . 1 .
A () =G0 57 yuys g, P) =G0t ivsq(x),
(55)

where 7!, rz, r3, are the Pauli matrices in flavour space. In
Euclidean space, the correlators of the axial charge and of
the space integral over the pseudoscalar density are given

by
8k Can(t) = L2 f &% (AL (E, 1Ak (0)),

s Cpp(t) = Lf,/d%‘é (PL(%, 1) P*(0)). (56)

xPT yields explicit finite-size scaling formulae for these
quantities [192,194,195]. In the e-regime, the expansion
starts with

Can(t) =

273

L} L t 4
bahi(—|+0 ;

L [aA+F2Lg A I(L,>+ (€ )]

L t
276 ’ 4
Cpp(t) =% LS |:ap+—2 ?bPhl (—t) + O(e )],

(57)

where the coefficients a4, ba, ap, bp stand for quantities of
0 (€°). They can be expressed in terms of the variables L,
L; and m and involve only the two leading low-energy con-
stants F and X. In fact, at leading order only the combination
nw=mx L?L, matters, the correlators are 7-independent
and the dependence on u is fully determined by the struc-
ture of the groups involved in the SSB pattern. In the case of
SU(2) x SU(2) — SU(2), relevant for QCD in the symmetry-
restoration region with two light quarks, the coefficients can
be expressed in terms of Bessel functions. The ¢-dependence
of the correlators starts showing up at O (€2), in the form of a
parabola, viz. hy(7) = %[(7: — %)2 — 1—12]. Explicit expressions
for ay, ba, ap, bp can be found in [192,194,195], where
some of the correlation functions are worked out to NNLO.
By matching the finite-size scaling of correlators computed
on the lattice with these predictions one can extract F' and
. A way to deal with the numerical challenges genuine to
the e-regime has been described [196].

The fact that the representation of the correlators to NLO is
not “contaminated” by higher-order unknown LECs, makes
the e-regime potentially convenient for a clean extraction of
the LO couplings. The determination of these LECs is then
affected by different systematic uncertainties with respect
to the standard case; simulations in this regime yield com-
plementary information which can serve as a valuable cross-
check to get a comprehensive picture of the low-energy prop-
erties of QCD.

The effective theory can also be used to study the distribu-
tion of the topological charge in QCD [197] and the various
quantities of interest may be defined for a fixed value of this
charge. The expectation values and correlation functions then
not only depend on the symmetry-restoration parameter i,
but also on the topological charge v. The dependence on these
two variables can explicitly be calculated. It turns out that the
two-point correlation functions considered above retain the
form (57), but the coefficients a4, b4, ap, bp now depend on
the topological charge as well as on the symmetry restoration
parameter (see [198-200] for explicit expressions).

A specific issue with e-regime calculations is the scale
setting. Ideally one would perform a p-regime study with
the same bare parameters to measure a hadronic scale (e.g.
the proton mass). In the literature, sometimes a gluonic scale
(e.g. rp) is used to avoid such expenses. Obviously the issues
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inherent in scale setting are aggravated if the e-regime sim-
ulation is restricted to a fixed sector of topological charge.

It is important to stress that in the e-expansion higher-
order finite-volume corrections might be significant, and the
physical box size (in fm) should still be large in order to
keep these contributions under control. The criteria for the
chiral extrapolation and finite-volume effects are obviously
different from the p-regime. For these reasons we have to
adjust the colour coding defined in Sect. 2.1 (see Sect. 5.1.6
for more details).

Recently, the effective theory has been extended to the
“mixed regime” where some quarks are in the p-regime and
some in the e-regime [201,202]. In [203] a technique is pro-
posed to smoothly connect the p- and e-regimes. In [204]
the issue is reconsidered with a counting rule which is essen-
tially the same as in the p-regime. In this new scheme, the
theory remains IR finite even in the chiral limit, while the
chiral-logarithmic effects are kept present.

5.1.3 Energy levels of the QCD Hamiltonian in a box and
8-regime

At low temperature, the properties of the partition function
are governed by the lowest eigenvalues of the Hamiltonian.
In the case of QCD, the lowest levels are due to the Nambu—
Goldstone bosons and can be worked out with xPT [205].
In the chiral limit the level pattern follows the one of a
quantum-mechanical rotator, i.e. E¢ = £(£ + 1)/(2 ®) with
£=0,1,2,.... For a cubic spatial box and to leading order
in the expansion in inverse powers of the box size Lj, the
moment of inertia is fixed by the value of the pion decay
constant in the chiral limit, i.e. ® = F ng.

In order to analyse the dependence of the levels on the
quark masses and on the parameters that specify the size of
the box, a reordering of the chiral series is required, the so-
called §-expansion; the region where the properties of the
system are controlled by this expansion is referred to as the
d-regime. Evaluating the chiral perturbation series in this
regime, one finds that the expansion of the partition func-
tion goes in even inverse powers of F L, that the rotator
formula for the energy levels holds up to NNLO and the
expression for the moment of inertia is now also known up
to and including terms of order (FLg)~* [206-208]. Since
the level spectrum is governed by the value of the pion decay
constant in the chiral limit, an evaluation of this spectrum
on the lattice can be used to measure F'. More generally, the
evaluation of various observables in the §-regime offers an
alternative method for a determination of some of the low-
energy constants occurring in the effective Lagrangian. At
present, however, the numerical results obtained in this way
[209,210] are not yet competitive with those found in the p-
or €-regimes.
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5.1.4 Other methods for the extraction of the low-energy
constants

An observable that can be used to extract the LECs is the
topological susceptibility

Xt = / d% (0 (0)w(0), (58)
where w(x) is the topological charge density,

1
w(x) = me“w’n [Fuv(X) Fpo (x)] . (59)

Atinfinite volume, the expansion of x; in powers of the quark
masses starts with [211]

xe =m X {1+0(m)},

The condensate X can thus be extracted from the properties
of the topological susceptibility close to the chiral limit. The
behaviour at finite volume, in particular in the region where
the symmetry is restored, is discussed in [195]. The depen-
dence on the vacuum angle 6 and the projection on sectors
of fixed v have been studied in [197]. For a discussion of the
finite-size effects at NLO, including the dependence on 6,
we refer to [200,212].

The role that the topological susceptibility plays in
attempts to determine whether there is a large paramagnetic
suppression when going from the Ny = 2 tothe Ny =2 + 1
theory has been highlighted in Ref. [213]. The potential use-
fulness of higher moments of the topological charge distri-
bution to determine LECs has been investigated in [214].

Another method for computing the quark condensate has
been proposed in [215], where it is shown that starting from
the Banks—Casher relation [216] one may extract the conden-
sate from suitable (renormalisable) spectral observables, for
instance the number of Dirac operator modes in a given inter-
val. For those spectral observables higher-order corrections
can be systematically computed in terms of the chiral effec-
tive theory. A recent paper based on this strategy is ETM 13
[217]. As an aside let us remark that corrections to the Banks—
Casher relation that come from a finite quark mass, a finite
four-dimensional volume and (with Wilson-type fermions)
a finite lattice spacing can be parameterised in a properly
extended version of the chiral framework [218].

An alternative strategy is based on the fact that at LO in
the e-expansion the partition function in a given topological
sector v is equivalent to the one of a chiral Random Matrix
Theory (RMT) [219-222]. In RMT it is possible to extract
the probability distributions of individual eigenvalues [223—
225] in terms of two dimensionless variables ¢ = AXV and
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u = mXV,where A represents the eigenvalue of the massless
Dirac operator and m is the sea quark mass. More recently this
approach has been extended to the Hermitian (Wilson) Dirac
operator [226] which is easier to study in numerical simu-
lations. Hence, if it is possible to match the QCD low-lying
spectrum of the Dirac operator to the RMT predictions, then
one may extract'® the chiral condensate . One issue with
this method is that for the distributions of individual eigenval-
ues higher-order corrections are still not known in the effec-
tive theory, and this may introduce systematic effects which
are hard'® to control. Another open question is that, while it
is clear how the spectral density is renormalised [230], this
is not the case for the individual eigenvalues, and one relies
on assumptions. There have been many lattice studies [231-
235] which investigate the matching of the low-lying Dirac
spectrum with RMT. In this review the results of the LECs
obtained in this way?? are not included.

5.1.5 Pion form factors

The scalar and vector form factors of the pion are defined by
the matrix elements

(T (p)| G q |7 (p1)) = 8V FF (1), (61)
. 1 . .
(7' (p)1q Erky“q I7/(p1)) =i (pl' + pYFT (1),

where the operators contain only the lightest two quark
flavours, i.e. t!, 2, 73 are the Pauli matrices, and r =
(p1 — p2)? denotes the momentum transfer.

The vector form factor has been measured by several
experiments for timelike as well as for spacelike values of
t. The scalar form factor is not directly measurable, but it
can be evaluated theoretically from data on the 77 and w K
phase shifts [236] by means of analyticity and unitarity, i.e. in
a model-independent way. Lattice calculations can be com-
pared with data or model-independent theoretical evaluations
at any given value of 7. At present, however, most lattice
studies concentrate on the region close to t = 0 and on the
evaluation of the slope and curvature which are defined as

1
FI(r) =1+ g<r2>7;t +oeyti 4., (62)

b4 b4 1 2\ 2
FS(I)ZFS(O)[1+6<V )5t +cst +]

18 By introducing an imaginary isospin chemical potential, the frame-
work can be extended such that the low-lying spectrum of the Dirac
operator is also sensitive to the pseudoscalar decay constant F at LO
[227].

19 Higher-order systematic effects in the matching with RMT have been
investigated in [228,229].

20 The results for ¥ and F lie in the same range as the determinations
reported in Tables 13 and 14.

The slopes are related to the mean-square vector and scalar
radii which are the quantities on which most experiments and
lattice calculations concentrate.

In chiral perturbation theory, the form factors are known
at NNLO [237]. The corresponding formulae are available in
fully analytical form and are compact enough that they can
be used for the chiral extrapolation of the data (as done, for
example in [238,239]). The expressions for the scalar and
vector radii and for the cs v coefficients at two-loop level
read

1
2\ __
s = GnF
2

A2 13 29 Q2
x36ln—2% - =g (ln—2=| +6Ek.+0E>Y,

M2 2 3 (Mg &

1

2\ __
WY = G Eye

A2 2\’
x 1nM—g—1+2g 1nM’; + 65k, + 0OED T,

T T
2
43 ( Q2
+&| —=In—=) +ke ,
36( M2 s

2
: : +£ 1 1 QEV +k
cy = —— = { — — | In . ,
V= @rnF, M )2 | 60 72\ M2 v

T

B 1 19
T UrFyMy)? | 120

cs

(63)
where
Q? 1 A2 A2 A2 145
In—% =_— (31ln—L+34In—2-36In—% +—|.
M2 29 M?2 M2 M2 24
Q2 1 A2 A2 A2 AZ 31
In r; = ln—lz—ln—%—l—ln—g—}—ln—g—— ,
M2 2\ M M2 M2 M2 12
2 2 2 2
43 A A AZ 6041
In—==—(11ln—L+14In—=2+18In—F——— |,
M2~ 63 M2 M2 M2 120
Q2 1 A2 A2 A2 26
N = (21an2 —2In % —In_5 - W) ©9
T T T T

and k¢, k., and k., k¢, are independent of the quark masses.
Their expression in terms of the £; and of the O ( p6) constants
cuM, cr is known but will not be reproduced here.

The difference between the quark-line connected and the
full (i.e. containing the connected and the disconnected piece)
scalar pion form factor has been investigated by means of
Chiral Perturbation Theory in [240]. It is expected that the
technique used can be applied to a large class of observables
relevant in QCD-phenomenology.

As a point of practical interest let us remark that there are
no finite-volume correction formulae for the mean-square
radii (rZ)V’ s and the curvatures cy 5. The lattice data for
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Table 13 Quark condensate ¥ = [{itu)|;, ,m,—0: colour code and numerical values in MeV (compare Fig. 8)

Collaboration Ref.  N¢ Publication  Chiral Continuum Finite Renormalisation %!/3

status extrapolation  extrapolation  volume
ETM 13 [217] 24141 A o) * (e} * 274 (08) (08)
BMW 13 [254] 2+1 P * * * * 271 (4) (1)
Borsanyi 12 [249] 2+1 A * * e} * 272.3 (1.2) (1.4)
MILC 10A [75] 241 C ) * * o 281.5 (3.4)(1@:3) (4.0
JLQCD/TWQCD 10 [252] 2+1 A * u e} * 234 (4) (17)
RBC/UKQCD 10A [78] 2+1 A ) o * * 256 (5) (2) (2)
JLQCD 09 [251] 2+1 A * u e} * 242 (4)(Jj}g)
MILC 09A [371] 241 C ) * * o 279 (1) (2) 4)
MILC 09A [371 2+1 C o) * * o 280 (2)(Jjg) 4
MILC 09 [15] 241 A ) * * o 278 (1)(f§) 5)
TWQCD 08 [255] 241 A ) u u * 259 (6) (9)
JLQCD/TWQCD 08B  [256] 2+ 1 C ) u u * 253 (4) (6)
PACS-CS 08 [19] 2+1 A * [ ] ] [ ] 312 (10)
PACS-CS 08 [19] 2+1 A * [ ] ] [ ] 309 (7)
RBC/UKQCD 08 [79] 241 A o) u * * 255(8) (8) (13)
Brandt 13 [257] 2 A o) * * * 261 (13) (1)
ETM 13 [217] 2 A o) * o * 277 (06) (12)
ETM 12 [258] 2 A ©) * (e} * 299 (26) (29)
Bernardoni 11 [259] 2 C (@] ] u (@) 306 (11)
TWQCD 11 [185] 2 A o) u u * 235(8) (4)
TWQCD 11A [260] 2 A o) L] u * 259 (6) (7)
Bernardoni 10 [261] 2 A o " u * 262(733) ()
JLQCD/TWQCD 10 [252] 2 A * u u * 242 (5) (20)
ETM 09C [241] 2 A ) * o * 270 (5)(3)
ETM 08 [238] 2 A o) o o * 264 (3) (5)
CERN 08 [215] 2 A o) L] e} * 276 (3) (4) (5)
JLQCD/TWQCD 08A [67] 2 A o) (] [ * 235.7(5.0) 2.0)(*}7)
JLQCD/TWQCD 07A [262] 2 A ) L] u * 252 (5) (10)
ETM 09B [263] 2 C * o u * 239.6 (4.8)
Hasenfratz 08 [264] 2 A (@] u (@) * 248 (6)
JLQCD/TWQCD 07  [265] 2 A * u u * 239.8 (4.0)

Fy s(t) need to be corrected, point by point in #, for finite-
volume effects. In fact, if a given 7 is realised through several
inequivalent p; — p» combinations, the level of agreement
after the correction has been applied is indicative of how well
higher-order effects are under control.

5.1.6 Lattice determinations

In this section we summarise the lattice results for the SU(2)
couplings in a set of Tables 13, 14, 15, 16 and Figs. 8, 9, 10).
The tables present our usual colour coding which summarises
the main aspects related to the treatment of the systematic
errors of the various calculations.

@ Springer

A delicate issue in the lattice determination of chiral LECs
(in particular at NLO) which cannot be reflected by our colour
coding is a reliable assessment of the theoretical error that
comes from the chiral expansion. We add a few remarks on
this point:

1. Using both the x and the & expansion is a good way to
test how the ambiguity of the chiral expansion (at a given
order) affects the numerical values of the LECs that are
determined from a particular set of data. For instance, to
determine #4 (or Ay4) from lattice data for F; as a func-
tion of the quark mass, one may compare the fits based
on the parameterisation F, = F{l + xIn(A3/M?)}
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Table 14 Results for the leading-order SU(2) low-energy constant F' (in MeV) and for the ratio F; /F. Numbers in slanted fonts have been
calculated by us (see text for details). Horizontal lines establish the same grouping as in Table 13

Collaboration Ref. N¢ Publication Chiral Continuum Finite Renormalisation F Fr/F

status extrapolation extrapolation volume
ETM 11 [266] 2+1+1 C o) * o * 85.60 (4) 1.077 (2)
ETM 107 98] 241+1 A o) o} e} * 85.66 (6) (13) 1.076 (2) (2)
BMW 13 [254] 2+1 P * * * * 88.0 (1.3) (0.3) 1.055 (7) (2)
Borsanyi 12 [249] 241 A * * o) * 86.78 (05) (25) 1.0627 (06) (27)
NPLQCD 11 267] 2+1 A o) o) * 1.062 (26)(*52)
MILC 10A 751 241 C e} * * o) 87.5 (LO)(*97) 1.06 (3)
MILC 10 [159] 2+1 C o * * o) 87.0 (4) (5) 1.060 (8)
MILC 09A [37] 241 c e} * * o) 86.8 (2) (4) 1.062 (1) (3)
MILC 09 [15] 2+1 A o * * 1.052 2)(*9)
PACS-CS 08 [19] 241 A * ] [ [ 89.4 (3.3) 1.060 (7)
RBC/UKQCD 08 [79] 2+1 A o) | * * 81.2(2.9) (5.7) 1.080 (8)
Brandt 13 [257] 2 A e} * * * 84 (8) (2) 1.080 (16) (6)
QCDSF 13 [268] 2 P * * [ | * 86 (1) 1.07 (1)
Bernardoni 11 [259] 2 c e} = = o} 79 (4) 1.17.(5)
TWQCD 11 [185] 2 A * ] [ * 83.39 (35) (38) 1.106 (6)
ETM 09C 2411 2 A o) * o) 1.0755 (6)(*3%)
ETM 08 [238] 2 A o) o} o * 86.6 (7) (7) 1.067 (9) (9)
JLQCD/TWQCD 08A [67] 2 A e} u [ | * 79.02.5) 0.7)(*53) 1174
ETM 09B$ [263] 2 C * o} = * 90.2 (4.8) 1.02 (5)
Hasenfratz 08 [264] 2 A e} u o) * 90 (4) 1.02 (4)
JLQCD/TWQCD 07 [265] 2 A * [ [ * 87.3 (5.6) 1.06 (6)
Colangelo 03 [269] 86.2 (5) 1.0719 (52)

1 The values of M, +L correspond to a green tag in the FV-column, while those of M oL imply a red one; since both masses play a role in

finite-volume effects, we opt for open green

§ Result for ro F' converted into a value for F via ro = 0.49 fm (despite ETM quoting smaller values of ro)

[see Eq. (48)] with those obtained from F, = F/{l —
& ln(Af1 / M%)} [see Eq. (53)]. The difference between the
two results provides an estimate of the uncertainty due to
the truncation of the chiral series. Which central value one
chooses is in principle arbitrary, but we find it advisable to
use the one obtained with the £ expansion,?! in particular
because it makes the comparison with phenomenological
determinations (where it is standard practice to use the &
expansion) more meaningful.

2. Alternatively one could try to estimate the influence of
higher chiral orders by reshuffling irrelevant higher-order
terms. For instance, in the example mentioned above one
might use F, = F/{l —x ln(Ai/Mz)} as a different
functional form at NLO. Another way to establish such 3.

21 There are theoretical arguments suggesting that the £ expansion is
preferable to the x expansion, based on the observation that the coeffi-
cients in front of the squared logs in (48) are somewhat larger than in
(53). This can be traced to the fact that a part of every formula in the
x expansion is concerned with locating the position of the pion pole
(at the previous order) while in the & expansion the knowledge of this
position is built in exactly. Numerical evidence supporting this view is
presented in [67].

an estimate is through introducing by hand “analytical”
higher-order terms (e.g. “analytical NNLO” as done, in
the past, by MILC [15]). In principle it would be prefer-
able to include all NNLO terms or none, such that the
structure of the chiral expansion is preserved at any order
(this is what ETM [241] and JLQCD/TWQCD [67] have
done for SU(2) xPT and MILC for SU(3) xPT [37)).
There are different opinions in the field as to whether it is
advisable to include terms to which the data are not sensi-
tive. In case one is willing to include external (typically:
non-lattice) information, the use of priors is a theoreti-
cally well-founded option (e.g. priors for NNLO LECs if
one is interested in LECs at LO/NLO).

Another issue concerns the s-quark mass dependence of
the LECs £; or A; of the SU(2) framework. As far as

.. hys
variations of m; around m% " are concerned (say for

0 < m; < 1.5m1§)hys at best) the issue can be studied
in SU(3) ChPT, and this has been done in a series of
papers [56,242,243]. However, the effect of sending m
to infinity, as is the case in Ny = 2 lattice studies of

SU(2) LECs, cannot be addressed in this way. A unique
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Table 15 Results for the SU(2) NLO couplings #3 and £4. The MILC 10 results are obtained by converting the SU(3) LECs, while the MILC 10A

results are obtained with a direct SU(2) fit. For comparison, the last two lines show results from phenomenological analyses

Collaboration Ref. Nt Publication Chiral Continuum Finite l3 Uy

status extrapolation extrapolation  volume
ETM 11 [266] 2+14+1 C o) * o) 3.53(5) 473 (2)
ETM 10 98] 2+1+1 A o o o 3.70 (7) (26) 4.67 (3) (10)
BMW 13 [254] 2+1 P * * * 2.5(5) (4) 3.8(4)(2)
RBC/UKQCD 12 [25] 2+1 A * o) * 2.91 (23) (07) 3.99 (16) (09)
Borsanyi 12 [249] 2+1 A * * o) 3.16 (10) (29) 4.03 (03) (16)
NPLQCD 11 [267] 2+1 A o o) * 4.04 (40 (*23) 430 (51) (*%)
MILC 10A (751 2+1 ¢ o * * 2.85 (81) (*31) 3.98 (32) (134)
MILC 10 [159] 2+1 C o) * * 3.18 (50) (89) 429 (21) (82)
RBC/UKQCD 10A  [78] 2+1 A o o) * 2.57 (18) 3.83(9)
MILC 09A [37] 2+1 C o * * 3.32 (64) (45) 4.03 (16) (17)
MILC 09A 371 241 C o) * * 3.06) (Y9 392)(3)
PACS-CS 08 [19] 2+1 A * ] m 347 (11) 421 (11)
PACS-CS 08 [19] 2+1 A * ] L] 3.14 (23) 4.04 (19)
RBC/UKQCD 08 [79] 2+1 A o) L] * 3.13 (33) (24) 4.43 (14) (77)
Giilpers 13 [270] 2 P o u * 4.76 (13) (-)
Brandt 13 2571 2 A o) * * 3.0(7) (5) 47 (4) (1)
QCDSF 13 [268] 2 P * * m 42(1)
Bernardoni 11 [259] 2 C o ] L] 4.46 (30) (14) 456 (10) (4)
TWQCD 11 [185] 2 A * ] L] 4.149 (35) (14) 4.582 (17) (20)
ETM 09C 2411 2 A o) * o) 3.50 9) (*%0) 4.66 (4) (*33)
JLQCD/TWQCD 09  [271] 2 A o ] L] 4.09 (50) (52)
ETM 08 [238] 2 A o o) o) 3.2(8)(2) 442) (1)
JLQCD/TWQCD 08A [67] 2 A o) ] L 3.38 (40) 24) (F30) 4.12.(35) 30) (F20)
CERN-TOV 06 [272] 2 A o) * L] 3.0(5) (1)
Colangelo 01 [193] 4.4 (2)
Gasser 84 [58] 2.9 (2.4) 43(9)

way to analyse this difference is to compare the numerical

In the tables and figures we summarise the results of

values of LECs determined in Ny = 2 lattice simulations
to those determined in Ny = 2 + 1 lattice simulations
(see e.g. [244] for a discussion).

4. Last but not least let us recall that the determination of
the LECs is affected by discretisation effects, and it is
important that these are removed by means of a con-
tinuum extrapolation. In this step invoking an extended
version of the chiral Lagrangian [245-247] may be use-
ful??> in case one aims for a global fit of lattice data
involving several M, and a values and several chiral
observables.

22 This means that for any given lattice formulation one needs to deter-
mine additional low-energy constants, often denoted W;. For certain
formulations, e.g. the twisted-mass approach, first steps in this direc-
tion have already been taken [248].
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various lattice collaborations for the SU(2) LECs at LO
(F or F/Fy, B or ¥) and at NLO (£1 — {5, £3, {4, s,
£6). Throughout we group the results into those which stem
from Ny = 2 + 1 + 1 calculations, those which come from
Nr = 2 + 1 calculations and those which stem from Ny = 2
calculations (since, as mentioned above, the LECs are logi-
cally distinct even if the current precision of the data is not
sufficient to resolve the differences). Furthermore, we make a
distinction whether the results are obtained from simulations
in the p-regime or whether alternative methods (e-regime,
spectral quantities, topological susceptibility, etc.) have been
used (this should not affect the result). For comparison we
add, in each case, a few phenomenological determinations
with high standing.

A generic comment applies to the issue of the scale set-
ting. In the past none of the lattice studies with Ny > 2
involved simulations in the p-regime at the physical value
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Table 16 Top panel: vector form factor of the pion. Lattice results for
the charge radius (r2)7(, (in fm?2), the curvature ¢y (in GeV~%) and the
effective coupling constant £ are compared with the experimental value
obtained by NA7 and some phenomenological estimates. Bottom panel.:

. . . 2 T
scalar form factor of the pion. I:attlcci results for the scalar radius (r<)§

(in fm?) and the combination ¢, — £, are compared with a dispersive
calculation of these quantities [193]

Collaboration Ref.  N¢ Publication Chiral Continuum Finite (rz)"i cy Ze
status extrapolation extrapolation volume
RBC/UKQCD 08A [253] 2+1 A (e} u * 0.418 (31) 122 (9)
LHP 04 [275] 2+1 A (@) u (@) 0.310 (46)
Brandt 13 [257]1 2 A (e} * * 0.481 (33) (13) 15.5(1.7) (1.3)
JLQCD/TWQCD 09 [271]1 2 A (e} u L] 0.409 (23) (37) 3.22(17) (36) 11.9(0.7) (1.0)
ETM 08 [238] 2 A (e} (@) (@) 0.456 (30) (24) 3.37(31) (27) 14.9(1.2) (0.7)
QCDSF/UKQCD 06A [276] 2 A (0] * (@) 0.441 (19) (56) (29)
Bijnens 98 [237] 0.437 (16) 3.85 (60) 16.0 (0.5) (0.7)
NA7 86 [277] 0.439 (8)
Gasser 84 [58] 16.5 (1.1)
Collaboration Ref. Np Publication Chiral Continuum Finite % 0 — b
status extrapolation extrapolation volume
Giilpers 13 [270] 2 P (e} u * 0.637 (23) (-)
JLQCD/TWQCD 09 2711 2 A (e} u u 0.617 (79) (66) —2.9(0.9) (1.3)
Colangelo 01 [193] 0.61 (4) —4.7 (6)
1/3 —
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—d ‘ jLOCD/TWQCD 07A ‘ 9 ‘ ‘ Colangelo 03 [268]
200 250 300 350 MeV 1.00 1.04 1.08 1.12 1.16
Fig. 8 Quark condensate & = [(ittt)|m,.m;—0 (MS-scheme, scale Fig. 9 Comparison of the results for the ratio of the physical pion decay

= 2 GeV). Squares and left triangles indicate determinations from
correlators in the p- and e-regimes, respectively. Up triangles refer to
extractions from the topological susceptibility, diamonds to determina-
tions from the pion form factor, and star symbols refer to the spectral
density method. The black squares and grey bands indicate our esti-
mates. The meaning of the colours is explained in Sect. 2

of m,q. Accordingly, the setting of the scale a~! via an
experimentally measurable quantity did necessarily involve
a chiral extrapolation, and as a result of this dimensionful
quantities used to be particularly sensitive to this extrapola-
tion uncertainty, while in dimensionless ratios such as Fy / F,
F/Fy, B/ By, ¥/ X this particular problem is much reduced

constant F and the leading-order SU(2) low-energy constant F'. The
meaning of the symbols is the same as in Fig. 8

(and often finite lattice-to-continuum renormalisation factors
drop out). Now, there is a new generation of lattice studies
[20,22,23,140,249,250] which does involve simulations at
physical pion masses. In such studies even the uncertainty
that the scale setting has on dimensionful quantities is much
mitigated.

It is worth repeating here that the standard colour-coding
scheme of our tables is necessarily schematic and cannot
do justice to every calculation. In particular there is some

@ Springer
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Fig. 10 Effective coupling constants £3, £4 and £g. Squares indicate

determinations from correlators in the p-regime, diamonds refer to
determinations from the pion form factor
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difficulty in coming up with a fair adjustment of the rating
criteria to finite-volume regimes of QCD. For instance, in the
e-regime”’ we re-express the “chiral-extrapolation” criterion
in terms of /2 min %/ F, with the same threshold values (in
MeV) between the three categories as in the p-regime. Also
the “infinite-volume” assessment is adapted to the e-regime,
since the M, L criterion does not make sense here; we assign
a green star if at least two volumes with L > 2.5fm are
included, an open symbol if at least one volume with L >
2 fm is invoked and a red square if all boxes are smaller than
2 fm. Similarly, in the calculation of form factors and charge
radii the tables do not reflect whether an interpolation to the
desired ¢ has been performed or whether the relevant g2
has been engineered by means of “partially twisted boundary
conditions” [253]. In spite of these limitations we feel that
these tables give an adequate overview of the qualities of the
various calculations.

We begin with a discussion of the lattice results for the
SU(2) LEC X. We present the results in Table 13 and Fig. 8.
We add that results which include only a statistical error are
listed in the table but omitted from the plot. Regarding the
Nt = 2 computations there are five entries without a red tag
(ETM 08, ETM 09C, ETM 12, ETM 13, Brandt 13). We form
the average based on ETM 09C, ETM 13 (here we deviate
from our “superseded” rule, since the latter work has a much
bigger error) and Brandt 13. Regarding the Ny = 2+ 1 com-
putations there are three published papers (RBC/UKQCD
10A, MILC 10A and Borsanyi 12) which make it into the
Nf = 2 + 1 average and a preprint (BMW 13) which will
be included in a future update. We also remark that among
the three works included RBC/UKQCD 10A is inconsistent
with the other two (MILC 10A and Borsanyi 12). For the
time being we inflate the error of our Ny = 2 + 1 average
such that it includes all three central values it is based on.
This yields

2 =269(08) MeV, X

Ni2 = 271(15) MeV,

(65)

Ne=2+1

where the errors include both statistical and systematic uncer-
tainties. In accordance with our guidelines we plead with the
reader to cite [217,241,257] (for Ny = 2) or [75,78,249]
(for Ny = 2 + 1) when using these numbers. Finally, for
Nf = 2+ 1+ 1 there is only one calculation, and we recom-
mend to use the result of [217] as given in Table 13. Another
look at Fig. 8 confirms that these values are well consistent
with each other.

The next quantity considered is F, i.e. the pion decay con-
stant in the SU(2) chiral limit (m, 4 — 0 at fixed physical m;)
in the Bernese normalisation. As argued on previous occa-
sions we tend to give preference to Fy; / F' (here the numerator

23 Also in case of [251] and [252] the colour-coding criteria for the
e-regime have been applied.
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is meant to refer to the physical-pion-mass point) wherever it
is available, since often some of the systematic uncertainties
are mitigated. We collect the results in Table 14 and Fig. 9. In
those cases where the collaboration provides only F, the ratio
is computed on the basis of the phenomenological value of
F, and the corresponding entries in Table 14 are in slanted
fonts. Among the Ny = 2 determinations only three (ETM
08, ETM 09C and Brandt 13) are without red tags. Since
the first two are by the same collaboration, only the latter
two enter the average. Among the Ny = 2 + 1 determina-
tions three values (MILC 09A as an obvious update of MILC
09, NPLQCD 11 and Borsanyi 12) make it into the average.
Finally, there is a single Ny = 2+ 1+ 1 determination (ETM
10) which forms the current best estimate in this category.
Given this input our averaging procedure yields

F,
| ey = 1.0744(67),

F|Nf = 1.0624(21), (66)

Fr
7 |Nf=2+l

where the errors include both statistical and systematic uncer-
tainties. We plead with the reader to cite [241,257] (for
Nf = 2) or [37,249,267] (for Nf = 2 + 1) when using
these numbers. Finally, for Ny = 2 4+ 1 4+ 1 we recommend
to use the result of [98]; see Table 14 for the numerical value.
From these numbers (or from a look at Fig. 9) it is obvious
that the Ny =2+ 1 and Ny = 2+ 1 + 1 results are not quite
consistent. From a theoretical viewpoint this is rather sur-
prising, since the only difference (the presence of absence
of a dynamical charm quark) is expected to have a rather
insignificant effect on this ratio (which, in addition, would
be monotonic in Ny, contrary to what is seen in Fig. 9). In our
view this indicates that—in spite of the conservative attitude
taken in this report—the theoretical uncertainties in at least
one of the two cases is likely underestimated. We hope that
a future release of the FLAG report can clarify the issue.

We move on to a discussion of the lattice results for the
NLO LECs ¢3 and £4. We remind the reader that on the lattice
the former LEC is obtained as a result of the tiny deviation
from linearity seen in Mj% versus Bm,,, whereas the latter
LEC is extracted from the curvature in F,; versus Bm,,.
The available determinations are presented in Table 15 and
Fig. 10. Among the Ny = 2 determinations ETM 08, ETM
09C and Brandt 13 are published and without red tags, and
our rules imply that the latter two determinations enter our
average. The colour coding of the Ny = 2 + 1 results looks
very promising; there is a significant number of lattice deter-
minations without any red tag. At first sight it seems that
RBC/UKQCD 10A, MILC 10A, NPLQCD 11, Borsanyi 12
and RBC/UKQCD 12 make it into the average. Unfortu-
nately, £3 and £4 of RBC/UKQCD 10A have no systematic
error; therefore we exclude this work from the Ny = 2 + 1
average. Among the Ny = 2 4+ 1 4+ 1 determinations only
ETM 10 qualifies for an average.

Given this input our averaging procedure yields

Gy, =3.414D),
n N—a = 462(22),

= 3.05(99), (67)
— 4.02(28), (68)

12 |Nf=2+1
E4|Nf:2+l

where the errors include both statistical and systematic uncer-
tainties. Again we plead with the reader to cite [241,257] (for
N¢ = 2) or [25,75,249,267] (for N = 2 + 1) when using
these numbers. For Ny = 2 + 1 + 1 we stay with the rec-
ommendation to use the results of [98], see Table 15 for the
numerical values.

Let us add two remarks. On the input side our procedure®*
symmetrises the asymmetric error of ETM 09C with a slight
adjustment of the central value. On the output side the error
of the £3 average for Ny = 2 and of the 3, {4 averages for
Nf = 2 + 1, according to the FLAG procedure, got inflated
by hand to cover all central values. From these numbers (or
from a look at Fig. 10) it is clear that the lattice results for £3
do not show any obvious N¢-dependence—thanks, chiefly, to
our conservative error treatment strategy. On the other hand,
in the case of ¢4 even our practice of inflating the error of
the Ny = 2 4 1 average did not manage to avoid some mild
inconsistency between the Ny = 2 + 1 average on one side
and either the Ny = 2 or the Ny = 2 4+ 1 + 1 average on
the other side. Again, the dependence of the average on the
number of active flavours is not monotonic, and this raises
a decent amount of suspicion that some of the systematic
errors might still be underestimated.

More specifically, it seems that againthe Ny =2+ 1+ 1
value by ETM shows some tension relative to the average
Nt = 2 + 1 value quoted above, in close analogy to what
happened for F or F;/F; see the discussion around (66).
Since both F and £4 are determined from the quark-mass
dependence of the pseudoscalar decay constant, perhaps the
formulae in Refs. [273,274] for dealing with cutoff and finite-
volume effects with twisted-mass data might prove useful in
future analysis.

From a more phenomenological viewpoint there is a
notable difference between 5_3 and ¢4 in Fig. 10. For 44 the
precision of the phenomenological determination achieved
in Colangelo 01 [193] represents a significant improvement
compared to Gasser 84 [58]. Picking any Ny, the lattice aver-
age of €4 is consistent with both of the phenomenological
values and comes with an error which is roughly compara-
ble to the uncertainty of the result in Colangelo 01 [193]. By

24 There are two naive procedures to symmetrise an asymmetric sys-
tematic error: (i) keep the central value untouched and enlarge the
smaller error, (ii) shift the central value by half of the difference between
the two original errors and enlarge/shrink both errors by the same
amount. Our procedure (iii) is to average the results of (i) and (ii). In
other words, a result c(s)(Z) with ¢ > u is changed into ¢ + (u — €)/4
with statistical error s and a symmetric systematic error (1 + 3¢)/4.
The case £ < u is handled accordingly.

@ Springer
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contrast, for £ 3 the error of the lattice determination is signif-
icantly smaller than the error of the estimate given in Gasser
84 [58]. In other words, here the lattice really provides some
added value.

We finish with a discussion of the lattice results for £4 and
¢, —25. The LEC £ determines the leading contribution in the
chiral expansion of the pion charge radius—see (63). Hence
from a lattice study of the vector form factor of the pion with
several M, one may extract the radius (rz)"’,, the curvature cy
(both at the physical pion-mass point) and the LEC £ in one
go. Similarly, the leading contribution in the chiral expansion
of the scalar radius of the pion determines £4—see (63). This
LEC s also present in the pion-mass dependence of Fy;, as we
have seen. The difference £ 1 — 572, finally, may be obtained
from the momentum dependence of the vector and scalar
pion form factors, based on the two-loop formulae of [237].
The top part of Table 16 collects the results obtained from
the vector form factor of the pion (charge radius, curvature
and £g). Regarding this low-energy constant two Ny = 2
calculations are published works without a red tag; we thus
arrive at the estimate

ls|y,_, = 15.1(1.2) (69)

which is represented as a grey band in the last panel of Fig. 10.
Here we plead with the reader to cite [238,257] when using
this number.

The experimental information concerning the charge
radius is excellent and the curvature is also known very accu-
rately, based on ete™ data and dispersion theory. The vec-
tor form factor calculations thus present an excellent test-
ing ground for the lattice methodology. The table shows that
most of the available lattice results pass the test. There is,
however, one worrisome point. For £ the agreement seems
less convincing than for the charge radius, even though the
two quantities are closely related. So far we have no expla-
nation, but we urge the groups to pay special attention to
this point. Similarly, the bottom part of Table 16 collects the
results obtained for the scalar form factor of the pion and the
combination ¢; — £, that is extracted from it.

Perhaps the most important physics result of this section
is that the lattice simulations confirm the approximate valid-
ity of the Gell-Mann—Oakes—Renner formula and show that
the square of the pion mass indeed grows in proportion to
myq. The formula represents the leading term of the chiral
perturbation series and necessarily receives corrections from
higher orders. At first non-leading order, the correction is
determined by the effective coupling constant £3. The results
collected in Table 15 and in the top panel of Fig. 10 show that
¢3 is now known quite well. They corroborate the conclusion
drawn already in Ref. [278]: the lattice confirms the estimate
of £3 derived in [58]. In the graph of Mﬁ versus myq, the
values found on the lattice for £3 correspond to remarkably
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little curvature: the Gell-Mann—Oakes—Renner formula rep-
resents a reasonable first approximation out to values of m,4
that exceed the physical value by an order of magnitude.

As emphasised by Stern and collaborators [279-281], the
analysis in the framework of xPT is coherent only if (i)
the leading term in the chiral expansion of Mj% dominates
over the remainder and (ii) the ratio mg/m,q is close to
the value 25.6 that follows from Weinberg’s leading-order
formulae. In order to investigate the possibility that one or
both of these conditions might fail, the authors proposed a
more general framework, referred to as “Generalised x PT”,
which includes xPT as a special case. The results found
on the lattice demonstrate that QCD does satisfy both of
the above conditions—in the context of QCD, the proposed
generalisation of the effective theory does not appear to be
needed. There is a modified version, however, referred to
as “Resummed xPT” [282], which is motivated by the pos-
sibility that the Zweig-rule violating couplings L4 and Lg
might be larger than expected. The available lattice data do
not support this possibility, but they do not rule it out either
(see Sect. 5.2.4 for details).

5.2 SU(3) low-energy constants

5.2.1 Quark-mass dependence of pseudoscalar masses and
decay constants

In the isospin limit, the relevant SU(3) formulae take the form
[56]

By

1
7'u7]+72
FO

NLO
MTQE = 2Bonyaq {1 + Ur — 3

x [16myq(2Lg — Ls) + 16(my + 2myq)(2Le — L4)] }

NLO 2 By
Mlz( =" Bo(mg + myuq) {1 + 5“7] + F
0

x [8(ms +myuq)(2Lg—Ls) + 16(””? + 2myq)(2Le— L4)] }

NLO By
Fr = Foy1-2uy _MK+P [8myq Ls+8(ms+2myq)L4]
0

(70)
By

NLO 3 3 3
Fx = Fo{l—un—MK—/Ln-FFz
0

4 2 4

x [4(mg +myq)Ls + 8(ms + 2myq) L4] }

where m,,4 is the common up and down quark mass (which
may be different from the one in the real world), and By =
Y FOZ, Fy denote the condensate parameter and the pseu-
doscalar decay constant in the SU(3) chiral limit, respec-
tively. In addition, we use the notation
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2 2
Mpz%ln M—g’ ) (71)
32w Fy "

At the order of the chiral expansion used in these formulae,
the quantities p5, g, 1y can equally well be evaluated with
the leading-order expressions for the masses,

LO LO
MJZT = 2By myq, M%{ = Bo(ms +myq),
2
M% Lo §Bo Q2mgs + myq). (72)

Throughout, L; denotes the renormalised low-energy con-
stant/coupling (LEC) at scale u, and we adopt the conven-
tion which is standard in phenomenology, © = 770 MeV.
The normalisation used for the decay constants is specified
in footnote 16.

5.2.2 Charge radius

The SU(3) formula for the slope of the pion vector form factor
reads [152]

2 2
2.7 LO 1 M My
= ‘m{“z“‘(ﬁ)“‘l(vﬂ

12L9 (73)
2 b
F 0
while the expression (;’z)gCt for the octet part of the scalar
radius does not contain any NLO low-energy constant at the

one-loop order [152] (cf. 5.1.5 for the situation in SU(2)).
5.2.3 Partially quenched formulae

The term “partially quenched QCD” is used in two ways.
For heavy quarks (c, b and sometimes s) it usually means
that these flavours are included in the valence sector, but not
into the functional determinant. For the light quarks (u, d
and sometimes s) it means that they are present in both the
valence and the sea sector of the theory, but with different
masses (e.g. a series of valence quark masses is evaluated on
an ensemble with a fixed sea quark mass).

The program of extending the standard (unitary) SU(3)
theory to the (second version of) “partially quenched QCD”
has been completed at the two-loop (NNLO) level for masses
and decay constants [283]. These formulae tend to be com-
plicated, with the consequence that a state-of-the-art analysis
with O (2000) bootstrap samples on O (20) ensembles with
O (5) masses each [and hence O (200'000) different fits] will
require significant computational resources for the global fits.
For an up-to-date summary of recent developments in Chiral
Perturbation Theory relevant to lattice QCD we refer to [284].

The theoretical underpinning of how “partial quenching”
is to be treated in the (properly extended) chiral framework
is given in [285]. Specifically for partially quenched QCD

with staggered quarks it is shown that a transfer matrix can
be constructed which is not Hermitian but bounded, and can
thus be used to construct correlation functions in the usual
way.

5.2.4 Lattice determinations

To date, there are three comprehensive SU(3) papers with
results based on lattice QCD with Ny = 2 + 1 dynami-
cal flavours [15,19,79], and one more with results based on
Nf =2+ 1+ 1 dynamical flavours [156]. It is an open issue
whether the data collected at my >~ mf hys allow for an unam-
biguous determination of SU(3) low-energy constants (cf. the
discussion in [79]). To make definite statements one needs
data at considerably smaller mg, and so far only MILC has
some [15]. We are aware of a few papers with a result on one
SU(3) low-energy constant each [78,166,253,286] which we
list for completeness. Some particulars of the computations
are listed in Table 17.

Results for the SU(3) low-energy constants of leading
order are found in Table 17 and analogous results for some
of the effective coupling constants that enter the chiral SU(3)
Lagrangian at NLO are collected in Table 18. From PACS-CS
[19] only those results are quoted which have been corrected
for finite-size effects (misleadingly labelled “w/FSE” in their
tables). For staggered data our colour-coding rule states that
My is to be understood as MRMS . The rating of [15,159] is
based on the information regarding the RMS masses given
in [37].

A graphical summary of the lattice results for the cou-
pling constants L4, Ls, Lg and Lg, which determine the
masses and the decay constants of the pions and kaons at
NLO of the chiral SU(3) expansion, is displayed in Fig. 11,
along with the two phenomenological determinations quoted
in the above tables. The overall consistency seems fairly con-
vincing. In spite of this apparent consistency, there is a point
which needs to be clarified as soon as possible. Some col-
laborations (RBC/UKQCD and PACS-CS) find that they are
having difficulties in fitting their partially quenched data to
the respective formulae for pion masses above ~400 MeV.
Evidently, this indicates that the data are stretching the regime
of validity of these formulae. To date it is, however, not clear
which subset of the data causes the troubles, whether it is
the unitary part extending to too large values of the quark
masses or whether it is due to m% /m* differing too much
from one. In fact, little is known, in the framework of partially
quenched x PT, about the shape of the region of applicability
in the m " versus m*® plane for fixed N¢. This point has also
been emphasised in [244].

To date only the computations MILC 09A [37] (as an
obvious update of MILC 09) and HPQCD 13A [156] are
free of red tags. Since they use different Nf (in the former
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Table 17 Lattice results for the low-energy constants Fp, By and
g = FOZBO, which specify the effective SU(3) Lagrangian at lead-
ing order (MeV units). The ratios '/ Fy, B/ By, ¥/ X0, which compare
these with their SU(2) counterparts, indicate the strength of the Zweig-

rule violations in these quantities (in the large-N, limit, they tend to
unity). Numbers in slanted fonts are calculated by us, from the infor-
mation given in the quoted references

Ref. Ny  Publication  Chiral Continuum Finite Renormalisation F F/Fy B/By
status extrapolation  extrapolation  volume
JLQCD/TWQCD 10 [252] 3 A [ | | [ | * 71 (3) (8)
MILC 10 [159] 241 C o * * o 80.3 (2.5) (5.4)
MILC 09A 371 24+1C o * * o) 783 (1.4)(2.9) 1.1043) @A) 1214 ()
MILC 09 [15] 241 A o) * * ) L1535 (F9) 115316 (1)
PACS-CS 08 [19] 24+1A * [ n | 83.8 (6.4) 1.078 (44) 1.089 (15)
RBC/UKQCD 08 [79] 2+1 A o | * 66.1 (5.2) 1.229 (59) 1.03 (05)
Ref. Ny Publication Chiral Continuum  Finite Renormalisation %/ /%
status extrapolation  extrapolation  volume
JLQCD/TWQCD 10 [252] 3 A [ n n * 214 (6) (24) 1.31(13) (52)
MILC 09A [37] 24+1C o * * o 245 (5) (4) (4)  1.48 (9) (8) (10)
MILC 09 [15] 2+1A o) * * o) 2429) (F9) @ 1.5217) (M%)
PACS-CS 08 [19] 24+1A * [ ] | 290 (15) 1.245 (10)
RBC/UKQCD 08 [79] 2+1 A o) | * * 1.55 1)

case Nf = 2 + 1, in the latter case Ny = 2 + 1 + 1) we
stay away from averaging them. Hence the situation remains
unsatisfactory in the sense that for each Ny only a single
determination of high standing is available. Accordingly, we
stay with the recommendation to use the results of MILC
09A [37] and HPQCD 13A [156] for Ny = 2 + 1 and Nf =
2+ 1+ 1, respectively, as given in Table 18. These numbers
are shown as grey bands in Fig. 11.

In the large- N, limit, the Zweig rule becomes exact, but
the quarks have N, = 3. The work done on the lattice is ide-
ally suited to disprove or confirm the approximate validity
of this rule for QCD. Two of the coupling constants entering
the effective SU(3) Lagrangian at NLO disappear when N,
is sent to infinity: L4 and Lg. The upper part of Table 18
and the left panels of Fig. 11 show that the lattice results
for these are quite coherent. At the scale u = M,, L4 and
Lg are consistent with zero, indicating that these constants
do approximately obey the Zweig rule. As mentioned above,
the ratios F'/ Fy, B/Bo and X/ X also test the validity of this
rule. Their expansion in powers of m; starts with unity and
the contributions of first order in m; are determined by the
constants L4 and Lg, but they also contain terms of higher
order. Apart from measuring the Zweig-rule violations, an
accurate determination of these ratios will thus also allow us
to determine the range of my where the first few terms of
the expansion represent an adequate approximation. Unfor-
tunately, at present, the uncertainties in the lattice data on
these ratios are too large to draw conclusions, both concern-
ing the relative size of the subsequent terms in the chiral per-
turbation series and concerning the magnitude of the Zweig-
rule violations. The data seem to confirm the paramagnetic

@ Springer

inequalities [281], which require F/Fy > 1 and £ /¥ > 1,
and it appears that the ratio B/ By is also larger than unity,
but the numerical results need to be improved before further
conclusions can be drawn.

In principle, the matching formulae in [56] can be used to
calculate® the SU(2) couplings I; from the SU(3) couplings
Lj. This procedure, however, yields less accurate results than
a direct determination within SU(2), as it relies on the expan-
sion in powers of mg, where the omitted higher-order contri-
butions generate comparatively large uncertainties. We plead
with every collaboration performing Ny = 2+ 1 simulations
to directly analyse their data in the SU(2) framework. In prac-
tice, lattice simulations are performed at values of m; close
to the physical value and the results are then corrected for
the difference of m; from its physical value. If simulations
with more than one value of m; have been performed, this
can be done by interpolation. Alternatively one can use the
technique of reweighting (for a review see e.g. [290]) to shift
my to its physical value.

6 Kaon B-parameter Bk
6.1 Indirect CP-violation and ex
The mixing of neutral pseudoscalar mesons plays an impor-

tant role in the understanding of the physics of CP-violation.
In this section we will only focus on K 0 _ K9 oscillations,

25 For instance, for the MILC data this yields /3 = 3.32(64)(45) and
Iy = 4.03(16)(17) [37].
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Table 18 Low-energy constants that enter the effective SU(3)
Lagrangian at NLO (running scale © = 770MeV—the values in
[15,37,56,156,159] are evolved accordingly). The MILC 10 entry for
Lg is obtained from their results for 2L — L4 and L4 (and similarly
for other entries in slanted fonts). The JLQCD 08A result [which is

for £5(770 MeV) despite the paper saying Ljo(770 MeV)] has been

converted to Liog with the standard one-loop formula, assuming that

the difference between f5(m; = mPh PIYS$) [needed in the formula] and

ls (my = 00) [computed by JLQCD] can be ignored

Ref.  Np Publication Chiral Continuum Finite 10314 103Lg 103Q2Lg — Ly)
status extrapolation extrapolation volume
HPQCD 13A [156] 2+1+1 A * * * 0.09 (34) 0.16 (20) 0.22 (17)
JLQCD/TWQCD 10A [252] 3 A u u ] 0.03 (7) (17)
MILC 10 [159] 2+1 c o} * * —0.08(22) (35 —0.02(16) (*33) 0.03 24) (F32)
MILC 09A [371 241 C o) * * 0.04 (13) (4) 0.07 (10) (3) 0.10 (12) (2)
MILC 09 151 2+1 A e} * * 0.13) () 022)(*3) 03 (H3)
PACS-CS 08 [19] 241 A * u ] —0.06(10) (=) 0.02(5) (- 0.10 (2) ()
RBC/UKQCD 08 [791 241 A o u * 0.14 (8) (-) 0.07 (6) (-) 0.00 (4) ()
Bijnens 11 [284] 0.75 (75) 0.29 (85) —0.17 (1.86)
Gasser 85 [56] -0.3(5) —0.2(3) —0.1(8)
Ref. Nf Publication Chiral Continuum Finite 103Ls 103Lg 1032Lg — Ls)
status extrapolation extrapolation volume
HPQCD 13A [156] 2+1+1 A * * * 1.19 (25) 0.55 (15) —0.10 (20)
MILC 10 [159] 2+1 C o) * * 098(16) (3 o42ao(*Z)  -o015an(FH)
MILC 09A [37] 241 C o * * 0.84 (12) (36) 0.36 (5) (7) —0.12 (8) (21)
MILC 09 [15] 241 A (e} * * 1.4 (2) (ﬁ) 0.8 (1) (1) 0.3 (1) (1)
PACS-CS 08 [19] 241 A * ] ] 1.45 (7) (9 0.62 (4) (-) —0.21(3) ()
RBC/UKQCD 08 [791 241 A o) u * 0.87 (10) (-) 0.56 (4) (-) 0.24 (4) (-)
Bijnens 11 [284] 0.58 (13) 0.18 (18) —0.22(38)
Gasser 85 [56] 1.4 (5) 0.9 (3) 0.4 (8)
Ref.  Nf Publication Chiral Continuum Finite 103 Ls 103 Lg 103L 10
status extrapolation extrapolation volume
RBC/UKQCD 09 [287] 241 A o u ) —5.7(11) (07)
RBC/UKQCD 08A [253] 241 A o u * 3.08 (23) (51)
NPLQCD 06 [166] 2+1 A o) ] ] 142 @) (F18)
JLQCD 08A [286] 2 A o u u -522) (5
Bijnens 11 [284] 0.58 (13)
Bijnens 02 [288] 5.93 (43)
Davier 98 [289] —5.13(19)
Gasser 85 [56] 1.4 (5) 6.9 (7) -5.5(7)

which probe the physics of indirect CP-violation. We collect
here the basic formulae; for extended reviews on the subject
see, among others, Refs. [291-293]. Indirect CP-violation
arises in K; — 7 transitions through the decay of the
CP = +1 component of K into two pions (which are also
in a CP = +1 state). Its measure is defined as

x — AlKL — (7'”7)1:0]’ (74)

AlKs — () 1=0]

with the final state having total isospin zero. The parameter
ex may also be expressed in terms of K — K oscillations.
In particular, to lowest order in the electroweak theory, the
contribution to these oscillations arises from so-called box

diagrams, in which two W-bosons and two “up-type” quarks
(i.e. up, charm, top) are exchanged between the constituent
down and strange quarks of the K -mesons. The loop integra-
tion of the box diagrams can be performed exactly. In the limit
of vanishing external momenta and external quark masses,
the result can be identified with an effective four-fermion
interaction, expressed in terms of the “effective Hamiltonian”

GiM},

AS=2 _
Petr 1672

—E L F00%= 1 he. (75)

In this expression, G is the Fermi coupling, My the W-
boson mass, and
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Fig. 11 Low-energy constants that enter the effective SU(3) Lagrangian at NLO. The grey bands and black dots labelled as “our estimate” coincide
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with the results of MILC 09A [37] for Ny = 2 4+ 1 and HPQCD 13A [156] for Ny = 2 + 1 + 1, respectively
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0%5=% = [5y,(1 — y5)d] [y (1 — y5)d]
= Ovyv4+aA — Ovatav (76)

is a dimension-six, four-fermion operator. The function Fo
is given by

FO = 2280(xe) + 2280 (xr) + 20 e A So(xe, X1, (77)

where A, = V V44, and a = c, t denotes a flavour index.
The quantities So(x.), So(x;) and Sp(xc, x;) with x, =
m% /M 2 X = mt2 / M%V are the Inami—Lim functions [294],
which express the basic electroweak loop contributions with-
out QCD corrections. The contribution of the up quark, which
is taken to be massless in this approach, has been taken into
account by imposing the unitarity constraint A, +XA.+4; = 0.
For future reference we note that the dominant contribution
comes from the term A?So(xl). This factor is proportional
to |V.p|* if one enforces the unitarity of the CKM matrix.
The dependence on a high power of V,, is important from
a phenomenological point of view, because it implies that
uncertainties in V,;, are magnified when considering €.

When strong interactions are included, AS = 2 transitions
can no longer be discussed at the quark level. Instead, the
effective Hamiltonian must be considered between mesonic
initial and final states. Since the strong coupling constant is
large at typical hadronic scales, the resulting weak matrix ele-
ment cannot be calculated in perturbation theory. The opera-
tor product expansion (OPE) does, however, factorise long-
and short-distance effects. For energy scales below the charm
threshold, the K® — K9 transition amplitude of the effective
Hamiltonian can be expressed as

272

GgM
e [A2sotam + 22SoGeom

+ 202 So (xe, xt)nz]

(KUM= IK") =
_ o\ =0/ QBo) 8w
X <g(u) > exp / dg (@ + ﬁ)
4 / B(g)  PBog

<(K°102°=2(w)IK°) +h.c., (78)

where g(u) and Qﬁszz(u) are the renormalised gauge cou-
pling and four-fermion operator in some renormalisation
scheme. The factors 711, n2 and 13 depend on the renor-
malised coupling g, evaluated at the various flavour thresh-
olds m;, mp, m. and My, as required by the OPE and RG-
running procedure that separates high- and low-energy con-
tributions. Explicit expressions can be found in [292] and
references therein, except that 1 and n3 have been recently
calculated to NNLO in Refs. [295] and [296], respectively.
We follow the same conventions for the RG-equations as
in Ref. [292]. Thus the Callan—Symanzik function and the
anomalous dimension y (g) of Q25=2 are defined by

dg = dQ%SZZ 5\ HAS=2
= , =— =, 79
dln e B(8) din e y(8) Ok (79)
with perturbative expansions
3 5
8 8
_ _ . 80
B(g) = —Po an)? Bi an)? (80)
2 4
—_— g_ —g DR
(@& = @n) +n @ny +oe

We stress that By, 1 and yp are universal, i.e. scheme-
independent. K — K mixing is usually considered in the
naive dimensional regularisation (NDR) scheme of MS, and
below we specify the perturbative coefficient y; in that
scheme:

11 2
Bo= 1= Ne— 3N,

3 3
34 13 1
-Er-n(u-)
_6(N.— 1)
VO—T,
vi = Ne —1 {—21+ﬂ—BNC+iNf}. (81)
2N, N. 3 3

Note that for QCD the above expressions must be eval-
uated for N. = 3 colours, while Nf denotes the number of
active quark flavours. As already stated, Eq. (78) is valid at
scales below the charm threshold, after all heavier flavours
have been integrated out, i.e. Ny = 3.

In Eq. (78), the terms proportional to 11, 12 and 13, mul-
tiplied by the contributions containing g ()2, correspond to
the Wilson coefficient of the OPE, computed in perturba-
tion theory. Its dependence on the renormalisation scheme
and scale p is cancelled by that of the weak matrix element
(K°|Q%5=2()|K"). The latter corresponds to the long-
distance effects of the effective Hamiltonian and must be
computed non-perturbatively. For historical, as well as tech-
nical reasons, it is convenient to express it in terms of the
B-parameter Bk, defined as

(£ 0§ =200] &)

8 72 2
3fxmy

Bg(n) = (82)
The four-quark operator 025=2(1) is renormalised at scale
(1 in some regularisation scheme, for instance, NDR-MS.
Assuming that Bg (n) and the anomalous dimension y(g)
are both known in that scheme, the renormalisation group
invariant (RGI) B-parameter By is related to By () by the
exact formula

p 2\ —Y/(2Bo)
By — <g(u) >
4

2(w)

Y | » )
dg| —— +— B . 83
X exp b/ g (ﬂ(g) + Bog K (1) (83)
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At NLO in perturbation theory the above reduces to

— 2N —0/2Po)
é[{ _ <g(ﬂ) )
4

5 {1 L Ew? [ﬁlyo — Boni

an ) T :| } Bg (). (84)

To this order, this is the scale-independent product of all
pn-dependent quantities in Eq. (78).

Lattice QCD calculations provide results for Bg (u).
These results, however, are usually obtained in intermediate
schemes other than the continuum MS scheme used to cal-
culate the Wilson coefficients appearing in Eq. (78). Exam-
ples of intermediate schemes are the RI/MOM scheme [297]
(also dubbed the “Rome—Southampton method”) and the
Schrodinger functional (SF) scheme [87], which both allow
for a non-perturbative renormalisation of the four-fermion
operator, using an auxiliary lattice simulation. In this way
Bk (i) can be calculated with percent-level accuracy, as
described below.

In order to make contact with phenomenology, however,
and in particular to use the results presented above, one must
convert from the intermediate scheme to the MS scheme
or to the RGI quantity By. This conversion relies on one-
or two-loop perturbative matching calculations, the trunca-
tion errors in which are, for many recent calculations, the
dominant source of error in EK [25,77,298-300]. While
this scheme-conversion error is not, strictly speaking, an
error of the lattice calculation itself, it must be included
in results for the quantities of phenomenological interest,
namely Bg (MS, 2GeV) and B k- We note that this error can
be minimised by matching between the intermediate scheme
and MS at as large a scale u as possible (so that the cou-
pling constant which determines the rate of convergence is
minimised). Recent calculations have pushed the matching
w up to the range 3-3.5 GeV. This is possible because of
the use of non-perturbative RG running determined on the
lattice [25,301]. The Schrodinger functional offers the pos-
sibility to run non-perturbatively to scales u ~ My where
the truncation error can be safely neglected. However, so
far this has been applied only for two flavours of Wilson
quarks [302].

Perturbative truncation errors in Eq. (78) also affect the
Wilson coefficients 11, 72 and n3. It turns out that the largest
uncertainty comes from that in 11 [295]. Although it is now
calculated at NNLO, the series shows poor convergence. The
net effect is that the uncertainty in 7 is larger than that in
present lattice calculations of By .

The “master formula” for €x, which connects the exper-
imentally observable quantity €x to the matrix element of
HES=2, is [293,303-305]

@ Springer

Im[(K |G =2 1K )]

ek = exp(ige) sin(e) [ -
Amg
Im(Ao)
; 85
TP Ret Ao)] (85)
for A, real and positive; the phase of €k is given by
mg
¢ = arctan ATx/2 (86)

The quantities Amyg = mg, —mgg and AT'g =T'gg —
I'k, are the mass- and decay width-differences between long-
and short-lived neutral Kaons, while Ag is the amplitude
of the Kaon decay into a two-pion state with isospin zero.
The experimentally measured values of the above quantities
are [74]:

lex | = 2.228(11) x 1073,
P = 43.52(5)°,
Amg = 3.4839(59) x 107> MeV,
ATk = 7.3382(33) x 1072 MeV. (87)

The second term in the square brackets of Eq. (85), has
been discussed and estimated, e.g., in Refs. [305,306]. It can
bestbe thoughtofas&+(p—1)&, withé = Im(Ag)/Re(Ap).
The & term is the contribution of direct CP violation to €k .
Using the estimate of & from Ref. [306] (obtained from the
experimental value of €’ /¢) this gives a ~ —6.0(1.5) % cor-
rection.0

The (p — 1)£ term arises from long-distance contributions
to the imaginary part of K% — K mixing [305] [contributions
which are neglected in Eq. (78)]. Using the estimate p =
0.6 £ 0.3 [305], this gives a contribution of about +2 %
with large errors. Overall these corrections combine to give
a (4 = 2) % reduction in the prediction for e . Although this
is a small correction, we note that its contribution to the error
of e is larger than that arising from the value of Bk reported
below.

6.2 Lattice computation of Bg

Lattice calculations of Bk are affected by the same sys-
tematic effects discussed in previous sections. However, the
issue of renormalisation merits special attention. The rea-
son is that the multiplicative renormalisability of the rele-
vant operator Q5=2 is lost once the regularised QCD action
ceases to be invariant under chiral transformations. For Wil-
son fermions, QAS =2 mixes with four additional dimension-

26 A very recent lattice calculation of Im(A») by the RBC/UKQCD
collaboration opens up the possibility of a more accurate determination
of & using the measured value of €’ [307,308]. This lattice calculation
uses only a single lattice spacing, so we do not quote the resulting value
here, but note that it is consistent with that obtained in Ref. [306], with
errors estimated to be significantly smaller.
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Table 19 Results for the Kaon B-parameter together with a summary of systematic errors. If information about non-perturbative running is
available, this is indicated in the column “running”, with details given at the bottom of the table

Collaboration Ref. Ng Publication ~ Continuum Chiral Finite Renormalisation Running Bg (MS, 2 GeV) B K

status extrapolation extrapolation volume
SWME 13 [316] 2+1 C * (@) * ok - 0.539 (3) (25) 0.738 (5) (34)
RBC/UKQCD 12 [25] 241 A (e} * ©) * a 0.554 (8) (14)! 0.758 (11) (19)
Laiho 11 [771 241 C * (@) O * - 0.5572 (28) (150) 0.7628 (38) (205)%
SWME 11A [300] 24+1 A * @) ©) O* - 0.531 (3) (27) 0.727 (4) (38)
BMW 11 [301] 241 A * * * * b 0.5644 (59) (58)  0.7727 (81) (84)
RBC/UKQCD 10B [315] 241 A o (@) * * c 0.549 (5) (26) 0.749 (7) (26)
SWME 10 3171 241 A * e} o) o) - 0.529 (9) (32) 0.724 (12) (43)
Aubin 09 [298] 241 A (6] (@) o * - 0.527 (6) (21) 0.724 (8) (29)
RBC/UKQCD 07A,08 [79,318] 2+1 A ] (@) * * - 0.524 (10) (28)  0.720 (13) (37)
HPQCD/UKQCD 06  [319] 24+1 A [ ] o* * n - 0.618 (18) (135)  0.83 (18)
ETM 10A [314] 2 A * (@) ©) * d 0.533 (18) (12)!  0.729 (25) (17)
JLQCD 08 [320] 2 A [ ] (@) u * - 0.537 (4) (40) 0.758 (6) (71)
RBC 04 313) 2 A | | mf * - 0.495 (18) 0.678 (25)
UKQCD 04 [321] 2 A [ ] | m [ ] - 0.49 (13) 0.68 (18)

¥ The renormalisation is performed using perturbation theory at one loop, with a conservative estimate of the uncertainty

* This result has been obtained with only two “light” sea quark masses

T These results have been obtained at (M L)min > 4 in a lattice box with a spatial extension L < 2 fm

¢ Bk is renormalised non-perturbatively at a scale of 1.4 GeV in two RI/SMOM schemes for Ny = 3 and then run to 3 GeV using a non-perturbatively
determined step-scaling function. Conversion to MS is at one-loop order at 3 GeV

b By is renormalised and run non-perturbatively to a scale of 3.4 GeV in the RI/MOM scheme. Non-perturbative and NLO perturbative running
agrees down to scales of 1.8 GeV within statistical uncertainties of about 2 %

¢ Bk is renormalised non-perturbatively at a scale of 2GeV in two RI/SMOM schemes for Ny = 3 and then run to 3 GeV using a non-perturbatively
determined step-scaling function. Conversion to MS is at one-loop order at 3 GeV. d By is renormalised non-perturbatively at scales 1/a ~ 2+3 GeV
in the Ny = 2 RI/MOM scheme. In this scheme, non-perturbative and NLO perturbative running are shown to agree from 4 GeV down 2 GeV to

better than 3 % [71,314]

1 Bk (MS, 2 GeV) is obtained from the estimate for B k using the conversion factor 1.369
2Bk is obtained from the estimate for By (MS, 2 GeV) using the conversion factor 1.369

six operators, which belong to different representations of the
chiral group, with mixing coefficients that are finite functions
of the gauge coupling. This complicated renormalisation pat-
tern was identified as the main source of systematic error
in earlier, mostly quenched calculations of Bx with Wilson
quarks. It can be bypassed via the implementation of specif-
ically designed methods, which are either based on Ward
identities [309] or on a modification of the Wilson quark
action, known as twisted-mass QCD [310,311].

An advantage of staggered fermions is the presence of a
remnant U (1) chiral symmetry. However, at non-vanishing
lattice spacing, the symmetry among the extra unphysical
degrees of freedom (tastes) is broken. As a result, mixing
with other dimension-six operators cannot be avoided in the
staggered formulation, which complicates the determination
of the B-parameter. The effects of the broken taste symme-
try are usually treated via an effective field theory, such as
staggered Chiral Perturbation Theory (S PT).

Fermionic lattice actions based on the Ginsparg—Wilson
relation [312] are invariant under the chiral group, and hence
four-quark operators such as Q5=2 renormalise multiplica-
tively. However, depending on the particular formulation of

Ginsparg—Wilson fermions, residual chiral symmetry break-
ing effects may be present in actual calculations. For instance,
in the case of domain-wall fermions, the finiteness of the
extra fifth dimension implies that the decoupling of modes
with different chirality is not exact, which produces a resid-
ual non-zero quark mass in the chiral limit. Whether or not
a significant mixing with dimension-six operators is induced
as well must be investigated on a case-by-case basis.

In this section we focus on recent results for By, obtained
for Ny = 2 and 241 flavours of dynamical quarks. A compi-
lation of results is shown in Table 19 and Fig. 12. An overview
of the quality of systematic error studies is represented by the
colour coded entries in Table 19. In Appendix B.4 we gather
the simulation details and results from different collabora-
tions, the values of the most relevant lattice parameters, and
comparative tables on the various estimates of systematic
erTors.

Some of the groups whose results are listed in Table 19
do not quote results for both Bg (MS, 2 GeV)—which we
denote by the shorthand Bk from now on—and éK. This
concerns Refs. [313,314] for Ny = 2 and [25,77] for 2 + 1
flavours. In these cases we perform the conversion ourselves
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Fig. 12 Lattice results for the renormalisation group invariant B-
parameter (compare Table 19). The black squares and grey bands indi-
cate our global averages (88) and (90). Our Ny = 2 estimate coincides
with the ETM 10A result. The significance of the colours is explained
in Sect. 2

by evaluating the proportionality factor in Eq. (84) at u© =
2 GeV, using the following procedure: For Ny = 2 + 1 we
use the value ag(Mz) = 0.1184 from the PDG [74] and
run it across the quark thresholds at m;, = 4.19 GeV and
m, = 1.27 GeV, and then run up in the three-flavour theory
to 4 = 2GeV. All running is done using the four-loop RG
B-function. The resulting value of ag(2 GeV) is then used
to evaluate EK/ Bk in one-loop perturbation theory, which
gives Bx /Bx = 1.369 in the three-flavour theory.

In two-flavour QCD one can insert the updated non-
perturbative estimate for the A-parameter by the ALPHA
Collaboration [59], i.e. A® = 310(20) MeV, into the NLO
expressions for «. The resulting value of the perturbative
conversion factor B kx / Bk for Ny = 2 is then equal to 1.386.
However, since the running coupling in the MS scheme enters
at several stages in the entire matching and running proce-
dure, it is difficult to use this estimate of s consistently with-
out a partial reanalysis of the datain Refs. [313,314]. We have
therefore chosen to apply the conversion factor of 1.369 not
only to results obtained for Ny = 2 4 1 flavours but also to
the two-flavour theory (in cases where only one of By and
Bk are quoted). This is a change from the convention used in
the previous edition of the FLAG review [1]. We note that the
difference between 1.386 and 1.369 will produce an ambi-
guity of the order of 1 %, which is well below the overall
uncertainties in Refs. [313,314]. We have indicated explic-
itly in Table 19 in which way the conversion factor 1.369 has
been applied to the results of Refs. [25,77,313,314].

Note that in this section the colour code for chiral extrap-
olations is interpreted differently. We recall that the criteria
are:

@ Springer

Chiral extrapolation:

K My min < 200 MeV
0 200 MeV < My min < 400 MeV
B My min > 400 MeV

Many calculations of Bx employ partially quenched x PT,
and in this case it is the mass of the valence pion which enters
in chiral logarithms and leads to the most significant depen-
dence on quark masses. Therefore, whenever a specific cal-
culation employs partially quenched pions, the above colour
code is applied with respect to the minimum valence pion
mass.”’

As before, it is assumed that the chiral extrapolation is
done with at least a three-point analysis—otherwise this
will be explicitly mentioned in a footnote. In case of non-
degeneracies among the different pion states My min Stands
for a root-mean-square (RMS) pion mass.

Since the first publication of the FLAG review [1] several
new or updated results for the Kaon B-parameter have been
reported for Ny = 2 + 1, i.,e. BMW 11 [301], SWME 11A
[300], SWME 13 [316], Laiho 11 [77], and RBC/UKQCD 12
[25]. No new results for two-flavour QCD have appeared
recently. There is a first, preliminary calculation with Ny =
24+141[322] from the ETM collaboration. We do not include
this result in the following discussion, however, because the
interpretation of Bg with active charm involves several sub-
tleties that have yet to be addressed.”®

We briefly discuss the main features of the most recent
calculations below.

The BMW Collaboration has produced a new result for
Bk [301], using their ensembles of HEX-smeared, tree-level
O (a) improved Wilson fermions [23]. To this end the four
finest lattice spacings, with a ranging from 0.054 t0 0.093 fm,
are employed. Simulations are performed close to the phys-
ical pion mass, or even below that value (for the two largest
lattice spacings). The smearing of the link variables results
in a significant suppression of the effects of chiral symmetry
breaking, since the coefficients multiplying the dimension-
six operators of different chirality are found to be very small,
in some cases even compatible with zero. The quoted value
for I§K is obtained from a combined chiral and continuum
extrapolation. In order to investigate the systematics asso-
ciated with the chiral behaviour, several different cuts on
the maximum pion mass are performed. Another important

27 This approach is supported by the results of the calculations using
partial quenching (see in particular Refs. [77] and [315]), which find
that the dependence on sea-quark masses is weaker than that on the
valence-quark masses (which itself is very mild).

28 For example, the master formula Eq. (85) no longer holds as writ-
ten because contributions containing two insertions of AS = 1 weak
Hamiltonians connected by dynamical charm quarks no longer lead to
a short-distance AS = 2 matrix element.
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ingredient in BMW 11 [301] is the non-perturbative deter-
mination of the continuum step-scaling function for scales
varying between 1.8 and 3.5 GeV. In this way, the perturba-
tive matching to the RGI B-parameter can be performed at
w = 3.5 GeV, a value where perturbation theory at NLO is
found to yield a good description of the scale dependence.

The SWME 11, 11A, 13 results [299,300,316] are obtai-
ned using a mixed action: HYP-smeared valence staggered
quarks on the Asqtad improved, rooted staggered MILC
ensembles. Compared to the previous edition of the FLAG
review [ 1], one major update is the addition of a fourth, finer,
lattice spacing. This allows for a more extensive analysis of
the continuum extrapolation, leading to more reliable esti-
mates of the associated error (which is the second-largest
error at 1.1 %). A second major update, implemented only in
SWME 13, is the addition of several ensembles with a range
of sea-quark masses allowing a simultaneous extrapolation
in a? and the sea-quark masses. A third change in SWME 13
is the use of larger volumes. Other updates include the use
of correlated fits in the chiral extrapolation, the inclusion of
finite-volume corrections in the chiral fits, and a significant
reduction in statistical errors due to the use of an order of
magnitude more sources on each lattice. The dominant error
remains that from the use of one-loop perturbative match-
ing between lattice and MS schemes. This error is estimated
conservatively assuming a missing two-loop matching term
of size 1 x a(1/a)?, i.e. with no factors of 1/(47x) included.
The other methods for estimating this error described earlier
in this review lead to smaller estimates [323]. This proce-
dure is, in this review, deemed conservative enough to merit
inclusion in the global average described below. The result-
ing matching error is 4.4 %.

The Laiho 11 result [77] uses a mixed action, with HYP-
smeared domain-wall valence quarks on the Asqtad MILC
ensembles. Compared to the earlier result obtained by this
collaboration (Aubin 09 [298]), the main improvement con-
sists in the implementation of an RI/MOM scheme based on
non-exceptional momenta in the non-perturbative renormali-
sation of By, as well as the addition of a third lattice spacing.
The largest error is still the matching factor between the lat-
tice and MS schemes. This error is 2.4 % out of a total quoted
error of 2.8 %. The present calculation uses five additional
ensembles over that of the previous edition of the FLAG
review [1], leading to a reduction of the chiral/continuum-
extrapolation error and to the statistical error.

The RBC/UKQCD Collaboration employ domain-wall
fermions to determine Bg. The main feature of their lat-
est update, Ref. [25], is the addition of two ensembles with
unitary pion masses as low as 171 MeV and a minimum
partially quenched pion mass of 143 MeV. In order to keep
the numerical effort of simulating near-physical pion masses
at a manageable level, the new ensembles are generated at
a larger lattice spacing. Moreover, in order to control the

larger residual chiral symmetry-breaking effects which are
incurred on coarser lattices, a modified fermion action, the
Dislocation Suppressing Determinant Ratio (DSDR) [324—
327],1s used in the simulations. As in their earlier publication
[315], RBC/UKQCD employ non-perturbative renormalisa-
tion factors computed for a variety of RI/MOM schemes with
non-exceptional momenta. Owing to the addition of ensem-
bles with larger lattice spacing, the matching between lat-
tice regularisation and the intermediate RI/MOM schemes
is performed at the lower scale of 1.4 GeV. When com-
bined with the non-perturbative determinations of the con-
tinuum step-scaling functions, the perturbative conversion to
the MS or RGI schemes can be done at ;& = 3 GeV. The use
of near-physical valence pion masses at a spatial volume of
L =~ 4.6 fm implies a rather small value of My minL =~ 3.3.
However, the entire set of results collected in Refs. [25,315]
comprises several volumes with L > 2.7 fm. The combined
analysis of all data should allow for a reliable determina-
tion of Bg with controlled finite-volume effects. It is noted
in Ref. [25] that the inclusion of the lighter pion masses
essentially halves the uncertainty in Bg due to the chi-
ral/continuum extrapolation. The largest systematic uncer-
tainty remains the perturbative truncation error of 2.1 %.
As regards the effects of residual chiral symmetry break-
ing induced by the finite extent of the fifth dimension in the
domain-wall fermion formulation, it is noted in Ref. [328]
that the mixing of Q25=2 with operators of opposite chirality
is negligibly small.

Summarizing the new developments, one must note that
the biggest improvements since the previous edition of the
FLAG review [1] concern the chiral extrapolation and the
issue of renormalisation. Ensembles at near-physical pion
masses have significantly reduced the uncertainty associated
with chiral fits, while non-perturbative running is about to
become routine. One must realise that, despite this improve-
ment, perturbative matching is still applied only at moder-
ately large scales. Most collaborations therefore identify the
largest uncertainty to arise from neglecting higher orders in
the perturbative relation to the RGI or MS schemes.

We now describe our procedure for obtaining global aver-
ages. The rules of Sect. 2.1 stipulate that results which are
free of red tags and are published in a refereed journal may
enter an average. Papers which at the time of writing are
still unpublished but are obvious updates of earlier published
results can also be taken into account.

In the previous edition of the FLAG review [1] the results
by SWME were excluded from the average, since the renor-
malisation factors were estimated in one-loop perturbation
theory only. However, in this review such calculations are
included as long as the estimate of the matching error is
sufficiently conservative. Thus the result of SWME 13 [316]
(which is an update of the earlier published calculations of
Refs. [299,300]) now qualifies for inclusion, despite the fact
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that non-perturbative information on the renormalisation fac-
tors is not available. Reference [77], Laiho 11 has appeared
only as conference proceedings, but since it extends the study
of Ref. [298] it will be included in our average.

Thus, for Ny = 2 + 1 our global average is based on the
results of BMW 11 [301], SWME 13 [316], Laiho 11 [77]
and RBC/UKQCD 12 [25]. Our procedure is as follows: in
a first step statistical and systematic errors of each indi-
vidual result for the RGI B-parameter, I§K, are combined
in quadrature. Next, a weighted average is computed from
the set of results. For the final error estimate we take cor-
relations between different collaborations into account. To
this end we note that we consider the statistical and finite-
volume errors of SWME 13 and Laiho11 to be correlated,
since both groups use the Asqtad ensembles generated by the
MILC Collaboration. Laiho 11 and RBC/UKQCD 12A both
use domain-wall quarks in the valence sector and also employ
similar procedures for the non-perturbative determination of
matching factors. Hence, we treat the quoted renormalisation
and matching uncertainties by the two groups as correlated.
After constructing the global covariance matrix according to
Schmelling [16], we arrive at
Ne=2+1: Bg =0.7661(99), (88)
with a reduced y2-value of 0.387. The error is dominated by
systematic uncertainties.>

By applying the NLO conversion factor Bk / B}\(/IS
(2GeV) = 1.369, this translates into

Ne=2+1: B%TS(Z GeV) = 0.5596(72). (89)

Thus, the accuracy of the current global estimate stands at
an impressive 1.3 %, which represents a significant improve-
ment over the 2.7 % uncertainty quoted in the previous edition
of the FLAG review (1§ x = 0.738(20)). The two results are,
however, completely consistent.

Passing over to describing the results computed for Ny = 2
flavours, we note that the situation is unchanged since the
publication of the previous edition of the FLAG review [1].
In particular, the result of ETM 10A [314] is the only one
which allows for an extensive investigation of systematic
uncertainties. In fact, it is the only published Ny = 2 calcu-
lation involving data computed at three values of the lattice

29 We can approximately quantify this as follows. A weighted aver-
age of BMW 11, Laiho 11 and RBC/UKQCD 12A using only statistical
errors gives B x = 0.7640(33). Taking 0.0033 as the total statistical
error, a total systematic error of 0.0093 is needed to obtain the com-
bined total error of 0.0099 quoted in the text. (We exclude the SWME 13
result from this calculation as it is only consistent with the other results
when its relatively large systematic error is included.) We note that this
estimate of the total systematic error is larger than the smallest individ-
ual systematic error (0.0084 from BMW 11).
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spacing. Being the only result without red tags, it can there-
fore be identified with the currently best global estimate for
two-flavour QCD, i.e.

Ny =2: By =0.729(25)(17),
BMS(2GeV) = 0.533(18)(12). (90)

The result in the MS scheme has been obtained by apply-
ing the same conversion factor of 1.369 as in the three-flavour
theory.

The grey bands in Fig. 12 represent the global estimates for
Nf =2 and Ny = 2 4 1. It appears that Bx may be slightly
smaller in two-flavour QCD, but in view of the relatively
large uncertainty of the Ny = 2 result, the difference is hardly
significant.

7 D-meson decay constants and form factors

Leptonic and semileptonic decays of charmed D- and Dj-
mesons occur via charged W-boson exchange, and they are
sensitive probes of c — d and ¢ — s quark flavour-changing
transitions. Given experimental measurements of the branch-
ing fractions combined with sufficiently precise theoretical
calculations of the hadronic matrix elements, they enable the
determination of the CKM matrix elements |V, 4| and |V, |
(within the Standard Model) and a precise test of the uni-
tarity of the second row of the CKM matrix. Here we sum-
marise the status of lattice-QCD calculations of the charmed
leptonic decay constants and semileptonic form factors. Sig-
nificant progress has been made in computing fp,,, and the
D — m(K)¢v form factors in the last few years, largely
due to the introduction of highly improved lattice-fermion
actions that enable the simulation of c-quarks with the same
action as for the u, d and s-quarks.

The charm-quark methods discussed in this review have
been validated in a number of ways. Because several groups
use the same action for charm and bottom quarks, tests of
charm-quark methods are also relevant for the B-physics
results discussed in Sect. 8, and they are therefore sum-
marised in the introduction of that section. Finally, we note
that we limit our review to results based on modern simu-
lations with reasonably light pion masses (below approxi-
mately 500 MeV). This excludes results obtained from the
earliest unquenched simulations, which typically had two
flavours in the sea, and which were limited to heavier pion
masses because of the constraints imposed by the computa-
tional resources and methods available at that time.

Following our review of lattice-QCD calculations of Dy)-
meson leptonic decay constants and semileptonic form fac-
tors, we then interpret our results within the context of the
Standard Model. We combine our best-determined values of
the hadronic matrix elements with the most recent experi-
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mentally measured branching fractions to obtain | V¢4(s)| and
test the unitarity of the second row of the CKM matrix.

7.1 Leptonic decay constants fp and fp,

In the Standard Model the decay constant fp, of a pseu-
doscalar D- or Dg-meson is related to the branching ratio for
leptonic decays mediated by a W boson through the formula

2 2
GElVeql TD()

8

m2 :
x(l— . ) , 91)
"D

where V.4 (V) is the appropriate CKM matrix element for
a D (Dy) meson. The branching fractions have been exper-
imentally measured by CLEO, Belle and Babar with a pre-
cision around 5-6 % for the D,-meson; the uncertainties are
twice as large for the Cabibbo suppressed D-meson decay
modes [74]. When combined with lattice results for the decay
constants, they allow for determinations of | V| and | V,4]|.
In lattice-QCD calculations the decay constants fp,,, are
extracted from Euclidean matrix elements of the axial current

(01A% |Dy(p)) = fp, Pp,- 92)

2

B(D(y — Lvg) = fgmmgmpm

withg = d, s and qu = cyuysq. Results for Ny =2, 241
and 2+ 1 4 1 dynamical flavours are summarised in Table 20
and Fig. 13.

The ETM collaboration has published results for D- and
Dg-meson decay constants with two dynamical flavours,
using the twisted-mass fermionic action at maximal twist
with the tree-level improved Symanzik gauge action. In this
setup the decay constants can be extracted from an abso-
lutely normalised current and they are automatically O(a)
improved. In ETM 09 three lattice spacings between 0.1 and
0.07 fm are considered with pion masses down to 270 MeV.
Heavy meson x PT formulae plus terms linear in a2 have been
used for the continuum/chiral extrapolations, which have
been performed in two different ways in order to estimate sys-

. Sy /M Dy
tematic effects. In the first approach fp_ ., /mp, and Foin

05 /1Dy fVKm D5 and

are fitted, whereas in the second case the ratios -

Sy /M Dg x I
fk fo/mp ) i
dependence of fp,,/mp, turns out to be very mild. In addi-
SDs /M Dy «

tion the double ratio 7
K

are analysed. As expected, the pion-mass

fu {}’% shows little depen-
dence on the pion mass as well as on the lattice spacing. Cut-
off effects on the contrary are rather large on the decay con-
stants, with the difference between the physical-mass result at
the finest lattice spacing and in the continuum being approx-
imately 5 %. ETM 11A contains an update of the results
in ETM 09 obtained by enlarging the statistics on some of

the ensembles and by including a finer lattice resolution with

a ~ 0.054 fm, which implies a reduction of cutoff effects by a
factor two. Moreover, in ETM 11A the continuum extrapola-
tions are performed after interpolating the results at different
lattice spacings to fixed values of the heavy-quark mass. In
the case of the SU(3)-breaking ratio fp, /fp, the uncertainty
associated with the chiral extrapolation is estimated by com-
paring fits either following heavy meson yPT or assuming
a simple linear dependence on the light-quark mass. These
results have been further updated in ETM 13B [335] by using
optimised smearing interpolating fields in order to suppress
excited states contributions and by changing the chiral extrap-
olation. The ensembles used are the same as in ETM 11A.
Values at the physical point are obtained by first extrapolating
fp,/mDp, linearly in ml2 and in a® and then by extrapolat-
ing the double ratio (fp,/fp)/(fx/f=) using HMxPT. The
value of fx /fr is taken from the Ny = 2 + 1 average in [1],
in order to avoid correlations with estimates obtained by the
ETM collaboration.

As results from just one collaboration exist in the litera-
ture, the Ny = 2 averages are simply given by the values in
ETM 13B, which read

Ne=2: fp=(208+7) MeV, fp, =(250%7) MeV,
o _ 1204000 (93)
D

The ALPHA Collaboration presented preliminary results
on fp., with two dynamical flavours at the Lattice 2013
Conference [337]. The proceedings, however, appeared after
the deadline for consideration in this review and therefore
are not discussed here.

Several collaborations have produced results with Ny =
2 + 1 dynamical flavours. The most precise determinations
come from a sequence of publications by HPQCD/UKQCD
[94,165,331]. In all cases configurations generated by MILC
with Asqtad rooted staggered quarks in the sea and a one-loop
tadpole-improved Symanzik gauge action have been anal-
ysed (see [15] and references therein). The main differences
are in the ensembles utilised and in the absolute scale setting.
The relative scale is always set through r; derived from the
static quark—antiquark potential.

In HPQCD/UKQCD 07 [165] three lattice spacings, a ~
0.15, 0.12 and 0.09 fm, with RMS pion masses between
542 and 329 MeV, have been considered. This gives rather
large values for the charm-quark mass in lattice units, 0.43 <
am. < 0.85, and indeed lattice artefacts are estimated to be
the second largest systematic uncertainty in the computation.
The main systematic error is resulting from the absolute scale
setting, which had previously been performed through the Y
spectrum, using NRQCD for the b quark. The estimate reads
r1 = 0.321(5) fm.

In2010, HPQCD obtained a more precise determination of
r1 = 0.3133(23), based on several different physical inputs
(including f~, fx and the Y spectrum) and improved con-
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Fig. 13 Decay constants of the D- and Ds-mesons [values in Table 20 and Eqs. (93), (94)]. The significance of the colours is explained in Sect. 2.
The black squares and grey bands indicate our averages. Errors in FNAL/MILC 13 are smaller than the symbols

tinuum limit extrapolations. It is worth noting that the new
r1 is about 1.5¢ lower than the older value. The publications
HPQCD 10A [94] and HPCQD 12A [331] update the compu-
tations of fp, and fp, respectively, using the new scale deter-
mination. These results enter our final averages. The change
in the scale requires a retuning of the bare quark masses
and a change in the conversion of dimensionless quanti-
ties, measured in units of rq, to physical ones, measured in
MeV.

In HPQCD 10A, fp, is calculated on ensembles with
a =~ 0.06 and 0, 045 fm and with RMS pion masses rang-
ing between 542 and 258 MeV. The chiral and contin-
uum extrapolations have been performed simultaneously by
employing polynomials quadratic in the sea-quark mass §, =
W, with ¢ = s, 1, and through the eighth power
of the’charm-quark mass, including cross terms of the form
84 (am)". The valence strange- and charm-quark masses are
fixed to their physical values obtained from matching to the
ns and n. masses. The fits are robust against variations, such
as the exclusion of ensembles with the coarsest and finest
lattice spacings, or a change in the functional form such that
terms up to (am.)* only are kept. The largest source of uncer-
tainty in HPQCD 10A still comes from the value of r; and it
amounts to 0.6 %. The published error includes a 0.1 % con-
tribution coming from an estimate of electromagnetic effects
obtained using a potential model.

The process of switching to the improved determination of
r1 is finally completed in HPQCD 12A [331], where new val-
ues of fp and the ratio fp, /fp are reported. The statistics is
enlarged at the a &~ 0.12 fm and a & 0.09 fm lattices and for
the latter a more chiral point, with light-quark masses halved
with respect to HPQCD/UKQCD 07, is added. The three-
point function for D — 7 at zero recoil momentum (calcu-

lated for a different project) is used to perform simultaneous
fits to two- and three-point functions. This turns out to be ben-
eficial in reducing the statistical errors on the hadron masses
and decay-constant matrix elements. Chiral and continuum
extrapolations are carried out at the same time adopting par-
tially quenched heavy meson x PT augmented by (am.)?> and
(am,)* terms. Given the rather large values of am, between
0.4 and 0.6, the continuum extrapolation gives the largest sys-
tematical uncertainty, amounting to roughly 1 % out of the
total 1.7 and 1.1 % total errors on fp and on fp,/fp, respec-
tively. Finally, the HPQCD collaboration also calculates the
ratio f f ~7(0)/fp using the result for the semileptonic form
factor from [338] and find good agreement with the exper-
imental ratio which is independent of |V.4|. Summarizing
the computations by HPQCD: concerning fp, HPQCD 12A
supersedes HPQCD/UKQCD 07 and HPQCD 10A because
of the more chiral points considered but does not supersede
HPQCD 10A for fp, as finer resolutions are included in the
latter, which contains the collaboration’s most precise result
for the Dy-meson decay constant.

The PACS-CS Collaboration published in 2011 a compu-
tation of the D and D; decay constants with 2 + 1 flavours
of non-perturbatively O(a) improved Wilson fermions and
the Iwasaki gauge action [333]. For the charm quark the
Tsukuba heavy quark action is used. The parameters in the
action and the renormalisation constants of the charm-light
and charm-strange axial currents are computed in a mixed
setup, partly non-perturbatively (typically the massless con-
tribution) and partly relying on one-loop perturbation the-
ory; see Appendix A for details. This leaves residual cut-
off and matching effects of O(a2aAqcp, (aA)?, «?) in the
computation, which, in addition is carried out at one value
of the lattice spacing only (¢ ~ 0.09 fm). Quark masses
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are quite low, yielding m, = 152(6) MeV and the ensem-
ble is reweighted to the physical point using the technique
in [20]. However, measurements are performed on only one
set of configurations with L/a = 32, such that m; L is
around 2.2. For this reason, and for the limitation to a sin-
gle lattice spacing, the PACS-CS 11 results do not enter our
averages.

The Fermilab Lattice and MILC collaborations have pre-
sented several computations of D(s)-meson decay constants
with 2 + 1 flavours of dynamical quarks [332,334]. Their
first published results are in Ref. [334] (FNAL/MILC 05),
which were later updated and superseded in Ref. [332]
(FNAL/MILC 11). The MILC Asqtad ensembles, as for
the HPQCD results, have been used in both cases. For the
charm quark the Fermilab action is adopted, with mostly
non-perturbative (mNPR) renormalisation of the axial cur-
rents (see Appendix A for details). In FNAL/MILC 05 three
lattice spacings witha ~ 0.18, 0.12 and 0.09 fm, according
to the original estimate r; = 0.321(5) fm, have been con-
sidered. RMS pion masses are slightly larger than 400 MeV.
Chiral and continuum extrapolations are performed at the
same time by using the xPT expressions at NLO for stag-
gered quarks. Discretisation effects and the chiral fits are the
largest sources of systematic errors in fp and in fp,, each
effect being responsible for a systematic between 4 and 6 %.
Cutoff effects are significantly smaller in the ratio fp,/fp,
whose systematic uncertainty (around 5 %) is dominated by
the chiral extrapolation.

These uncertainties are reduced in FNAL/MILC 11. The
same setup concerning lattice actions and renormalisation
is used as in FNAL/MILC 05 but lighter pion masses
(down to 320 MeV for the RMS values) are included in
the analysis and the extremely coarse 0.18 fm ensembles
are replaced by finer 0.15 fm ones. The scale is set through
r1 = 0.3120(22) fm, as obtained from an average of previous
MILC and HPQCD determinations. One-loop rooted stag-
gered partially quenched xPT plus leading order in the
heavy-quark expansion formulae are used for the chiral and
continuum extrapolations. The expressions parameterise also
the effects of hyperfine and flavour splittings. Discretisation
effects are estimated using a combination of heavy-quark and
Symanzik effective theories to be around 3 % for fp,,, and
negligible for the ratio. At this level of accuracy the trun-
cation errors in the small correction factor inherent in the
mNPR method are not negligible anymore; the authors con-
servatively estimate the two-loop and higher-order perturba-
tive truncation errors to the full size of the known one-loop
term, i.e. roughly 1 % for the decay constants.

As shown in Table 20 the Ny = 2 4 1 computations
which fulfill our quality criteria and can enter the aver-
ages are HPCQD 12A and FNAL/MILC 11 for fp and
the SU(3) breaking ratio fp,/fp, and HPQCD 10A and
FNAL/MILC 11 for fp,. Because FNAL/MILC and HPQCD
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use a largely overlapping set of configurations, we treat the
statistical errors as 100 % correlated and finally quote
Ne=2+1: fp=(209.2£3.3) MeV,

b,

D

fp, = (248.6 =2.7) MeV, =1.187£0.012. (94

The first computation of fp and fp, with Ny =2+1+1
sea quarks is presented in Ref. [330] (FNAL/MILC 12B),
published as a proceeding contribution to the Lattice 2012
Conference. The calculation is performed on configura-
tions generated by the MILC Collaboration using HISQ sea
quarks and a one-loop tadpole-improved Symanzik gauge
action [250]. Light, strange and charm valence quarks are
also in the HISQ regularisation. Four lattice resolutions
in the range a =~ 0.15-0.06 fm are considered. RMS
pion masses vary between 306 and 144 MeV and include
ensembles at each lattice spacing with Goldstone pions
at the physical point. The dominant systematic uncertain-
ties are due to the scale setting (through f;) and the con-
tinuum extrapolation, and they are both estimated to be
at the percent level. The results have been updated in
FNAL/MILC 13 [329]. New measurements at the finest lat-
tice spacing have been included in the analysis and the statis-
tics have been significantly increased in each ensemble. In
addition, heavy-meson, rooted, all-staggered chiral perturba-
tion theory (HMrAS x PT), as introduced in Ref. [339] to treat
both the light and charm quarks as staggered, has been used at
NLO in performing chiral and continuum extrapolations. The
configurations used in these computations have been gener-
ated using both the RHMC and the RHMD algorithms. The
latter is an inexact algorithm, where the accept/reject step at
the end of the molecular-dynamics trajectory is skipped. In
Ref. [250] results for the plaquette, the bare fermion conden-
sates and a few meson masses, using both algorithms, are
compared and found to agree within statistical uncertainties.

The ETM collaboration has also reported results with
2 4+ 1 4 1 dynamical flavours at the Lattice 2013 Confer-
ence [155]. The configurations have been generated using
the Iwasaki action in the gauge and the Wilson twisted-mass
action for sea quarks. The charm and strange valence quarks
are discretised as Osterwalder—Seiler fermions [340]. Three
different lattice spacings in the range 0.09-0.06 fm have been
analysed with pion masses as low as 210 MeV in lattices of
linear spatial extent of about 2.5-3 fm. As in the Ny = 2
computation in ETM 13B, the chiral and continuum extrap-
olations are performed first for fp_, including terms linear
and quadratic in m; and one term linear in a? in the parame-
terisation, and then for the double ratio (fp,/fp)/(fx/fx)
using continuum HMx PT. The main systematic uncertain-
ties are due to the continuum and chiral extrapolation for
fp, and to the error on fx/fr, which is also provided in
these proceedings and discussed in Sect. 4 of this review, for

fp.
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As a final remark, since the accuracy of the lattice deter-
minations of the D-meson decay constant is rapidly improv-
ing, it will become important in the future, especially when
comparing to experimental numbers, to distinguish between
fp+ and the average of fp+ and fpo. The current status is
summarised as follows: FNAL/MILC results concern fp+,
whereas HPQCD, PACS-CS and ETMC numbers correspond
to the average of the decay constants for D* and D°.

7.2 Semileptonic form factors for D — w{v
and D - K/lv

The form factors for semileptonic D — wfv and D — K{v
decay, when combined with experimental measurements of
the decay widths, enable determinations of the CKM matrix
elements | V4| and |V 4| via

dr(D — Plv)  GZ|Vel? (q* —mg)z\/m
dg? © 24n3 g*m%
2
[(1 ) 2) mp(Ep —mp)| f+(q*)

2

3
+ 22 3, — m%)2|fo(q2)|2] , (95)

8g2

where x = d, s is the daughter light quark, P = &, K is the
daughter light pseudoscalar meson, andg = (pp —pp) is the
momentum of the outgoing lepton pair. The vector and scalar
form factors fy(g%) and fy(g?) parameterise the hadronic
matrix element of the heavy-to-light quark flavour-changing
vector current V,, = ixy,c:

2 2
m —m
(P|V,ID) = fi(g?) (pDM t+prry— —qu . qﬂ)

m2 2
mp

+/o <q2>Dq— dus (96)
and satisfy the kinematic constraint f (0) = fp(0) at zero
momentum-transfer. Because the contribution to the decay
width from the scalar form factor is proportional to m%,
it can be neglected for £ = e, u, and Eq. (95) simplifies
to

dr(b - Ptv)  G%
7 = gV @R o

In practice, most lattice-QCD calculations of D — m{v
and D — K/{v focus on providing the value of the vec-
tor form factor at a single value of the momentum trans-
fer, f+(q2 = 0), which is sufficient to obtain |V,4| and
|Ves|. Because the decay rate cannot be measured directly
at zero momentum transfer, comparison of these lattice-
QCD results with experiment requires a slight extrapola-
tion of the experimental measurement. Some lattice-QCD

calculations also provide determinations of the D — m/lv
and D — K{v form factors over the full kinematic range
0<gq?< qrzmax = (mp —mp)?, thereby allowing a compar-
ison of the shapes of the lattice simulation and experimental
data. This non-trivial test in the D system provides a strong
check of lattice-QCD methods that are also used in the B-
meson system.

Lattice-QCD calculations of the D — nfv and D —
K{¢v form factors typically use the same light-quark and
charm-quark actions as those of the leptonic decay constants
fp and fp, . Therefore many of the same issues arise, e.g.
chiral extrapolation of the light-quark mass(es) to the phys-
ical point and discretisation errors from the charm quark,
and matching the lattice weak operator to the continuum,
as discussed in the previous section. Two strategies have
been adopted to eliminate the need to renormalise the heavy—
light vector current in recent calculations of D — mfv and
D — K{v, both of which can be applied to simulations
in which the same relativistic action is used for the light
(u, d, s) and charm quarks. The first method was proposed
by Bedirevi¢ and Haas in Ref. [341], and introduces double-
ratios of lattice three-point correlation functions in which the
vector current renormalisation cancels. Discretisation errors
in the double ratio are of O ((amp)?) provided that the vector-
current matrix elements are O (a) improved. The vector and
scalar form factors f, (¢%) and fo(g?) are obtained by taking
suitable linear combinations of these double ratios. The sec-
ond method was introduced by the HPQCD Collaboration in
Ref. [342]. In this case, the quantity (m. — my)(P|S|D),
where m, and m, are the bare lattice quark masses and
S = Xxc is the lattice scalar current, does not get renor-
malised. The desired form factor at zero momentum transfer
can be obtained by (i) using a Ward identity to relate the
matrix element of the vector current to that of the scalar
current, and (ii) taking advantage of the kinematic iden-
tity at zero momentum transfer f(0) = fy(0), such that
f+(@* = 0) = (mc —my)(P|S|D)/(m}, — m3p).

Additional complications enter for semileptonic decay
matrix elements due to the non-zero momentum of the out-
going pion or kaon. Both statistical errors and discretisation
errors increase at larger momenta, so results for the lattice
form factors are most precise at g2, . However, because lat-
tice calculations are performed in a finite spatial volume, the
pion or kaon three-momentum can only take discrete val-
ues in units of 277 /L when periodic boundary conditions are
used. For typical box sizes in recent lattice D- and B-meson
form-factor calculations, L ~ 2.5-3 fm; thus the small-
est non-zero momentum in most of these analyses ranges
from pp = |pp| ~ 400-500 MeV. The largest momentum
in lattice heavy-light form-factor calculations is typically
restricted to pp < 47 /L For D — nwfv and D — K/{v,

2 = 0 corresponds to p; ~ 940 MeV and px ~ 1 GeV,
respectively, and the full recoil-momentum region is within
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the range of accessible lattice momenta.’® Therefore the
interpolation to ¢> = 0 is relatively insensitive to the fit func-
tion used to parameterise the momentum dependence, and the
associated systematic uncertainty in f5.(0) is small. In con-
trast, determinations of the form-factor shape can depend
strongly on the parameterisation of the momentum depen-
dence, and the systematic uncertainty due to the choice of
model function is often difficult to quantify. This is becoming
relevant for D — wfv and D — K{v decays as collabora-
tions are beginning to present results for £, (¢2) and fo(g?)
over the full kinematic range. The parameterisation of the
form-factor shape is even more important for semileptonic
B decays, for which the momentum range needed to connect
to experiment is often far from g2, .

A class of functions based on general field-theory prop-
erties, known as z-expansions, has been introduced to allow
model-independent parameterisations of the ¢ dependence
of semileptonic form factors over the entire kinematic range
(see, e.g., Refs. [349,350]). The use of such functions is now
standard for the analysis of B — m{v transitions and the
determination of | V3| [126,351-353]; we therefore discuss
approaches for parameterising the ¢ dependence of semilep-
tonic form factors, including z-expansions, in Sect. 8.3. Here
we briefly summarise the aspects most relevant to calcula-
tions of D — wfv and D — K{v. In general, all semilep-
tonic form factors can be expressed as a series expansion
in powers of z” times an overall multiplicative function that
accounts for any sub-threshold poles and branch cuts, where
the new variable z is a non-linear function of ¢2. The series
coefficients a, depend upon the physical process (as well as
the choice of the prefactors), and can only be determined
empirically by fits to lattice or experimental data. Unitar-
ity establishes strict upper bounds on the size of the a,’s,
while guidance from heavy-quark power counting provides
even tighter constraints. Recently the HPQCD Collaboration
introduced a variation on this approach, which they refer
to as a “modified z-expansion,” that they use to simultane-
ously extrapolate their lattice simulation data to the physical
light-quark masses and the continuum limit, and to interpo-
late/extrapolate their lattice data in ¢2. They do so by allow-
ing the coefficients a, to depend on the light-quark masses,
squared lattice spacing, and, in some cases the charm-quark
mass and pion or kaon energy. Because the modified z-
expansion is not derived from an underlying effective field
theory, there are several potential concerns with this approach
that have yet to be studied in the literature. The most sig-
nificant is that there is no theoretical derivation relating the

30 This situation differs from that of calculations of the K — mfv
form factor, where the physical pion recoil momenta are smaller than
2r/L.For K — m{v itis now standard to use non-periodic (“twisted”)
boundary conditions [343,344] to simulate directly at g> = 0; see
Sect. 4.3. Some collaborations have also begun to use twisted boundary
conditions for D decays [345-348].
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coefficients of the modified z-expansion to those of the phys-
ical coefficients measured in experiment; it therefore intro-
duces an unquantified model dependence in the form-factor
shape. Further, if Bayesian methods are used to constrain the
parameters of the modified z-expansion, there is no a priori
way to obtain priors for their natural size. The “modified”
z-expansion is now being utilised by collaborations other
than HPQCD and for quantities other than D — m¢v and
D — K{v [354,355]. We advise treating results that utilise
the “modified” z-expansion to obtain form-factor shapes and
CKM matrix elements with caution, however, since the sys-
tematics of this approach warrant further study.

7.2.1 Results for f+(0)

We now review the status of lattice calculations of the D —
mfv and D — K¢v form factors at g> = 0. As in the first
version of this review, although we also describe ongoing
calculations of the form-factor shapes, we do not rate these
calculations.

The most advanced Ny = 2 lattice-QCD calculation of
the D — wfv and D — K{v form factors is by the ETM
Collaboration [345]. This still preliminary work uses the
twisted-mass Wilson action for both the light and charm
quarks, with three lattice spacings down to a ~ 0.068 fm
and (charged) pion masses down to m, = 270 MeV. The cal-
culation employs the ratio method of Ref. [341] to avoid the
need to renormalise the vector current, and extrapolates to the
physical light-quark masses using SU(2) heavy-light meson
xPT formulated for twisted-mass fermions. ETM simulate
with non-periodic boundary conditions for the valence quarks
to access arbitrary momentum values over the full physical
g* range, and interpolate to ¢g> = 0 using the Beéirevié—
Kaidalov ansatz [356]. The statistical errors in f f” (0) and

'PK(0) are 9 and 7 %, respectively, and lead to rather large
systematic uncertainties in the fits to the light-quark mass
and energy dependence (7 and 5 %, respectively). Another
significant source of uncertainty is from discretisation errors
(5 and 3 %, respectively). On the finest lattice spacing used
in this analysis am. ~ 0.17, so O((am¢)?) cutoff errors
are expected to be about 5 %. This can be reduced by
including the existing Ny = 2 twisted-mass ensembles with
a =~ 0.051 fm discussed in Ref. [241]. Work is in progress
by the ETM Collaboration to compute f7 (0) and £PX (0)
using the same methods on the Ny = 2+ 1 4 1 twisted-mass
Wilson lattices [98]. This calculation will include dynamical
charm-quark effects and use three lattice spacings down to
a ~ 0.06 fm.

The first published Ny = 2 + 1 lattice-QCD calculation
of the D — mfv and D — K{v form factors is by the
Fermilab Lattice, MILC, and HPQCD Collaborations [357].
(Because only two of the authors of this work are in HPQCD,
and to distinguish it from other more recent works on the
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same topic by HPQCD, we hereafter refer to this work as
“FNAL/MILC.”) This work uses Asqtad-improved staggered
sea quarks and light (u, d, s) valence quarks and the Fermi-
lab action for the charm quarks, with a single lattice spacing
of a =~ 0.12 fm. At this lattice spacing, the staggered taste
splittings are still fairly large, and the minimum RMS pion
mass is & 510 MeV. This calculation renormalises the vector
current using a mostly non-perturbative approach, such that
the perturbative truncation error is expected to be negligi-
ble compared to other systematics. The Fermilab Lattice and
MILC Collaborations present results for the D — v and
D — K{v semileptonic form factors over the full kinematic
range, rather than just at zero momentum transfer. In fact,
the publication of this result predated the precise measure-
mentsofthe D — K ¢v decay width by the FOCUS [358] and
Belle experiments [359], and predicted the shape of f2X (¢?)
quite accurately. This bolsters confidence in calculations of
the B-meson semileptonic decay form factors using the same
methodology. Work is in progress [360] to reduce both the
statistical and systematic errors in f27(¢%) and fPK(¢?)
through increasing the number of configurations analysed,
simulating with lighter pions, and adding lattice spacings
as fine as @ ~ 0.045 fm. In parallel, the Fermilab Lattice
and MILC collaborations are initiating a new calculation of
D — mwfv and D — K<{v using the HISQ action for all
valence and sea quarks [361]; this calculation will focus on
obtaining the form factors at zero momentum transfer using
the scalar form-factor method [342] to avoid the need for cur-
rent renormalisation and (partially) twisted boundary condi-
tions [344,362] to simulate directly at g = 0.

The most precise published calculations of the D —
wlv [338] and D — K{v [342] form factors are by the
HPQCD Collaboration. These analyses also use the Ny =
2+1 Asqtad-improved staggered MILC configurations at two
lattice spacings a ~ 0.09 and 0.12 fm, but they use the HISQ
action for the valence u, d, s and ¢ quarks. In these mixed-
action calculations, the HISQ valence light-quark masses are
tuned so that the ratio m;/m; is approximately the same
as for the sea quarks; the minimum RMS sea-pion mass is
~ 390 MeV. They calculate the form factors at zero momen-
tum transfer by relating them to the matrix element of the
scalar current, which is not renormalised. They use the “mod-
ified z-expansion” to simultaneously extrapolate to the phys-
ical light-quark masses and continuum and interpolate to
¢* = 0,and they allow the coefficients of the series expansion
to vary with the light- and charm-quark masses. The form of
the light-quark dependence is inspired by x PT, and includes
logarithms of the form m%log(m%) as well as polynomials
in the valence-, sea-, and charm-quark masses. Polynomi-
als in E; (k) are also included to parameterise momentum-
dependent discretisation errors. The coefficients of each term
are constrained using Gaussian priors with widths inspired
by xPT power counting for the light-quark mass terms and

by HISQ power-counting for the others. The number of terms
is increased until the result for f (0) stabilises, such that the
quoted fit error for £, (0) includes both statistical uncertain-
ties and those due to most systematics. The largest uncertain-
ties in these calculations are from statistics and charm-quark
discretisation errors.

The HPQCD Collaboration is now extending their work
on D-meson semileptonic form factors to determining their
shape over the full kinematic range [346], and recently
obtained results for the D — K £v form factors f + (¢2) and
fo(qz) [347]. This analysis uses a subset of the ensembles
included in their earlier work, with two sea-quark masses
at a ~ 0.12 fm and one sea-quark mass at a =~ 0.09 fm,
but with approximately three times more statistics on the
coarser ensembles and ten times more statistics on the finer
ensemble. As above, the scalar current is not renormalised.
The spatial vector-current renormalisation factor is obtained
by requiring that f, (0)~# =1 for H = D, Dy, n, and
nc. The renormalisation factors for the flavour-diagonal cur-
rents agree for different momenta as well as for charm-charm
and strange-strange external mesons within a few percent,
and they are then used to renormalise the flavour-changing
charm-strange and charm-light currents. The charm-strange
temporal vector current is normalised by matching to the
scalar current fo(g2,,)- Also as above, they simultaneously
extrapolate to the physical light-quark masses and contin-
uum and interpolate/extrapolate in g2 using the modified z-
expansion. In this case, however, they only allow for light-
quark mass and lattice-spacing dependence in the series coef-
ficients, but not for charm-quark mass or kaon energy depen-
dence, and constrain the parameters with Bayesian priors. It
is not clear, however, that only three sea-quark ensembles
at two lattice spacings are sufficient to resolve the quark-
mass and lattice spacing dependence, even within the con-
text of constrained fitting. The quoted error in the zero-recoil
form factor f(0) = 0.745(11) is significantly smaller than
in their 2010 work, but we are unable to understand the
sources of this improvement with the limited information
provided in Ref. [347]. The preprint does not provide an
error budget, nor any information on how the systematic
uncertainties are estimated. Thus we cannot rate this cal-
culation, and do not include it in the summary table and
plot.

Table 21 summarises the existing Ny = 2 and Ny =
2 4+ 1 calculations of the D — név and D — K{v
semileptonic form factors. The quality of the systematic
error studies is indicated by the symbols. Additional tables
in Appendix B.5.2 provide further details on the simulation
parameters and comparisons of the error estimates. Recall
that only calculations without red tags that are published in
a refereed journal are included in the FLAG average. Of the
calculations described above, only those of HPQCD 10B,11
satisfy all of the quality criteria. Therefore our average of the
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Table 21 D — nfv and D — K{v semileptonic form factors at zero momentum transfer

Collaboration Ref. Ng Publication Continuum Chiral Finite Renormalisation Heavy- f f” 0) f +DK 0)
status extrapolation extrapolation volume quark
treatment

HPQCD 11 [338] 2+1 A o) o * * v 0.666 (29)
HPQCD 10B  [342] 2+1 A o o * * v 0.747 (19)
FNAL/MILC 04 [357] 2+1 A ] ] * o) v 0.64 (3) (6) 0.73 (3) (7)
ETM 11B [345] 2 C o) o) * * v 0.65 (6) (6) 0.76 (5) (5)

1-‘D7I (0) fDK (0) For the leptonic decays, we use the latest experimen-

FTAG2013 '+ + .

‘ ‘ ‘ ‘ tal averages from Rosner and Stone for the Particle Data
Group [114] (where electromagnetic corrections of ~1 %
have been removed):

i —®— our average for Ny=2+1 —
o Ip|Vea|l = 46.40(1.98) MeV,
z S, | Ves| = 253.1(5.3) MeV. 99)
=+ HPQCD 11/10B BN
We combine these with the average values of fp and fp,
L L ENALMILC 04 L from the individual Ny = 2 and Ny = 2 + 1 lattice-QCD
calculations that satisfy the FLAG criteria, and summarise
the results for the CKM matrix elements |V,4| and |V | in
o Table 22. For our preferred values we use the averaged Ny =
é‘, o ETM 11B o 2and Ny = 2+41resultsfor fp and fp, in Egs. (93) and (94).
We obtain
055 065 0.75 0.65 0.70 0.75 0.80 |Vea| = 0.2218(35)(95), | Ves| = 1.018(11)(21),

Fig. 14 D — nwfv and D — K/{v semileptonic form factors at zero
momentum transfer. The HPQCD result for f f” (0) is from HPQCD
11, the one for £PX(0) represents HPQCD 10B (see Table 21)

D — mfv and D — K{v semileptonic form factors from
Nr =2 + 1 lattice QCD is

Ne=2+1: fP7(0)=0.666(29), fP¥(0)=0.747(19).
(93)

Figure 14 plots the existing Ny = 2 and Ny = 2 + 1 results
for f f 7(0) and f f K (0); the grey bands show our average
of these quantities. Section 7.3 discusses the implications of
these results for determinations of the CKM matrix elements
|Veal| and | V4| and tests of unitarity of the second row of the
CKM matrix.

7.3 Determinations of |V,4| and | V.| and test
of second-row CKM unitarity

We now interpret the lattice-QCD results for the D,)-meson
decay constants and semileptonic form factors as determi-
nations of the CKM matrix elements |V,4| and | V.| in the
Standard Model.

@ Springer

(Ieptonic decays, Ny =2 + 1) (100)
[Veal = 0.2231(95)(75), | Ves| = 1.012(21)(28),
(Ieptonic decays, Ny = 2) (101)

where the errors shown are from the lattice calculation and
experiment (plus non-lattice theory), respectively. For the
Nf = 2 + 1 determinations, the uncertainties from the
lattice-QCD calculations of the decay constants are two to
three times smaller than the experimental uncertainties in the
branching fractions; the lattice central values and errors are

Table 22 Determinations of | V4| (upper panel) and | V.| (lower panel)
obtained from lattice calculations of D-meson leptonic decay constants
and semileptonic form factors. The errors shown are from the lattice
calculation and experiment (plus non-lattice theory), respectively

Collaboration Ref. Nt From |Veal or |Veg|
HPQCD 12A [331] 2+1 fp 0.2228 (36) (95)
FNAL/MILC 11 [332] 241 fp 0.2120 (109) (91)
HPQCD 11 [338] 24+1 D — wflv 0.2192(95) (45)
ETM 13B [335] 2 fp 0.2231 (95) (75)
HPQCD 10A [94] 24+1  fp, 1.021 (10) (21)
FNAL/MILC 11 [332] 241 fp, 0.9731 (404) (202)
HPQCD 10B [342] 24+1 D — Klv 0.9746 (248) (67)
ETM 13B [335] 2 b, 1.012 (21) (28)
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Table 23 Comparison of determinations of |V.4| and |V,s| obtained
from lattice methods with non-lattice determinations and the Standard
Model prediction assuming CKM unitarity

From Ref. |V 4l [Ves|

Ne=2+1 fp and fp, 0.2218 (101) 1.018 (24)
Ny =2 fp and fp, 0.2231 (121) 1.012 (35)
Ny =2+1 D — m{¢v and 0.2192 (105) 0.9746 (257)

D — Kty
PDG Neutrino [74] 0.230 (11)

scattering
Rosner 12 (for CKM unitarity [114] 0.2245 (12) 0.97345 (22)

the PDG)

dominated by those of the HPQCD calculations. Although
the Ny = 2 and Ny = 2 + 1 results for | V.| are slightly
larger than one, they are both consistent with unity within
errors.

For the semileptonic decays, we use the latest experi-
mental averages from the Heavy Flavour Averaging Group
[126]:3!

P (0)|Veal = 0.146(3),  £PK(0)|Ves| = 0.728(5).
(102)

For each of £P7(0) and fPX (0), there is only a single Ny =
2+ 1 lattice-QCD calculation that satisfies the FLAG criteria.
Using these results, which are given in Eq. (98), we obtain
our preferred values for | V4| and |V s|:

[Vea| = 0.2192(95)(45), | Vies| = 0.9746(248)(67),

(semileptonic decays, Ny =2 + 1) (103)

where the errors shown are from the lattice calculation and
experiment (plus non-lattice theory), respectively.

Table 23 summarises the results for |V 4| and | V| from
leptonic and semileptonic decays, and compares them to
determinations from neutrino scattering (for | V4| only) and
CKM unitarity. These results are also plotted in Fig. 15. The
determinations of | V4| all agree within uncertainties, but the
errors in the direct determinations from leptonic and semilep-
tonic decays are approximately ten times larger than the indi-
rect determination from CKM unitarity. The determination
of | V5| from Ny = 241 lattice-QCD calculations of leptonic
decays is noticeably larger than that from both semileptonic
decays and CKM unitarity. The disagreement between | V|
from leptonic and semileptonic decays is slight (only 1.2¢0
assuming no correlations), but the disagreement between

31 We note that HFAG currently averages results for neutral and charged
D-meson decays without first removing the correction due to the
Coulomb attraction between the charged final-state particles for the
neutral D-meson decays.

Fc2013 | Vedl Vel
—— our average for N¢=2+1
& ~—m-— HPQCD 12A/10A -
Il
= —_
= FNAL/MILC 11
& { HPQCD 11/10B
« ——m—— ouraverage for N;=2 ——
Il
z =~ ETM 13B i
8
% ——@—— neutrino scattering
L ° CKM unitarity °
2 ‘ ‘ ‘ ‘ ‘
0.20 0.22 0.24 0.95 1.05

Fig. 15 Comparison of determinations of |V.4| and |V,| obtained
from lattice methods with non-lattice determinations and the Standard
Model prediction based on CKM unitarity. When two references are
listed on a single row, the first corresponds to the lattice input for | V4|
and the second to that for | V4 |. The results denoted by squares are from
leptonic decays, while those denoted by triangles are from semileptonic
decays

|Ves| from leptonic decays and CKM unitarity is larger at
1.9¢0 . This tension with CKM unitarity is driven primarily by
the HPQCD calculation of fp, in Ref. [94], but we note that
the ETM Ny = 2 calculation of fp_ in Ref. [335] leads to the
same high central value of |V,|, just with larger uncertain-
ties. Further, the recent preliminary lattice-QCD calculation
of fp, using Ny = 2 4+ 1 + 1 configurations with dynam-
ical HISQ quarks by Fermilab/MILC [329] agrees with the
HPQCD result and quotes smaller uncertainties due to the
inclusion of data at the physical light-quark mass, so it will
be interesting to see how this tension evolves with improved
experimental measurements and more independent lattice-
QCD results with competitive errors.

The Nf = 2 + 1 averages for |V.4| and |V,,| in Fig. 15
are obtained by averaging the results in Table 22 including
correlations. We assume that the statistical errors are 100 %
correlated between all of the calculations because they use
the MILC Asqtad gauge configurations. We also assume that
the heavy-quark discretisation errors are 100 % correlated
between the HPQCD calculations of leptonic and semilep-
tonic decays because they use the same charm-quark action,
and that the scale-setting uncertainties are 100 % correlated
between the HPQCD results as well. Finally, we include
the 100 % correlation between the experimental inputs for
the two extractions of |V,4()| from leptonic decays. We
obtain

[Veal = 0.2191(83), |Ves| = 0.996(21),

(our average, N =2+ 1) (104)
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where the errors include both theoretical and experimental
uncertainties, and the error on |V, | has been increased by
v/ x2/dof = 1.03.

Using the determinations of |V,.4| and |V | in Eq. (104),
we can test the unitarity of the second row of the CKM matrix.
We obtain

[Veal® + [Ves|? + [Vep|* — 1 = 0.04(6) (105)

which agrees with the Standard Model at the percent level.
Given the current level of precision, this result does not
depend on the value used for |V,p|, which is of O107?)
[see Eq. (162)].

8 B-meson decay constants, mixing parameters
and form factors

Leptonic and semileptonic decays of bottom B- and Bj-
mesons probe the quark-flavour-changing transitions b — u
and b — c. Tree-level semileptonic B decays with light
charged leptons (£ = e, w) in the final state, such as B —
7lv and B — D® ¢y, enable determinations of the CKM
matrix elements |V,;| and |V,p| within the Standard Model.
Semileptonic B decays that occur via loops in the Standard
Model, such as B — K¢+ ¢~ provide sensitive probes of
physics beyond-the-Standard Model because contributions
from new heavy particles in the loops may be comparable
to the Standard Model “background.” Further, because B-
mesons are sufficiently massive, they can decay to final states
involving t-leptons. Tree-level decays such as B — tv
and B — D™ty are promising new-physics search chan-
nels because they can receive significant contributions from
charged-Higgs bosons.

Mixing of neutral BY- and B?-mesons occurs in the Stan-
dard Model via one-loop box diagrams containing up-type
quarks (u, c, t) and charged W bosons. Because the Standard
Model contributions are proportional to the CKM factors
[Vue,nq Vu*(c,t)b|2 (where ¢ = d, s) and the quark masses
mi(c’ " neutral B-meson mixing is dominated by interme-
diate top quarks. Thus experimental measurements of the
neutral BY) ,-meson oscillation frequencies, AMy(y) com-
bined with sufficiently precise theoretical calculations of the
hadronic mixing matrix elements (often presented as dimen-
sionless “bag” parameters), enable the determination of the
CKM matrix elements |Vy4| and |V;s| within the Standard
Model. Conversely, neutral B-meson mixing places stringent
constraints on the scale of generic new heavy particles that
can enter the loops in beyond-the-Standard Model scenarios.
Finally, neutral meson mixing is also sensitive to the phase
of the CKM matrix (p, n). Thus the ratio of oscillation fre-
quencies AM,;/AM; places a tight constraint on the apex of
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the CKM unitarity triangle that is complementary to those
from other observables.

Lattice-QCD calculations of b quarks have an added com-
plication not present for charm and light quarks: at the lattice
spacings that are currently used in numerical simulations,
the b quark mass is of order one in lattice units. There-
fore a direct treatment of b quarks with the fermion actions
commonly used for light quarks will result in large cutoff
effects, and all current lattice-QCD calculations of b quark
quantities make use of effective field theory at some stage.
The two most widely used general approaches for lattice b
quarks are (i) direct application of effective field theory treat-
ments such as HQET or NRQCD, which allow for a system-
atic expansion in 1/my; or (ii) the interpretation of a rela-
tivistic quark action in a manner suitable for heavy quarks
using an extended Symanzik improvement program to sup-
press cutoff errors. This introduces new systematic uncer-
tainties that are not present in light-quark calculations, either
from truncation of the effective theory, or from more com-
plicated lattice-spacing dependence. Further, because with
these approaches the light and bottom quarks are simulated
with different fermion actions, it is in general not possible to
construct absolutely normalised bottom-light currents; this
leads to systematic uncertainties due to matching the lattice
operators to the continuum that can be significant. A third
approach is to use an improved light-quark action to cal-
culate the quantity of interest over a range of heavy-quark
masses with amy, < 1, and then to use heavy-quark effective
theory and/or knowledge of the static limit to extrapolate or
interpolate to the physical b-quark mass. Such methods can
avoid some of the aforementioned complications, but they
require simulations at very small lattice spacings in order
to keep discretisation errors under control. Appendix A.1.3
reviews the methods used to treat b quarks on the lattice in
more detail.

Here we summarise the status of lattice-QCD calculations
of the bottom leptonic decay constants, neutral meson mix-
ing parameters, and semileptonic form factors. We limit our
review to results based on modern simulations with reason-
ably light pion masses (below approximately 500 MeV). This
excludes results obtained from the earliest unquenched simu-
lations, which typically had two flavours in the sea, and which
were limited to heavier pion masses because of the con-
straints imposed by the computational resources and methods
available at that time. Fewer collaborations have presented
results for these quantities than for the light-quark sector
(u, d, s), and the calculations tend to be on coarser lattice
spacings with heavier pions. Therefore, for some quantities,
there is only a single lattice calculation that satisfies the cri-
teria to be included in our average. Several collaborations,
however, are currently pursuing the needed matrix-element
calculations with different lattice b-quark actions, finer lat-
tice spacings, and lighter pions, so we expect the appearance
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of many new results with controlled errors in the next year
or two.

We also note that the heavy-quark methods discussed in
this review have been validated in a number of ways. Because
several groups use the same action for charm and bottom
quarks, tests of such methods with charm quarks are rele-
vant for B physics results, and they are therefore included in
the following discussion. Calculations of hadron masses with
one or more heavy (charm or bottom) valence quark provide
phenomenological tests of the heavy-quark action. Such cal-
culations have been performed with NRQCD, HQET, Fer-
milab, RHQ, Tsukuba, HISQ, Overlap, twisted-mass Wil-
son, and other O(a) improved Wilson heavy quarks for the
hyperfine splittings in the D()- and B()-meson systems
[94,333,363-374], and for the low-lying charmonium [333,
367,368,371,375-379], bottomonium [380-386], and B,
[364,369,387-389] systems. All of them are in good agree-
ment with experimental measurements. Hyperfine splittings
are sensitive to higher-order terms in the heavy-quark action
and therefore provide particularly good tests of such terms.
The comparison of lattice-QCD calculations of hadronic
matrix elements for leptonic and radiative decays in charmo-
nium [377,389] with experimental measurements provides
CKM-free tests of heavy-HISQ currents. The comparison of
lattice-QCD calculations of the shape of the semileptonic
form factors for D — m(K)€v [357] with experimental
measurements provides CKM independent tests of charm-
quark currents with the Fermilab action. In two of the above
mentioned tests, the lattice-QCD calculations were predic-
tions, in one case predating the experimental discovery of the
B, mass, and in the other predating experimental measure-
ments of the shape of the semileptonic D-meson form fac-
tors with comparable precision. Truncation errors in HQET
have been studied by comparing simulations of the effective
field theory with corresponding quenched simulations using a
non-perturbatively improved Wilson action with heavy quark
masses in the charm-mass region in large volumes [390] and
up to the b-quark mass in small volumes [391]. Moreover,
the consistency between independent determinations of the
bottom [73,336,365,370,392-394] and charm [60,72,73,85,
333,395,396] quark masses using NRQCD, HQET, Tsukuba,
HISQ, twisted-mass Wilson, and other O(a) improved Wil-
son heavy quarks, as well as their agreement with non-lattice
determinations [74] further validate lattice heavy-quark
methods.

Following our review of lattice-QCD calculations of
Bs)-meson leptonic decay constants, neutral meson mixing
parameters, and semileptonic form factors, we then interpret
our results within the context of the Standard Model. We com-
bine our best-determined values of the hadronic matrix ele-
ments with the most recent experimentally measured branch-
ing fractions to obtain |V(,)c,| and compare these results to
those obtained from inclusive semileptonic B decays.

8.1 Leptonic decay constants fp and fp,

The B- and Bs-meson decay constants are relevant for
decays of charged B-mesons to a lepton—neutrino pair via
the charged current interaction, as well as for rare leptonic
decays of neutral B s)-mesons to a charged-lepton pair via
a flavour-changing neutral-current (FCNC) interaction.

In the Standard Model the decay rate for BY — £1v,
is given by a formula identical to the one for D decays in
Eq. (91) but with D) replaced by B and the relevant CKM
matrix element V., replaced by V;:

MB 2 2 22 my ’

['(B — Lyy) = gGFfB|VMb| my(1— m_23 . (106)
The only charged-current B-meson decay that has been
observed so faris B — tv;, which has been measured by the
Belle and Babar collaborations with a combined precision of
20 % [74]. This measurement can therefore be used to deter-
mine |V,;| when combined with lattice-QCD predictions of
the corresponding decay constant.

The decay of a neutral By(s)-meson to a charged lepton
pair is loop-suppressed in the Standard Model. The corre-
sponding expression for the branching fraction has the form

. G%- o 2
BB = ) =m Y i oy

2
m

xmp, f5 Vs VigPmi 1_4"75’ (107)
B

where the light quark ¢ = s or d, and the loop function
Y includes NLO QCD and electroweak corrections [397].
Evidence for By — u* ™ decay was recently seen at LHCb
at the 3.50 level, with a branching fraction of BR(B; —
pntpo) = (3.2113) 107 [398].

The decay constants fp, (with g = u, d, s) parameterise
the matrix elements of the corresponding axial-vector cur-
rents, AZ g = by"y3q, analogously to the definition of Ip,
in Sect. 7.1:

(01A"|By(p)) = P fB,-

For heavy-light mesons, itis convenient to define and analyse
the quantity

CDBq = qu /mp,,

which approaches a constant (up to logarithmic corrections)
inthe mp — oo limit. In the following discussion we denote
lattice data for ®(f) obtained at a heavy quark mass my
and light valence-quark mass my as ®j,¢( fp1), to differentiate
them from the corresponding quantities at the physical b and
light-quark masses.

The SU(3)-breaking ratio f /fp is an interesting quan-
tity to study with lattice QCD, since most systematic errors

(108)

(109)
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partially cancel in this ratio, including discretisation errors,
heavy-quark mass tuning effects, and renormalisation errors,
among others. The SU(3)-breaking ratio is, however, sensi-
tive to the chiral extrapolation. So one can, in principle, com-
bine a lattice-QCD calculation of the SU(3)-breaking ratio
that includes a careful study of the chiral extrapolation, with
adifferent lattice-QCD calculation of fp_(whichis relatively
insensitive to chiral extrapolation errors) that includes a care-
ful study of all other systematic errors to obtain a more precise
result for fp than would be possible from either lattice-QCD
calculation alone. Indeed, this strategy is used by both the
ETM and HPQCD collaborations, as described below.

A number of different heavy-quark formulations are being
used to obtain results for B;-meson decay constants from
numerical simulations with Ny = 2, Ny = 2 + 1 and
Nr = 2 4+ 1 4 1 sea quarks. They are summarised in
Tables 24 and 25 and in Fig. 16. Additional details as regards
the underlying simulations and systematic error estimates are
given in Appendix B.6.1.

The ETM collaboration has presented a series of calcula-
tions of the B-meson decay constants based on simulations
with Ny = 2 sea quarks [335,336,392,393,405]. Three lat-
tice spacings in the range a ~ 0.067-0.098 fm are used in
ETM 09D [392].InETM 11A,ETM 12B,and ETM 13B, 13C
[335,336,393,405] additional ensembles at a ~ 0.054 fm
are included. The valence and sea quarks are simulated with
two different versions of the twisted-mass Wilson fermion
action. In ETM 09D and ETM 11A the heavy-quark masses
are in the charm region and above while keeping am,, < 0.5.
ETM 12B includes slightly heavier masses than ETM 09D
and ETM 11A, while ETM 13B, 13C includes masses as
heavy as amj ~ 0.85 at the largest two lattice spacings. In
ETM 11A two methods are used to obtain fp, from their
heavy Wilson data: the ratio and the interpolation methods.
In the interpolation method they supplement their heavy Wil-
son data with a static limit calculation. In the ratio method
(see Appendix A.1.3) they construct ratios (called z(y)) from
a combination of the decay constants fj¢(s) and the heavy-
quark pole masses that are equal to unity in the static limit.
Ratios of pole-to-MS massconversion factors are included at
NLO in continuum perturbation theory. ETM 09D, ETM 12B
and ETM 13B, 13C use only the ratio method. Finally, ETM
analyses the SU(3)-breaking ratio @/ ®j, (or the ratio of
ratios, zy/z) and combines it with ®;; or (zg) to obtain
fB, instead of directly extracting it from their &5, (or z)
data. In ETM 11A, ETM 12B, and ETM 13B, 13C the
data are interpolated to a fixed set of reference masses on
all ensembles, and subsequently extrapolated to the contin-
uum and to the physical light-quark masses in a combined
fit. The static limit calculation for the interpolation method
in ETM 11A is done at two intermediate lattice spacings,
a =~ 0.085,0.067 fm. The results from the interpolation
method have larger (statistical and systematic) errors than
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those from the ratio method, since statistical and systematic
errors tend to cancel in the ratios. The observed discretisation
effects (as measured by the percentage difference between
the lattice data at the smallest lattice spacing and the con-
tinuum extrapolated results) are smaller than what would be
expected from power-counting estimates. Over the range of
heavy quark masses used in their simulations ETM finds dis-
cretisation errors <3 % for ®;; and <1.5 % for the ratio zy.
As aresult, the dominant error on fp, is the statistical (com-
bined with the chiral and continuum extrapolation and heavy
quark interpolation) uncertainty, whereas the dominant error
on the SU(3) breaking ratio is due to the chiral extrapolation.

The ALPHA collaboration calculates the B- and B;-
meson decay constants at the physical b-quark mass using
non-perturbative lattice HQET through O(1/my,) on ensem-
bles with Ny = 2 non-perturbatively O(a) improved Wilson
quarks at three lattice spacings in the range a ~ 0.048-
0.075 fm. The parameters of the HQET action and the static-
current renormalisation are determined non-perturbatively in
aseparate matching calculation using small physical volumes
(L ~ 0.4 fm) with Schrodinger functional boundary condi-
tions together with arecursive finite-size scaling procedure to
obtain the non-perturbative parameters at the large physical
volumes used in the simulations. In ALPHA 11 [365] ensem-
bles with pion masses in the range m, ~ 440-270 MeV
are used. ALPHA 12A [370] and ALPHA 13 [404] include
an ensemble at a lighter sea-quark mass corresponding to
my ~ 190 MeV. ALPHA 11 presents results for fp only,
while ALPHA 12A also presents a preliminary result for
fB,,and ALPHA 13 presents the collaboration’s final results
for fg, fp, and fp,/fp. The combined statistical and extrap-
olation errors are of order 5—6 % in these calculations, and
are larger than the chiral fit uncertainty. Truncation errors
which are O(Aqcp/m »)? are not included in this error bud-
get. Simple power-counting would suggest that they are ~1—
4 %. However, the results from both the ETM collaboration
discussed above and the HPQCD collaboration (from their
heavy HISQ analysis) discussed below, as well as results
obtained by ALPHA in the quenched approximation [390]
indicate that O(Aqcp/ my)? effects are probably quite small
for heavy—light decay constants at the physical b-quark mass.

In summary, for the Ny = 2 case, only ETM’s results
qualify for averaging, since ALPHA’s results have appeared
in conference proceedings only so far. Since ETM 13B, 13C
updates the published ETM 11A results, we use it for our
average:

Ny =2: fp = (189 £8)MeV, fp, = (228 £ 8) MeV,
fB,/fs = 1.206 £ 0.024. (110)
For the Ny = 2+ 1 case there are currently four published

papers describing lattice-QCD calculations of fp, per-
formed by two different groups: FNAL/MILC and HPQCD.
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fB,/fB+ fB,/fpo fB,/fB

Heavy
quark
treatment

Renormalisation/
matching

Finite
volume

extrapolation

Chiral

Continuum
extrapolation

Publication
status

Nt

Ref.

Table 25 Ratios of decay constants of the B and By mesons (for details see Table 24)

Collaboration
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1.201 (25)
1.205 (7)

1.194 (7)

1.217 (8)

stat

<

1.20 (2)

241
241
241
241
241

1.188 (18)

1.229 (26)

1.15 (12)

1.226 (26)

1.195 (61) (20)
1.206 (24)

1.13 (6)
1.19 (5)
1.19 (5)

— = — = e e

P

2
2
2

—_— e e e e e e e e e e e

ETM 13E

HPQCD 13

RBC/UKQCD 13A
HPQCD 12

FNAL/MILC 11

RBC/UKQCD 10C

HPQCD 09
ALPHA 13

ETM 13B, 13C
ALPHA 12A
ETM 12B

ETM 11A

¢ Statistical errors only

T Update of ETM 11A and 12B

The HPQCD collaboration has published several calcula-
tions of the B-meson decay constants with NRQCD b quarks
[402,403]. In Ref. [403] (HPQCD 09) they use Asqtad light
valence quarks, and include ensembles at two lattice spac-
ings a =~ 0.12, 0.09 fm and sea quarks with minimum RMS
sea-pion masses my rms ~ 400 MeV equal to the light sea-
quark masses. In Ref. [402] HISQ light valence quarks are
employed instead. This analysis uses the same Asqtad ensem-
bles as in HPQCD 09 but includes an additional ensemble at
a ~ 0.09 fm at a lighter sea-quark mass, so that the mini-
mum RMS sea-pion mass is approximately 320 MeV. The
HISQ light valence masses are matched to the Asqtad sea-
quark masses via the ratio m,/mg. The dominant systematic
error in both calculations is due to using one-loop mean-field
improved lattice perturbation theory for the current renormal-
isation. In both calculations, HPQCD performs a combined
chiral and continuum extrapolation of the data, in the first
case using NLO (full QCD) heavy-meson rooted staggered
xPT (HMrSxPT) and in the latter case using NLO con-
tinuum partially quenched HM x PT, supplemented in both
cases by NNLO analytic and generic discretisation terms.
HPQCD finds a significant reduction in discretisation errors
in their calculation with HISQ light valence quarks, as com-
pared to their calculation with Asqtad valence quarks. Indeed,
in HPQCD 12 the continuum-extrapolated results overlap
within errors with the data at finite lattice spacing.

Another calculation of the Bg-meson decay constant is
presented by the HPQCD collaboration in Ref. [366], this
time using the HISQ action for the strange and heavy valence
quarks, i.e. the heavy HISQ method. This analysis includes
Asqtad ensembles over a large range of lattice spacings,
a =~ 0.15-0.045 fm and heavy-quark masses in the range
amy ~ 0.2-0.85. Only one sea-quark ensemble per lattice
spacing is included in this analysis, all with a sea-quark
to strange-quark mass ratio of mg/m; ~ 0.2, yielding a
minimum RMS sea-pion mass of approximately 330 MeV.
The sea-quark mass dependence is assumed to be negligible,
which is based on the analysis of fp, in Ref. [94]. HPQCD
uses an HQET-type expansion in 1/mpy (where mpy is the
mass of an #-flavoured meson) with coefficients that are poly-
nomials in amp,, a A and am to perform a combined fit to all
their data, including terms up to 1/ mz, (amp)®, (aA)® and
(amy)®. The continuum-extrapolated fit curve is then used
to obtain the decay constant at the physical By-meson mass,
which requires another small extrapolation. As can be seen
in Figure 1 of Ref. [366], discretisation errors (as measured
by the percentage difference between the lattice data and the
continuum fit curve) are smaller for a given value of am,
when mpy is larger. This somewhat counterintuitive result
for an action that formally contains discretisation errors of
O(amy)? is likely due to coefficients in the form of pow-
ers of v/c that suppress these errors. After statistical (and
extrapolation) errors, the largest sources of uncertainty in
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Fig. 16 Decay constants of the B- and Bs-mesons. The values are taken from Table 24 (the fp entry for FNAL/MILC 11 represents fz+). The
significance of the colours is explained in Sect. 2. The black squares and grey bands indicate our averages in Egs. (110), (111) and (112)

this analysis are discretisation and heavy-quark extrapola-
tion errors. They are estimated by varying the fit Ansatz and
by excluding data at the largest and smallest lattice spacings
as well as data at the largest values of amy,.

The Fermilab Lattice and MILC collaborations present a
lattice-QCD calculation of the D- and B-meson decay con-
stants in Ref. [332], which uses the Fermilab method for the
heavy (b and c) valence quarks together with Asqtad light
and strange valence quarks on a subset of the MILC Asq-
tad Ny = 2 + 1 ensembles. The current renormalisations
are calculated using a mostly non-perturbative renormali-
sation (mNPR) method. Their estimate of the perturbative
errors for the small perturbative correction factors calculated
at one loop in mean-field improved lattice perturbation the-
ory are comparable to the size of actual one-loop correc-
tions. The simulations include lattice spacings in the range
a ~ 0.15-0.09 fm and a minimum RMS pion mass of approx-
imately 320 MeV. In this calculation lattice data at 9—-12
valence light-quark masses are generated for each sea-quark
ensemble. The chiral- and continuum-extrapolated results are
obtained from combined chiral and continuum fits. The chiral
fit function uses NLO partially quenched HMrS x PT includ-
ing 1/my, terms and supplemented by NNLO analytic terms.
Also included are light-quark as well as heavy-quark dis-
cretisation terms. The dominant uncertainties after statistical
errors are due to heavy-quark discretisation effects, heavy-
quark mass tuning, and correlator fit errors. A calculation of
the B- and D-meson decay constants using Fermilab heavy
quarks on the full set of Asqtad ensembles is still in progress
[407].

The RBC/UKQCD collaboration has presented a result
for the SU(3) breaking ratio in Ref. [406] using a static-
limit action on Ny = 2 4 1 domain wall ensembles at a

single lattice spacing ¢ =~ 0.11 fm with a minimum pion
mass of approximately 430 MeV. They use both HYP and
APE smearing for the static action and one-loop mean-
field improved lattice perturbation theory to renormalise
and improve the static-limit current. Their static-limit action
and current do not, however, include 1/my, effects. Refer-
ence [406] includes an estimate of this effect via power count-
ing as O((mg — mg)/mp) in the error budget. The statistical
errors in this work are significantly larger (~5-8 %), as are
the chiral-extrapolation errors (~7 %), due to the rather large
pion masses used in this work. With data at only one lat-
tice spacing, discretisation errors cannot be estimated from
the data. A power counting estimate of this error of 3 % is
included in the systematic error budget. An update of this
work was presented at the Lattice 2013 conference [408],
where the new analysis includes ensembles at two lattice
spacings and with smaller pion masses, as well as calcula-
tions of the decay constants themselves. However, Ref. [408]
did not appear until after the closing deadline and is therefore
not included in this review. The RBC/UKQCD collaboration
has also presented preliminary calculations of the B-meson
decay constants using the RHQ action (another relativistic
heavy-quark action) [401,409] on Ny = 2 + 1 domain-wall
ensembles at two lattice spacings, a =~ 0.086, 0.11 fm with
sea-pion masses in the range m, ~ 420-290 MeV. The
parameters of the RHQ action are tuned non-perturbatively,
and the axial-vector current is renormalised using the mNPR
method. Results are quoted with statistical errors only [401]
after a combined chiral-continuum extrapolation using SU(2)
HM x PT and a term linear in a”. A complete systematic error
analysis is still in progress.

In summary, for the Ny = 2 + 1 case there currently are
four different results for the B- and Bg-meson decay con-
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stants and three different results for the SU(3)-breaking ratio
that satisfy the quality criteria (see Tables 24, 25). However,
they all use overlapping subsets of MILC Asqtad ensembles.
We therefore treat the statistical errors between the results as
100 % correlated. Furthermore, one of the results for fp in
HPQCD 12 [402] is obtained by combining HPQCD 12’s
result for the ratio fp /fp using NRQCD b quarks with
HPQCD 11A’s result for fp . However, no itemised error
budget is given for the so-combined fp result. In order
to include sensible correlations between the two HPQCD
results for fp, we construct an itemised error budget for
the combined fp from the individual itemised error bud-
gets, by adding the itemised errors in quadrature. This is
conservative, because the resulting total uncertainty on the
combined fp is slightly larger than the quoted uncertainty
in Ref. [402], 4.3 MeV compared to 4 MeV. We then treat
the chiral-extrapolation errors, the light-quark discretisation
errors, the scale-setting errors, and renormalisation errors as
100 % correlated between the two fp results in HPQCD 12.
Finally, the HPQCD 09 result was obtained using a value
for the scale r that has since been superseded. We drop this
result from the average, since it is effectively updated by
HPQCD 12. We find

Ne=2+1: fz = (190.5 £ 4.2) MeV,
fp = (227.7+£45)MeV, fp /fz=120240.022. (111)

The uncertainties on the averages for fp, and for the SU(3)
breaking ratio fp /fp include PDG rescaling factors of 1.1
and 1.3, respectively.

Finally, the first published results for B-meson decay
constants with Ny = 2 + 1 4 1 sea quarks are presented
by the HPQCD collaboration [400] (HPQCD 13) using
the MILC HISQ ensembles at three lattice spacings, a ~
0.15, 0.12, 0.09 fm, where at each lattice spacing one ensem-
ble with Goldstone pions at the physical value is included.
HPQCD 13 uses NRQCD b quarks and HISQ light valence
quarks. The combined chiral interpolation and continuum
extrapolation is performed using NLO (full QCD) HMx PT,
supplemented by generic discretisation terms of O (a?, a*).
HPQCD also performs a continuum extrapolation of the
data at the physical point only, with results that are in good
agreement with the extrapolated results obtained from the
full data set. The dominant systematic error in this calcu-
lation is due to using one-loop mean-field improved lat-
tice perturbation theory for the current renormalisation. In
HPQCD 13 it is estimated at 1.4 %, almost a factor of 3
smaller than in HPQCD 12, after reorganizing the pertur-
bative series similar to the mNPR method, and using the
fact that the heavy—heavy NRQCD temporal vector current
is absolutely normalised and that the light-light HISQ vec-
tor current has a small one-loop correction. The next largest
uncertainties are due to heavy-quark truncation effects and
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statistics and scale setting. In this work the scale is set
using the Y (25-1S5) splitting calculated in Ref. [383] with-
out using ry to set the relative scale between ensembles at
different lattice spacings, as was done in previous HPQCD
work.

Most recently, the ETM collaboration presented their new
results for B-meson decay constants on their Ny = 24141
ensembles in ETM 13E [399]. This work uses the same meth-
ods as ETM’s Ny = 2 B-meson decay-constant analyses. In
particular, different versions of twisted-mass Wilson actions
are used for sea and valence quarks. The decay constants are
calculated with the ratio method using heavy-quark masses
in the charm region and above while keeping am;, < 0.8.
ETM 13E includes ensembles with lattice spacings in the
range a ~ 0.062-0.089 fm and with sea-pion masses in
the range m, ~ 211-443 MeV which are used for com-
bined chiral-continuum extrapolations. As before, the ratio
data for z; show small discretisation effects. Somewhat larger
discretisation effects are observed, however, for the decay-
constant data at the charm-quark mass, since the smallest
lattice spacing for the Ny = 2 + 1 4 1 ensembles is larger
than for Ny = 2.

In summary, for the Ny = 2 + 1 + 1 case, the only pub-
lished results are from HPQCD 13, which therefore form our
average:

Ne=2+1+1: fg = (186 &= 4) MeV,

fB, = 224 = 5)MeV, fp /fp = 1.205 £ 0.007. (112)

A comparisonofall Ny =2, Ny = 2+1and Ny = 2+1+1
lattice-QCD results for fp, fp, and their ratio is shown in
Fig. 16. The averages presented in Eqs. (110), (111) and (112)
are represented by the grey bands in the figures.

A final comment concerns which light valence-quark mass
is used for the chiral extrapolations (or interpolations) to
the physical point. First, we note that all the results dis-
cussed in this review use simulations with degenerate up and
down sea-quark masses. However, since the observed sea-
quark mass dependence is much smaller than the valence-
quark mass dependence, the dominant contribution to differ-
ences between BT - and B%-meson quantities is due to the
light valence quarks. Almost all the results quoted in this
review are obtained from chiral extrapolations to the aver-
age of the up- and down-quark masses, and therefore corre-
spond to the average of the BY- and B*-meson decay con-
stants. The exceptions are FNAL/MILC 11 and HPQCD 13
which both quote results for the B+ meson decay con-
stant from chiral extrapolations (interpolations) of the light
valence-quark to the physical up-quark mass. HPQCD 13
also quotes results for the B’-meson decay constant from
chiral interpolations to the physical down-quark mass as well
as results for the average of the BT- and B%-mesons. The
Nf = 2+ 1 and Ny = 2 averages presented in Egs. (110),
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(111) and (112) are for the average of the BT - and B-meson
decay constant, fp, and the corresponding ratio, fg /f5.
Given the errors quoted in the results that enter our aver-
ages, we currently include the FNAL/MILC 11 results for
the B-meson in Eq. (111). As the precision with which B-
meson decay constants are obtained continues to improve,
especially given the availability of physical-mass ensem-
bles, future reviews will need to distinguish between these
cases. Indeed HPQCD 13 finds a 2 % difference between
the BT and B° decay constants, which is the same size as
the total uncertainty in this calculation. We strongly rec-
ommend that future lattice-QCD calculations of B-meson
decay constants quote results for the B*- and B°-mesons
separately.

8.2 Neutral B-meson mixing matrix elements

Neutral B-meson mixing is induced in the Standard Model
through one-loop box diagrams to lowest order in the elec-
troweak theory, similar to those for neutral kaon mixing. The
effective Hamiltonian is given by

_ G M3
HAE=2SM = 2 W(fg?Qerfoi)Jrh.c., (113)

1672

with

Qf = [byu(1 = y5)q] [byu(1 = y5)q]. (114)
where g =d or 5. The short-distance function .7-';) inEq. (113)
is much simpler compared to the kaon mixing case due to the
hierarchy in the CKM matrix elements. Here, only one term
is relevant,

Fg = higSo(x) (115)
where
hig = VigViv- (116)

and where Sp(x;) is an Inami-Lim function with x, =
mt2 /M %V’ which describes the basic electroweak loop con-
tributions without QCD [294]. The transition amplitude for
Bf; with ¢ = d or s can be written as

2

GiM
1F6n2W [)»,Zq So(xz)ima]

(ByIHaf = 1By) =
~ 2N~/ 2B0) 841)

8 <g(u) ) exp [ dg (y(g) +ﬁ)

47 / B  Pog

x (B Q% (0| By) +h.c.,

(117)

where Q;’e(,u) is the renormalised four-fermion operator
(usually in the NDR scheme of MS). The running cou-
pling (g), the B-function (B(g)), and the anomalous dimen-
sion of the four-quark operator (y(g)) are defined in
Eqgs. (79) and (80). The product of p-dependent terms on the
second line of Eq. (117) is, of course,  independent (up to
truncation errors if perturbation theory is used). The explicit
expression for the short-distance QCD correction factor 125
(calculated to NLO) can be found in Ref. [292].

For historical reasons the B-meson mixing matrix ele-
ments are often parameterised in terms of bag parameters
defined as

(B9 |0%w)| BY)

(118)
82 2
3./5,MB

Bp, (1) =

The RGI B parameter Bis defined, as in the case of the kaon,
and expressed to two-loop order as

_ — 2
é <g(M)2> vo/(2Bo)
B, =

47
gw?* | Bivo — Boni
X !1 + )2 [ 28 “ Bp, (w). (119)

with By, B1, Yo and y; defined in Eq. (81).

Non-zero transition amplitudes result in a mass difference
between the C P eigenstates of the neutral B-meson system.
Writing the mass difference for a Bg—meson as Amyg, its
Standard Model prediction is

2.2
GFmeBq

672
Experimentally the mass difference is measured as oscillation
frequency of the C P eigenstates. The frequencies are mea-
sured precisely with an error of less than a percent. Many dif-
ferent experiments have measured Am, but the current aver-
age [74] is dominated by measurements from the B-factory
experiments Belle and Babar, and from the LHC experiment
LHCb. For Amyg the experimental average is based on results
from the Tevatron experiment CDF and from the LHC experi-
ment LHCb [74]. With these experimental results and lattice-
QCD calculations of f § B B, at hand, A, can be determined.
In lattice-QCD calculations the flavour SU(3)-breaking ratio

2 f l%s B,
f 1%,1 Bg,
can be obtained more precisely than the individual B,-mixing
matrix elements because statistical and systematic errors can-
celin part. With this ratio | V;4/ V;s| can be determined, which
can be used to constrain the apex of the CKM triangle.
Neutral B-meson mixing, being loop-induced in the Stan-
dard Model is also a sensitive probe of new physics. The
most general AB = 2 effective Hamiltonian that describes

Amg = |hql*SoGedmas f3, B, - (120)

(121)
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contributions to B-meson mixing in the Standard Model and S § o
beyond is given in terms of five local four-fermion operators: Lz e
o oS e R
5 «q (U S
Haf = =) _CiQi, (122) S
i=1 S 25
where Q) is defined in Eq. (114) and where g E § 5
< o= = =
Q] = [b(1 — y5)q] [6(1 — ys)q]. -
o = [6*(1 — y5)gP | [6P (1 — y5)q*] . ‘i 5 @ 3G
Qi = [b(1 —y5)q] [6(1 + ys)q]. & ZE€x 8,
Q4 = [0~ y9)a” 1 [P (1 + y9)g°]. (123) ) 5
with the superscripts «, 8 denoting colour indices, which are < a = e
shown only when they are contracted across the two bilin- 5 Z2 =, =2
ears. The short-distance Wilson coefficients C; depend on
the underlying theory and can be calculated perturbatively. E
In the Standard Model only matrix elements of Q7 contribute e 4 g
to Amg, and combinations of matrix elements of Qf, QF and FEESSS S
Q1 contribute to the width difference AT, [410,411]. Matrix -
elements of QZ and QZ are needed for calculating the con- £
tributions to B,-meson mixing from beyond the Standard % »
Model theories. E =
In this section we report on results from lattice-QCD cal- % £
culations for the neutral B-meson mixing parameters Bg s A 8 © 00X« §
Bg,, de\/é»Bd, fBS\/é»& and the SU(3)-breaking ratios o %ﬁ
Bp,/Bp, and & defined in Eqs. (118), (119), and (121). The % g z2@
results are summarised in Tables 26 and 27 and in Figs. 17 and T g *X X X X X g7
18. Additional details as regards the underlying simulations g - - g :‘;
and systematic error estimates are given in Appendix B.§.2. g % 5 = =
Some collaborations do not provide the RGI quantities Bp, % - E 5 & f
but quote instead Bp (u)MSNDPR 11y quch cases we convert %” é % o' m O O & -cf %
the results to the RGI quantities quoted in Table 26 using 2 é‘ = fb
Eq. (119). More details on the conversion factors are pro- g - £ § E E»
vided below in the descriptions of the individual results. One S| 2 _§ E ~ £
group also reports results for B-meson matrix elements of i) é § o S E
the other operators Q,—s in Ref. [412], which is a confer- Z S5 X O m X X § & “é 2
ence proceedings. %’ 'g QZ E g
The ETM collaboration has presented their first results for E ,§ g E E =
B-mixing quantities with Ny = 2 sea quarks in Refs. [393, £ E 2 f E = E
414] (ETM 12A, 12B) using ensembles at three lattice spac- 122 |o<<auli3!s
ings in the range a ~ 0.065-0.098 fm with a minimum pion j§ _ g = u; §
mass of 270 MeV. Additional ensembles at ¢ ~ 0.054 fm E B + o+ o+ % g g %
are included in ETM 13B [335]. The valence and sea quarks 2 = o oA £ g § O
are simulated with two different versions of the twisted- 8 T2 & % §
mass Wilson fermion action. The heavy-quark masses are = » S s o w|SES
in the charm region and above while keeping am;, < 0.6 c% 2 A '§ =g
for ETM 12A and 12B. Larger masses up to am;, < 0.85 A ;: ER: i
are used for ETM 13B. In this series of calculations the g é m | = S8 3
ratio method first developed for B-meson decay constants z ,§ Qo & S 6“5 é-% f'g
(see Appendix A.1.3 and Sect. 8.1) is extended to B-meson s | £ Sz a AR =
mixing quantities. ETM again constructs ratios of B-mixing = E = S s s qo%* § £ &
matrix elements (now called wg(y)) that are equal to unity in gl S £EEEE R ﬁa b o 5

@ Springer



Eur. Phys. J. C (2014) 74:2890

Page 79 of 179 2890

Table 27 Results for SU(3)-breaking ratios of neutral B;- and By;-meson mixing matrix elements and bag parameters

Bg,/Bg,

Heavy
quark

Renormalisation/

Continuum Chiral Finite
matching

Publication
status

f

Ref.

Collaboration

volume

extrapolation

extrapolation

treatment

1.06 (11)

1.268 (63)
1.13 (12)

1
1
1

2+

[415]
[406]
[403]
[335]

FNAL/MILC 12

2+

RBC/UKQCD 10C
HPQCD 09
ETM 13B

1.05 (7)

1.258 (33)

oV

2+
2
2

1.007 (15) (14)

1.03 (2)

1.225 (16) (14) (22)

121 (6)

[393,414]

ETM 12A, 12B

V Wrong-spin contributions are not included in the rSx PT fits

the static limit, including also an analogous ratio for £. The
renormalisation of the four-quark operator is calculated non-
perturbatively in the RI’/MOM scheme. As an intermediate
step for the interpolation to the physical b-quark mass, these
ratios include perturbative matching factors to match the
four-quark operator from QCD to HQET; these include tree-
level and leading-log contributions in ETM 12A and 12B, and
additionally next-to-leading-log contributions in ETM 13B.
Similar to their decay-constant analysis, ETM analyses the
SU(3) breaking ratio of ratios, ws/wy, and combines it with
w; to obtain Bg,. The data are interpolated to a fixed set
of heavy-quark reference masses on all ensembles, and sub-
sequently extrapolated to the continuum and to the physical
light-quark masses in a combined fit. The interpolation to the
physical b-quark mass is linear or quadratic in the inverse
of the heavy-quark mass. While ETM 13B reports RGI bag
parameters, ETM 12A and 12B report only Bp(m;)MS-NDR
atmy = 4.35 GeV. Taking as(Mz) = 0.1184 [97], we apply
an RGI conversion factor of éB/BB (mp)MSNPR — 1521 to
obtain the B p values quoted in Table 26. The observed dis-
cretisation effects (as measured by the percentage difference
between the lattice data at the smallest lattice spacing and the
continuum-extrapolated results) are <1 % over the range of
heavy-quark masses used in their simulations. As a result, the
dominant error on the bag parameters and on the ratio of bag
parameters is the combined statistical uncertainty, whereas
the dominant error on the SU(3)-breaking ratio £ is due to
the chiral extrapolation. Because these studies appear either
in conference proceedings or preprint only, the results do not
enter our averages.

For the Ny = 2 + 1 case there are three collaborations
that have presented results for B — B mixing matrix ele-
ments: HPQCD, RBC/UKQCD, and FNAL/MILC. The first
published results are by the HPQCD collaboration [403,413]
and use NRQCD b quarks and Asqtad light valence quarks on
Nt = 2+ 1 MILC Asqtad ensembles. In HPQCD 06A [413]
results are presented for Bg-mixing quantities only, using
one lattice spacing and two light sea-quark masses with a
minimum RMS pion mass of 510 MeV. The observed sea-
quark mass dependence is much smaller than the rather large
statistical errors. This calculation uses one-loop mean-field
improved lattice perturbation theory for the operator renor-
malisation. Discretisation errors cannot be estimated from
the data with only one lattice spacing, but they are estimated
using power counting arguments to be smaller than the domi-
nant statistical and renormalisation errors. With only one lat-
tice spacing and given the rather large minimum RMS pion
mass, this result does not enter our averages. These short-
comings are removed in HPQCD 09 [403] with two lattice
spacings, (a ~ 0.09,0.12 fm) and four or two sea-quark
masses per lattice spacing with a minimum RMS pion mass
of about400 MeV. The calculation is also extended to include

@ Springer



2890 Page 80 of 179

Eur. Phys. J. C (2014) 74:2890

ﬂGZOBde \/é_Bd st\/?Bs

— our average —
s
o H——— FNAL/MILC 11 A — o —
z

- HPQCD 09 -

HPQCD 06A —
~N
i HOH ETM 13B I
z
200 230 260 240 270 300 MeV

FLAG2013 Be, B,
—— our average i
s
N
i
Z o HPQCD 09 |-o-|
HPQCD 06A +—+———
o - ETM 13B HH
Il
z ——  ETM 12A,12B ——

10 1.2 14 16 10 1.2 14 1.6

Fig. 17 Neutral B- and B;-meson mixing matrix elements and bag parameters [values in Table 26 and Egs. (124), (125)]
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Fig. 18 The SU(3)-breaking quantities & and Bp /Bp, [values in
Table 27 and Eq. (126)]

both By and By mixing quantities and thus also the SU(3)-
breaking ratios. A combined chiral and continuum extrap-
olation of the data is performed, using NLO HMTrS x PT,
supplemented by NNLO analytic and generic discretisation
terms of O(asa?, a*). The dominant systematic error is due
to using one-loop mean-field improved lattice perturbation
theory for the operator renormalisation and matching, the
same as in HPQCD 06. It is estimated as 4 and 2.5 %, respec-
tively, consistent with power counting. The statistical, chiral,
and continuum-extrapolation uncertainties are also promi-
nent sources of uncertainty, followed by heavy-quark trun-
cation and scale-setting errors. The dominant error on £ is due
to statistics and chiral extrapolation. Finally, we note that this
work uses an old determination of r; = 0.321(5) fm from
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Ref. [380] to set the scale, which has since been superseded,
and that differs from the new value by about two standard
deviations. Dimensionless quantities are, of course, affected
by a change in rq only through the inputs, which are a sub-
dominant source of uncertainty. The scale uncertainty itselfis
also subdominant in the error budget, and this change there-
fore does not affect HPQCD 09’s results for fz, ,/Bp, out-
side of the total error.

The RBC/UKQCD collaboration has presented a result
for the SU(3) breaking ratio £ in Ref. [406] using a static-
limit action on Ny = 2 + 1 domain-wall ensembles at a
single lattice spacing a ~ 0.11 fm with a minimum pion
mass of approximately 430 MeV. They use both HYP and
APE smearing for the static-limit action and one-loop mean-
field improved lattice perturbation theory to renormalise the
static-limit four-quark operators. Effects of O(1/my) are
not included in the static-limit action and operators, but
Ref. [406] includes an estimate of this effect via power count-
ing as O((mg — mg)/myp) in the error budget. The statisti-
cal errors in this work are significant (~5-6 %), as are the
chiral-extrapolation errors (~7 %, estimated from the differ-
ence between fits using NLO SU(2) HM x PT and a linear fit
function), due to the rather large pion masses used in this in
this work. With data at only one lattice spacing, discretisa-
tion errors cannot be estimated from the data, but a power
counting estimate of this error of 4 % is included in the sys-
tematic error budget. With only one lattice spacing this result
does not enter our averages. The RBC/UKQCD collaboration
reported at Lattice 2013 [408] that they are extending this
study, using HYP and HYP2 smearings for the static-limit
action, smaller pion masses, larger volumes and two lattice
spacings. The conference proceedings [408], however, did
not appear until after the closing deadline and is therefore
not included in this review.
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Another calculation of the SU(3)-breaking ratio & is pre-
sented by the Fermilab Lattice and MILC collaborations in
Ref. [415] (FNAL/MILC 12). The calculation uses the Fer-
milab method for the b quarks together with Asqtad light
and strange valence quarks on a subset of the MILC Asq-
tad N = 2 + 1 ensembles, including lattice spacings in the
range a ~ 0.09-0.12 fm and a minimum RMS pion mass
of approximately 320 MeV. This analysis includes partially
quenched lattice data at six valence light-quark masses for
each sea-quark ensemble. The operator renormalisations are
calculated using one-loop mean-field improved lattice per-
turbation theory, which does not result in a significant source
of uncertainty for the SU(3)-breaking ratios. The combined
chiral and continuum extrapolations use a chiral fit function
based on NLO partially quenched HMrS y PT supplemented
by NNLO analytic terms. Also included are light-quark dis-
cretisation terms of (’)(aszaz,a“). The combined statisti-
cal, light-quark discretisation, and chiral-extrapolation error
dominates the error budget together with an uncertainty that
is described as the error due to the omission of “wrong-spin
contributions” (see below). First results for the B mixing
matrix elements from an ongoing FNAL/MILC calculation
of all B-meson mixing quantities on the full set of Asq-
tad ensembles are presented in [412], including the matrix
elements of all five operators that contribute to B-meson
mixing in the Standard Model and beyond. The dominant
uncertainties on the matrix elements are due to the combined
statistical, chiral extrapolation, and light-quark discretisa-
tion error and due to the one-loop matching. FNAL/MILC
11A reports results for fp q@ evaluated at © = my, in
the MS NDR scheme. Taking as(Mz) = 0.1184 [97] and
myp = 4.19 GeV [74], we apply an RGI conversion factor
of éB/BB (mp)MSNDR — 1 517 to obtain the values for the
RGI quantities listed in Table 26. Reference [412] presents
a complete error budget, but since the paper is a conference
proceedings, its results are not included in our averages.

For the Ny = 2 case there are no published results, so
we do not quote an average for this case. For Ny = 2 + 1
only the results of HPQCD 09 and FNAL/MILC 12 enter
our averages. First, we must consider the issue of the so-
called “wrong-spin contributions,” described in Ref. [415]
and explained in detail in Ref. [416]. With staggered light
quarks, interactions between different unphysical species
(“tastes”) of quarks induce mixing between the operator Q‘{
in Eq. (114) and the operators Qg and Qg in Eq. (123) at
O(az). These additional contributions to the matrix element
/B, \/Bqu are discretisation errors that vanish in the contin-
uum limit. The contributions of Q?—Qz have been derived
at next-to-leading order in HMrSx PT [416]. The result is
that, in the chiral expansion of the matrix elements of o9,
the matrix elements of QZ 5 appear with O(a?) coefficients
that depend upon the li ght—é]uark masses. These contributions

can be accounted for in the chiral-continuum extrapolation
by fitting the numerical results for the matrix elements of
the three operators simultaneously. Further, if the matrix ele-
ments of all five basis operators in Eqs. (114) and (123) are
computed on the lattice, then no additional low-energy con-
stants are required to describe the wrong-spin contributions
effects in the chiral-continuum extrapolation. In principle,
instead of using HMrS xPT as described above, it is pos-
sible to account for the wrong-spin terms via the inclusion
of generic mass-dependent terms such as O(azm%) in the
combined chiral-continuum extrapolation, provided that the
lattice spacing and light-quark masses are small enough.

Both HPQCD 09 and FNAL/MILC 11A use chiral fit
functions based on NLO HMrS x PT. Since, however, these
works predate Refs. [415,416], the wrong-spin terms are not
included in their chiral extrapolations. The calculation in
FNAL/MILC 12 also does not include the matrix elements of
all three operators, so here the effect of the wrong-spin con-
tributions is treated as a systematic error, which is estimated
using the lattice data described in Ref. [412]. As discussed
above, the estimated uncertainty of 3 % for & is a domi-
nant contribution to the error budget in Ref. [415]. Because,
however, HPQCD 09 does not include the wrong-spin con-
tributions in its chiral extrapolations, we must consider how
they affect the results. First, the chiral fit functions used in
HPQCD 09 and in FNAL/MILC 12 are very similar with sim-
ilar (though not identical) choices for prior widths. The main
difference is that the generic light-quark discretisation term
of O(asa?) included in HPQCD 09 is a little less constrained
than the O(a2a?) term included in FNAL/MILC 12. It is
therefore possible that the chiral extrapolation in HPQCD 09
accounts for the wrong-spin contributions via the generic
discretisation terms. Furthermore, for qu\/BT_qq the chiral-
extrapolation error, while not insignificant, is not a dominant
source of error in the HPQCD calculation. For &, however, the
chiral-extrapolation error is adominant source of uncertainty,
and the FNAL/MILC 12 analysis indicates that the omission
of the wrong-spin contributions from HMrS x PT fits may also
be a significant source of error. We therefore make the con-
servative choice of excluding HPQCD 09’s result for & from
our average, but keeping HPQCD 09’s results for fp,,/Bs,
and Bp, in our averages. As a result, we now have only one
calculation that enters our averages for each quantity. Our
averages are (Nf =2+ 1):

I8,/ Bp, =216(15)MeV,  fp ./ Bp, = 266(18) MeV

(124)
Bp, = 1.27(10), Bp, = 1.33(6), (125)
£ =1268(63), Bg,/Bp, = 1.06(11). (126)

Finally, we note that the above results are all correlated
with each other: the numbers in (124) and (125) are
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from HPQCD 09 [403], while those in (126) are from
FNAL/MILC 12 [415]—the same Asqtad MILC ensembles
are used in these simulations. The results are also corre-
lated with the averages obtained in Sect. 8.1 and shown in
Eq. (111), because the calculations of B-meson decay con-
stants and mixing quantities are performed on the same (or
on similar) sets of ensembles, and results obtained by a given
collaboration use the same actions and setups. These correla-
tions must be considered when using our averages as inputs to
UT fits. In the future, as more independent calculations enter
the averages, correlations between the lattice-QCD inputs to
the UT fit will become less significant.

8.3 Semileptonic form factors for B decays to light flavours

The Standard Model differential rate for the decay B(;) —
P?v involving a quark-level b — u transition is given, at
leading order in the weak interaction, by a formula identical
to the one for D decays in Eq. (95) but with D — B, and
the relevant CKM matrix element |V,4| — |Vipl:

2 242 2 2
dT (B — Pv)  GE|Vipl> @ —mp) \/ﬂ

dq? 2473 q*m?

Bys)
m% 2 2 2 2012
X 1+ — mB(S)(Ep_mp)|f+(q )

2g2

3mj 212 2\12 127
+ g My M@ | (127)
Again, for £ = e, u the contribution from the scalar form
factor fy can be neglected, and one has a similar expression
to Eq. (97), which in principle allows for a direct extrac-
tion of |V,;| by matching theoretical predictions to experi-
mental data. However, while for D (or K) decays the entire
physical range 0 < g% < qéax can be covered with moder-
ate momenta accessible to lattice simulations, in B — wfv
decays one has ¢2,, ~ 26 GeV? and only part of the full
kinematic range is reachable. As a consequence, obtaining
|Vup| from B — mlv is more complicated then obtaining
[Ved(syl from semileptonic D-meson decays. The standard
procedure involves the matching of theoretical predictions
and experimental data for the integrated decay rate over a
limited q2 range,

%

-
VP ) \ag? 7

qi

(128)

This requires knowledge of the relevant form factor(s) within
the integration interval. In practice, lattice computations are
restricted to small values of the momentum transfer (see
Sect. 7.2) where statistical and momentum-dependent dis-
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cretisation errors can be controlled,> which in existing cal-
culations roughly cover the upper third of the kinemati-
cally allowed ¢ range. Experimental results normally cover
the whole interval, but they are more precise in the low-g>
region. Therefore, both experimental and lattice data for the
g? dependence have to be parameterised by fitting data to a
specific ansatz, either separately or jointly (with the relative
normalisation |V, |2 as a free parameter). A good control of
the systematic uncertainty induced by the choice of param-
eterisation is hence crucial to obtain a precise determination
of [Vyp|.

8.3.1 Parameterisations of heavy-to-light semileptonic
form factors

All form factors are analytic functions of ¢2 outside physical
poles and inelastic threshold branch points; in the case of
B — m{v, the only pole expected below the Brr production
region, starting at q2 =ty =(mp+ mn)z, is the B*. A sim-
ple ansatz for the ¢> dependence of the B — 7 £v semilep-
tonic form factors that incorporates vector-meson dominance
is the Becirevic—Kaidalov (BK) parameterisation [356]:

- £(0)
f+(g") (1 —q2/m3)( —ag?/m3.)’
) £(0)
_ . 12
Solg?) [ %qz/m%* "

Because the BK ansatz has few free parameters, it has been
used extensively to parameterise the shape of experimen-
tal branching-fraction measurements and theoretical form-
factor calculations. A variant of this parameterisation pro-
posed by Ball and Zwicky (BZ) adds extra pole factors to
the expressions in Eq. (129) in order to mimic the effect
of multiparticle states [418]. Another variant (RH) has been
proposed by Hill in [419]. Although all of these parame-
terisations capture some known properties of form factors,
they do not manifestly satisfy others. For example, pertur-
bative QCD scaling constrains the high-¢? behaviour to be
f1(g?) ~ 1/¢? up tologarithmic corrections [420-422], and
angular momentum conservation constrains the asymptotic
behaviour near thresholds—e.g. Im £ (¢2) ~ (¢% — 13.)%/?
(see e.g. [350]). Further, they do not allow for an easy quan-
tification of systematic uncertainties.

A more systematic approach that improves upon the use
of simple models for the g2 behaviour exploits the positiv-
ity and analyticity properties of two-point functions of vec-
tor currents to obtain optimal parameterisations of form fac-
tors [349,422-426]. Any form factor f can be shown to admit

32 The variance of hadron correlation functions at non-zero momentum
is dominated at large Euclidean times by zero-momentum multiparticle
states [417]; therefore the noise-to-signal grows more rapidly than for
the vanishing momentum case.
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a series expansion of the form

fgh = (130)

B(g®)$(q>. 10)

where the squared momentum transfer is replaced by the
variable

o
> an(to) 2(g°, 10)",
n=0

V=g - =10

Vit —q2 + i+ — 1o
This is a conformal transformation, depending on an arbitrary
real parameter 7o < 7., that maps the ¢ plane cut for g >
onto the disk |z(¢2, f0)| < 1 in the z complex plane. The
function B(g?) is called the Blaschke factor, and contains
poles and cuts below z,—for instance, in the case of B — 7
decays

2(¢%, 1) (131)

(g%, 10) — 2(mFu . 10)
1 — 2(q2, t0)z(m%., 1)

B(q*) = gt mp). (132
Finally, the quantity ¢ (g2, o), called the outer function, is
an analytic function that does not introduce further poles or
branch cuts. The crucial property of this series expansion is

that the sum of the squares of the coefficients

> 2 1 dz 5
D=5 f — B¢ () (), (133)
n=0 T <
is a finite quantity. Therefore, by using this parameterisation
an absolute bound to the uncertainty induced by truncating
the series can be obtained. The criteria involved in the optimal
choice of ¢ then aim at obtaining a bound that is useful in
practice, while (ideally) preserving the correct behaviour of
the form factor at high ¢ and around thresholds.

The simplest form of the bound would correspond to
Yoo a? = 1. Imposing this bound yields the following
“standard” choice for the outer function

[
b(q* 1) = 270 0) (,/t+ —q? + /1y —to)
3/2
o (s
-5 2
I+ —q
(Ve m)

where x;-(0) is the derivative of the transverse component
of the polarisation function (i.e. the Fourier transform of the
vector two-point function) IT,, (¢) at Euclidian momentum
Q? = —¢? = 0. It is computed perturbatively, using opera-
tor product expansion techniques, by relating the B — w£v
decay amplitude to £v — B inelastic scattering via cross-
ing symmetry and reproducing the correct value of the inclu-
sive rate fv — X,. We will refer to the series parameter-
isation with the outer function in Eq. (134) as Boyd, Grin-
stein, and Lebed (BGL). The perturbative and OPE trunca-

(134)

tions imply that the bound is not strict, and one should take
it as

N
Yoa sl
n=0

where this holds for any choice of N. Since the values of
|z| in the kinematical region of interest are well below 1
for judicious choices of 1y, this provides a very stringent
bound on systematic uncertainties related to truncation for
N > 2. On the other hand, the outer function in Eq. (134) is
somewhat unwieldy and, more relevantly, spoils the correct
large ¢ behaviour and induces an unphysical singularity at
the B threshold.

A simpler choice of outer function has been proposed by
Bourrely, Caprini and Lellouch (BCL) in [350], which leads
to a parameterisation of the form

(135)

fi@®) = (136)

N
— Y an(t)z(g”, 10)".

1 - qz/mB* n=0

This satisfies all the basic properties of the form factor, at the
price of changing the expression for the bound to

N
> Bji(to)aj(to)a(to) < 1.
Jj. k=0

(137)

The constants B j; can be computed and shown to be |B ;| <
O(1072) for judicious choices of #y; therefore, one again
finds that truncating at N > 2 provides sufficiently stringent
bounds for the current level of experimental and theoretical
precision. It is actually possible to optimise the properties of
the expansion by taking

fo = fopt = (mp — mz)(/mp — «/mn)zv

which for physical values of the masses results in the semilep-
tonic domain being mapped onto the symmetric interval
|z| < 0.279 (where this range differs slightly for the B* and
B decay channels), minimizing the maximum truncation
error. If one also imposes the requirement that the asymp-
totic behaviour Im £, (¢%) ~ (¢> — t;)*/* near threshold
is satisfied, then the highest-order coefficient is further con-
strained as

(138)

(—D¥
ay =—— > (=D"nay. (139)
n=0

Substituting the above constraint on ay into Eq. (136) leads
to the constrained BCL parameterisation

N-1

Y[ = 2],

n=0

fi@®) =

1—q%/m%,
(140)
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which is the standard implementation of the BCL parameter-
isation used in the literature.

Parameterisations of the BGL and BCL kind (to which we
will refer collectively as “z-parameterisations”) have already
been adopted by the Babar and Belle collaborations to report
their results, and also by the Heavy Flavour Averaging Group
(HFAG). Some lattice collaborations, such as FNAL/MILC
and ALPHA, have already started to report their results for
form factors in this way. The emerging trend is to use the BCL
parameterisation as a standard way of presenting results for
the ¢ dependence of semileptonic form factors. Our pol-
icy will be to quote results for z-parameterisations when the
latter are provided in the paper (including the covariance
matrix of the fits); when this is not the case, but the pub-
lished form factors include the full correlation matrix for
values at different qz, we will perform our own fit to the con-
strained BCL ansatz in Eq. (140); otherwise no fit will be
quoted.

8.3.2 Form factors for B — wfv and By — K{v

The semileptonic decay processes B — wfv and By — K{v
enable determinations of the CKM matrix element |V,|
within the Standard Model via Eq. (127). Results for the B —
m¢v form factors have been published by the HPQCD [427]
and FNAL/MILC [351] Collaborations, in both cases for
Nt = 241 dynamical quark flavours. Work is also under way
by ALPHA [428,429] (on Nf = 2 non-perturbatively O(a)
improved Wilson configurations), FNAL/MILC [430,431]
(updating the published analysis), HPQCD [432,433] (with
HISQ valence light quarks), and the RBC/UKQCD Collab-
orations [434,435] (with Ny = 2 + 1 DWF). These cal-
culations, however, are so far described only in conference
proceedings which do not provide quotable results, so they
will not be discussed in this report. No unquenched compu-
tation of By — K {v form factors is currently available. Pre-
liminary results by the HPQCD Collaboration are reported
in [432,433], while work in progress by the FNAL/MILC
Collaboration is discussed in [430,436].

Both the HPQCD and the FNAL/MILC computations of
the B — m{v amplitudes use ensembles of gauge configu-
rations with Ny = 2 + 1 flavours of rooted staggered quarks
produced by the MILC Collaboration at two different val-
ues of the lattice spacing (a ~ 0.12, 0.09 fm). The relative
scale is fixed in both cases through ry/a, while the abso-
lute scale is set through the Y 25-18S splitting for HPQCD
and f; (with uncertainty estimated from the same Y split-
ting) for FNAL/MILC. The spatial extent of the lattices is
L >~ 2.4 fm, save for the lightest mass point (¢ ~ 0.09 fm)
for which L ~ 2.9 fm. The lightest RMS pion mass is around
400 MeV. Lattice-discretisation effects are estimated within
HMrS x PT in the FNAL/MILC computation, while HPQCD
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quotes the results at a ~ 0.12 fm as central values and uses
the a ~ 0.09 fm results to quote an uncertainty.

The main difference between the computations lies in the
treatment of heavy quarks. HPQCD uses the NRQCD for-
malism, with a one-loop matching of the relevant currents
to the ones in the relativistic theory. FNAL/MILC employs
the clover action with the Fermilab interpretation, with a
mostly non-perturbative renormalisation of the relevant cur-
rents, within which light-light and heavy—heavy currents are
renormalised non-perturbatively and one-loop perturbation
theory is used for the relative normalisation. (See Table 28;
full details as regards the computations are provided in tables
in Appendix B.6.3.)

Chiral extrapolations are an important source of sys-
tematic uncertainty, since the pion masses at which the
computations are carried out are relatively heavy. In order
to control deviations from the expected yPT behaviour,
FNAL/MILC supplements SU(3) HMrS x PT formulae with
higher-order powers in E to extend the form factor param-
eterisation up to E; ~ 1 GeV. Chiral-extrapolation effects
do indeed make the largest contribution to their systematic
error budget. HPQCD performs chiral extrapolations using
HMrS x PT formulae, and estimates systematic uncertainties
by comparing the result with the ones from fits to a linear
behaviour in the light-quark mass, continuum HM x PT, and
partially quenched HMrS x PT formulae (including also data
with different sea and valence light quark masses). This is
again the dominant contribution to the error budget of the
computation, along with the matching of the heavy-light
current.

HPQCD provides results for both fy(¢%) and fo(g?).
In this case, the parameterisation of the ¢> dependence of
form factors is somewhat intertwined with chiral extrapola-
tions: a set of fiducial values {Ej(,")} is fixed for each value
of the light-quark mass, and f ¢ are interpolated to each of
the E,(,"); chiral extrapolations are then performed at fixed
E . The interpolation is performed using a BZ ansatz. The
g* dependence of the resulting form factors in the chiral
limit is then described by means of a BZ ansatz, which is
cross-checked against BK, RH, and BGL parameterisations.
FNAL/MILC presents results for f(g%) only, and provides
as its preferred description a three-parameter fit to the BGL
form in a companion paper [437]; this result is quoted in
Table 28. HPQCD, on the other hand, does not provide the
correlation matrix for the values of f, (¢?) in the chiral limit,
and therefore no independent fit to a z-parameterisation is
possible.

Results for the integrated decay rate A¢B7, which is
defined in Eq. (128) and depends on the chosen interval of
integration, are available in both cases (see Table 28 and
Fig. 19). We quote the average (g1 = 4 GeV, ¢2 = ¢max):
Nr=2+1:

ACBT =2.16(50) ps~!, (141)



Eur. Phys. J. C (2014) 74:2890 Page 85 of 179 2890

. Br
‘é FIAG 2013 Ag
3
It - our average for Ny =2+1
= 3
| 0
5 z
@z ~ = | FNAL/MILC 08A
:
=@ 8 = HPQCD 06
HERE
£l ¢l 2
s1E]l 2 : : : :
g 15 20 25 3.0 ps-1
‘E“; S 8 | Fig. 19 Integrated width of the decay B — m£v divided by |V,4b|2
[values in Table 28 and Eq. (141)]
- 8
i =) where we have conservatively assumed that the calcula-
+ 1 = . .
& S 8 tions are 100 % correlated because neither FNAL/MILC nor
) o HPQCD provide itemised error budgets for A¢ 57 33

The results for fi(g%) in HPQCD 06 and FNAL/
MILC 08A can also be combined into a single fit to
our preferred BCL z-parameterisation, Eq. (140). While
> S FNAL/MILC 08A provides the full correlation matrix bet-

Heavy-quark
treatment

“cov. matrix” entry indicates whether or not the correlations, either between the lattice form-factor data at different values of g2, or between the coefficients of a z-parameterisation, are provided.

Table 28 Results for the B — 7 £v semileptonic form factor. The quantity A¢ is defined in Eq. (128); the quoted values correspond to ¢; = 4 GeV, g2 = ¢max, and they are given in ps~!. The
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E 2 E % ~ in the energy of the final-state pion is involved in the com-
- O . . .
= Ialie * x 29 putation, qﬁlin = 17.35 GeV?. Since in FNAL/MILC 08A
'_‘.:j £ E_, % qfnin = 18.4 GeV2, this extends the covered kinematical
S E i “l-‘l’ _ range, and, together with the smaller relative error of the
= S . . .
E|E & % 65 HPQCD datum, results in the latter having a significant
E 5% o o|gT % weight in the fit. The HPQCD and FNAL/MILC computa-
E B 2 & tions are correlated by the use of an overlapping set of gauge-
S O .
§ K- 5 Z > field ensembles for the evaluation of observables. We there-
g E g. 87 2 fore treat the combined statistical plus chiral-extrapolation
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Fig. 20 The form factors (1 — qz/mZB*)f+(q2) versus z. The filled
symbols denote data points included in the fit, while the open symbols
show points that are not included in the fit (either because of unknown
correlations or strong correlations). The grey band displays our pre-
ferred three-parameter BCL fit to the plotted data with errors

sion by considering fits to different orders in z. Figure 20
plots the FNAL/MILC and HPQCD data points for (1 —
g%/ m%* ) f+(¢?) versus z; the data are highly linear, and only
a simple two-parameter fit is needed for a good x 2 /dof. (Note
that a fit to the constrained BCL form in Eq. (140) with two
free parameters corresponds to a polynomial through O(z?),
etc.) Further, we cannot constrain the coefficients of the z-
expansion beyond this order, as evidenced by the error on
the coefficient a; being significantly greater than 100 % for a
three-parameter fit. Because the FNAL/MILC synthetic data
points are all from the output of the same chiral-continuum
extrapolation, they are strongly correlated, so inverting the
full 12 x 12 correlation matrix is problematic. We address
these correlations in the FNAL/MILC data in several ways
and make sure that the outcome of the fit is stable: we thin
the data set to either six (every other) or four (every third)
points, and imposing singular value decomposition (SVD)
cuts of various severities in the construction of the pseudoin-
verse. The results (central values and errors) for the fit param-
eters are all very consistent irrespective of the treatment of
correlations.

We quote as our preferred result the outcome of the
three-parameter O(z*) BCL fit using a thinned FNAL/MILC
data set that includes every second data point starting at
g* = 18.4 GeV? in addition to the HPQCD point at g> =
17.35 GeV%:

Ne=2+1: ayp=0.453(33), a3 =—0.43(33),
ay; = 0.9(3.9);
1.00 —-0.55 —-0.63
cov(a;,aj) = | —0.55 1.00 0.59 , (142)

—-0.63 0.59 1.00
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where the above uncertainties encompass both the lattice
errors and the systematic error due to truncating the series
in z. This can be used as the averaged FLAG result for the
lattice-computed form factor £, (¢%). The coefficient a3 can
be obtained from the values for ap—a; using Eq. (139). We
emphasise that future lattice-QCD calculations of semilep-
tonic form factors should publish their full statistical and
systematic correlation matrices to enable others to use the
data fully.

8.3.3 Form factors for rare and radiative B semileptonic
decays to light flavours

Lattice-QCD input is also available for some exclusive
semileptonic decay channels involving neutral-current b —
s transitions at the quark level. Being forbidden at tree
level in the SM, these processes allow for stringent tests
of potential new physics; simple examples are B — K™y
and B — K™ ¢*¢~, where the B-meson (and therefore the
kaon) can be either neutral or charged.

The corresponding SM effective weak Hamiltonian is con-
siderably more complicated than the one for the tree-level
processes discussed above: after neglecting top quark effects,
as many as ten dimension-six operators formed by the prod-
uct of two hadronic currents or one hadronic and one leptonic
current appear.>* Three of the latter, coming from penguin
and box diagrams, dominate at short distances, and within a
reasonable approximation one can keep these contributions
only. Long-distance hadronic physics is then again encoded
in matrix elements of current operators (vector, tensor, and
axial-vector) between one-hadron states, which in turn can be
parameterised in terms of a number of form factors (see [439]
for a complete description). In addition, the lattice compu-
tation of the relevant form factors in channels with a vector
meson in the final state faces extra challenges on top of those
already present when the decay product is a Goldstone boson:
the state is unstable and the extraction of the relevant matrix
element from correlation functions is significantly more com-
plicated; and xPT cannot be used as a guide to extrapolate
results at unphysically heavy pion masses to the chiral limit.
As a result, the current lattice methods and simulations that
allow for control over systematic errors for kaon and pion
final states leave uncontrolled systematic errors in calcula-
tions of weak decay form factors into unstable vector-meson
final states, such as the K*- or p-mesons.

Several collaborations are calculating form factors for
B — K™ transitions in the Standard Model and beyond
on the MILC Ny = 2 + 1 rooted Aqgstad staggered gauge
configurations. Two new results have appeared since the ini-
tial April closing date for this review. We summarise their
content briefly here, but a full discussion of the calculations,

3 See e.g. [438] and references therein.
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including their rating, is postponed to the next major update
of the FLAG review. The HPQCD Collaboration has pub-
lished in Ref. [440] a determination of the three form factors
for B — K£7¢~ with NRQCD b quarks and HISQ valence
light quarks. In this work, they parameterise the form factors
over the full kinematic range using a model-independent z-
expansion as in Sect. 8.3.1, and provide the series coefficients
and covariance matrix. HPQCD also published a compan-
ion paper [441] in which they calculate the Standard Model
predictions for the differential branching fractions and other
observables and compare to experiment. Horgan et al. have
obtained the seven form factors governing B — K*{1¢~
(as well as those for By — ¢ £7¢7) in Ref. [354] using
NRQCD b quarks and Asqtad staggered light quarks. In this
work, they use a “modified” z-expansion to simultaneously
extrapolate to the physical light-quark masses and continuum
and extrapolate in ¢ to the full kinematic range. As discussed
in Sect. 7.2, the “modified” z-expansion is not based on an
underlying effective theory, and the associated uncertainties
have yet to be fully studied. Horgan et al. use their form-
factor results to calculate the differential branching fractions
and angular distributions and discuss the implications for
phenomenology in a companion paper [442]. Finally, the
FNAL/MILC Collaboration has reported preliminary results
for the three B — K £ £~ form factors using Fermilab bot-
tom quarks and Astqad light quarks in Refs. [430,436].

8.4 Semileptonic form factors for B — D{v, B — D*{v
and B — Drtv

The semileptonic processes B — D{v and B — D*{v
(¢ = e, n) have been studied extensively by experimental-
ists and theorists over the years. They allow for the deter-
mination of the CKM matrix element |V,;|, an extremely
important parameter of the Standard Model. | V.| appears in
many quantities that serve as inputs into CKM Unitarity Tri-
angle analyses and reducing its uncertainties is of paramount
importance. For example, when €, the measure of indirect
C P-violation in the neutral kaon system, is written in terms
of the parameters p and 7 that specify the apex of the unitar-
ity triangle, a factor of |V,;|* multiplies the dominant term.
As a result, the errors coming from |V,| (and not those
from Bg) are now the dominant uncertainty in the Stan-
dard Model (SM) prediction for this quantity. Decay rates
for B — D™ (v processes can be parameterised as

dCg— pog—y _ Gpmp 202 143/2
= —_ 1 */
Tw 1873 (mp +mp)~(w )
x |new Ve |G (w) 2, (143)
2,3
Al porg-5 _ Gump-

dw BT (mp —mp)*(w* = 1'/?

X w2 Vep |2 x () | F (w) |2,

(144)

where w = vg-vpe,vp = pp/mp are the four-velocities of
the mesons, and ngw = 1.0066 is the one-loop electroweak
correction [443]. The function x (w) in Eq. (144) depends
upon the recoil w and the meson masses, and reduces to
unity at zero recoil [438]. These formulae do not include
terms that are proportional to the lepton mass squared which
can be neglected for £ = e, u.

Most unquenched lattice calculations for B — D*£v and
B — Dlv decays to date focus on the form factors at zero
recoil [444,445] FB=DP"(1) and GB~P(1). These can then
be combined with experimental input to extract |V ,|. The
main reasons for concentrating on the zero recoil point are
that (i) the decay rate then depends on a single form factor,
and (ii) for B — D*{v, there are no O(Aqcp/m ) contri-
butions due to Luke’s theorem. Further, the zero recoil form
factor can be computed via a double ratio in which most
of the current renormalisation cancels and heavy-quark dis-
cretisation errors are suppressed by an additional power of
Aqcp/mo.

Some recent work on B — D) ¢y transitions has started
to explore the dependence of the relevant form factors on the
momentum transfer, but these results are not yet published.
The methodology for this is similar to the one employed in
B — m/{v transitions; we refer the reader to Sect. 8.3 for a
detailed discussion. Also recently, first results have appeared
for By — Dgfv amplitudes, again including information
about the momentum-transfer dependence; this will allow
for an independent determination of |V, | as soon as experi-
mental data are available for these transitions.

8.4.1 By — Dy decays

Until recently, the only unquenched lattice result for the B —
D¢y form factor GB~P (1) at zero recoil had appeared in
a 2004 conference proceeding by FNAL/MILC [446]. This
calculation employs MILC Ny = 2 4 1 configurations at a
single lattice spacing, again with Fermilab bottom and charm
quarks and Asqtad staggered light quarks. Three values of the
light-quark mass are used and results extrapolated linearly
to the chiral limit. The preliminary result is GE=P (1) =
1.074(18)(16).

The FNAL/MILC study of B — D{v transitions is now
being greatly updated by considering several lattice spac-
ings and quark masses, as well as transitions outside the zero
recoil limit. Preliminary results have been published in con-
ference proceedings [447], following the strategy previously
outlined in [448]. This work employs ensembles at four val-
ues of the lattice spacing ranging between approximately
0.045 and 0.12 fm, and four values of the light-quark mass
corresponding to pions with RMS masses ranging between
330 and 470 MeV.

The quantities directly studied are the form factors s+
defined by
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(D(pp)icyub| B(ps))
N

=hy(w)(vg +vp)u
+h_(w)(vp — VD), (145)

which are related to the standard vector and scalar form fac-
tors by

1
f+(@?) = i [(1+ Py (w) — (1= rh-(w)],
1 1—
folg®) = ﬁ[ 1+ 2w + —“’h_(uo} . (146)
+r 1—r

with r = mp/mp. (Recall that q2 = (pp — pD)2 =
m% + mZD — 2wmpmp.) The hadronic form factor rele-
vant for experiment, G(w), is then obtained from the relation
G(w) = 4r f+(q2) /(1 4+ r). The form factors are obtained
from double ratios of three-point functions in which the
flavour-conserving current renormalisation factors cancel.
The remaining matching factor Py is estimated with one-
loop lattice perturbation theory.

In order to obtain h4(w) the results are fitted to an
ansatz that contains the light-quark mass and lattice spacing
dependence predicted by next-to-leading order rSHMChPT,
and the leading dependence on m, predicted by the heavy
quark expansion (l/m% for Ay and 1/m, for h_). The w-
dependence, which allows for an interpolation in w, is given
by analytic terms up to (1 —w)?, as well as a contribution from
the log proportional to g%)* D+ Lhe total systematic error is
2.1 % for hy and 22 % for h_ (note that 2_ is of O(1 — w)
in the recoil parameter, while 4 is of O(1)), where the error
budget is dominated by the heavy-quark discretisation (esti-
mated from HQET) in the case of 4, and by the perturbative
current matching factor for 4_.

Synthetic data points at three values of w that cover the
simulated range are generated for h4(w), from which the
form factors f o are reconstructed and their g*-dependence
fitted to a z-parameterisation of the BGL form [349], cf.
Sect. 8.3. The values of the series coefficients and their cor-
relations are not given in the conference proceedings, but are
left for a forthcoming full publication. From the fit result one
can extract, in particular, the value of the relevant hadronic
form factor at zero recoil

GB=P(1) = 1.081(25). (147)

Another recent work [449] provides the first study of
By — Dglv transitions with Ny = 2 flavours of dynami-
cal quarks, using the publicly available ETMC configurations
obtained with the twisted-mass QCD action at maximal twist.
Four values of the lattice spacing, ranging between 0.054 and
0.098 fm, are considered, with physical box lengths ranging
between 1.7 and 2.7 fm. At two values of the lattice spacing
two different physical volumes are available. Charged-pion
masses range between ~270 MeV and ~490 MeV, with two
or three masses available per lattice spacing and volume, save
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for the a ~ 0.054 fm point at which only one light mass is
available for each of the two volumes. The strange and heavy
valence quarks are also treated with maximally twisted-mass
QCD.

The quantities of interest are again the form factors s
defined above. In order to control discretisation effects from
the heavy quarks, a strategy similar to the one employed by
the ETM Collaboration in their studies of B-meson decay
constants (cf. Sect. 8.1) is employed: the value of G(w) is
computed at a fixed value of m . and several values of a heav-
ier quark mass m;lk) = A¥m,, where A is a fixed scaling
parameter, and step-scaling functions are built as

Gw, "+ me, me, a®)
g(ws )"kmcv mC? a2) .

Each ratio is extrapolated to the continuum limit, oy (w) =
lim,—, ¢ X¢(w). One then exploits the fact that the mj, — oo
limit of the step-scaling is fixed—in particular, it is easy to
find from the heavy-quark expansion that lim,,, o 0 (1) =
1. In this way, the physical result at the b-quark mass can
be reached by interpolating o (w) between the charm region
(where the computation can be carried out with controlled
systematics) and the known static limit value.

In practice, the values of m. and my are fixed at each
value of the lattice spacing such that the experimental kaon
and Dy masses are reached at the physical point, as deter-
mined in [60]. For the scaling parameter A = 1.176 is cho-
sen, and eight step-scaling steps are performed, reaching
my/me = 1.176° ~ 4.30, approximately corresponding to
the ratio of the physical » and ¢ masses in the MS scheme at
2 GeV. All observables are obtained from ratios that do not
require (re)normalisation. The ansatz for the continuum and
chiral extrapolation of ¥ contains a constant and linear terms
in mge, and a?. Twisted boundary conditions in space are used
for valence-quark fields for better momentum resolution.
Applying this strategy the form factors are finally obtained
at four reference values of w between 1.004 and 1.062, and,
after a slight extrapolation to w = 1, the result is quoted

p(w) = (148)

GB=Ds(1) = 1.052(46). (149)

The authors also provide values for the form factor rele-
vant for the meson states with light valence quarks, obtained
from a similar analysis to the one described above for the
B; — Dy case. Values are quoted from fits with and without
a linear mgey /m term in the chiral extrapolation. The result
in the former case, which safely covers systematic uncertain-
ties, i

G870 (1) = 1.033(95). (150)

Given the identical strategy, and the small sensitivity of the
ratios used in their method to the light valence- and sea-quark
masses, we assign this result the same ratings in Table 29
as those for their calculation of G5~ Ps(1). Currently the
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Table 29 Lattice results for the B — D*¢v, B — D{v and By — Dg{v semileptonic form factors and R(D)

Collaboration Ref. Ny Publication Continuum Chiral Finite Renormalisation Heavy-quark  Form factor
status extrapolation extrapolation volume treatment

FNAL/MILC 13B  [447] 2+1 CV * o * o} v FB=D* (1) 0,906 (4) (12)

FNAL/MILC 10 [444] 2+1 C$§ * o * o v FB=D¥(1) 0.9017 (51) (87) (83)
(89) (30) (33)*

FNAL/MILC 08  [445] 2+1 A * o * o v FB=>D (1) 0.921 (13) (8) (8)
(14) 6) 3) 4)

FNAL/MILC 13B  [447] 2+1 C * (@) * (0] v GB=>Dy  1.081(25)

FNAL/MILC 04A [446] 241 C [ ] [ ] o* of v GB=D)y  1.074(18) (16)

FNAL/MILC 12A  [453] 241 A @) (0] * o) v R(D) 0.316 (12) (7)

Atoui 13 [449] 2 P * * * - v GB=>D(1)  1.033(95)

Atoui 13 [449] 2 P * * * - v GBs—Ds (1) 1.052 (46)

'v Update of FNAL/MILC 08 for Lattice 2013
§ Update of FNAL/MILC 08 for CKM 2010

 Value of F(1) presented in Ref. [444] includes 0.7 % correction ngw. This correction is unrelated to the lattice calculation and has been removed

here
* No explicit estimate of FV error, but it is expected to be small

T No explicit estimate of perturbative truncation error in vector-current renormalisation factor, but it is expected to be small because of mostly

non-perturbative approach

precision of this calculation is not competitive with that of
FNAL/MILC 13A, but this is due largely to the small number
of configurations analysed by Atoui et al. The viability of
their method has been clearly demonstrated, however, which
leaves significant room for improvement on the errors of both
the B — D and By — D; form factors with this approach
by including either additional two-flavour data or analysing
more recent ensembles with Ny > 2.

Finally, Atoui et al. also study the scalar and tensor form
factors, as well as the momentum-transfer dependence of
f+.0. The value of the ratio fy (q2) /f+ (q2) is provided at a
reference value of ¢2 as a proxy for the slope of G(w) around
the zero-recoil limit.

84.2 B — D* decays

The most precise computation of the zero-recoil form fac-
tors needed for the determination of |V,| from exclusive
B semileptonic decays comes from the B — D*{v form
factor at zero recoil, F8~P" (1), calculated by the Fermilab
Lattice and MILC Collaborations [444,445]. This work uses
the MILC Nf = 2 + 1 ensembles. The bottom and charm
quarks are simulated using the clover action with the Fermi-
lab interpretation and light quarks are treated via the Asqtad
staggered fermion action. At zero recoil F2—=>P " (1) reduces
to a single form factor, 4 4, (1), coming from the axial-vector
current

(D*(v, €)|Au|B(v)) = iv/2mp2mp~ €, ha, (1),

where ¢’ is the polarisation of the D*. Reference [445] intro-
duces a new ratio of three-point correlators which directly
gives |ha, ()]

(151)

(D*|ey;ysb|B) (Blbyjysc|D*)
(D*|cysc|D*) (B|by4b|B)

A= =lha, (D*. (152)

In Ref. [445] simulation data are obtained on MILC ensem-
bles with three lattice spacings, a ~ 0.15, 0.12, and 0.09 fm,
for two, four or three different light-quark masses respec-
tively. Results are then extrapolated to the physical, contin-
uum/chiral, limit employing staggered x PT.

The D*-meson is not a stable particle in QCD and decays
predominantly into a D plus a pion. Nevertheless, heavy—
light meson xPT can be applied to extrapolate lattice simu-
lation results for the B — D*{v form factor to the physical
light-quark mass. The D* width is quite narrow, 0.096 MeV
for the D**(2010) and less than 2.1 MeV for the D*(2007),
making this system much more stable and long lived than the
p or the K* systems. The fact that the D* — D mass differ-
ence is close to the pion mass leads to the well-known “cusp”
in R4, just above the physical pion mass [450-452]. This
cusp makes the chiral extrapolation sensitive to values used
in the xPT formulae for the D*Dm coupling gp+py. The
error budget in Ref. [445] includes a separate error of 0.9 %
coming from the uncertainty in g p= p, in addition to general
chiral-extrapolation errors in order to take this sensitivity into
account.

The final value presented in [445], FE=>P" (1) =ha, (1) =
0.921(13)(20), where the first error is statistical, and the sec-
ond the sum of systematic errors added in quadrature, has a
total error of 2.6 %. This result is updated in Ref. [444] after
increasing statistics and adding data from a =~ 0.06 fm lat-
tices, and even further in Ref. [447] adding data from an
a =~ 0.045 fm ensemble. The latest value is

FBE=D(1) = 0.906(4)sgar (12)sys, (153)
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with the total error reduced to 1.4 %. The largest system-
atic uncertainty comes from discretisation errors followed
by effects of higher-order corrections in the chiral perturba-
tion theory ansatz.

8.4.3 B — D™ty decays

Another interesting semileptonic process is B — D®rv.
Here the mass of the outgoing charged lepton cannot be
neglected in the decay rate formula, so that both vector
and scalar form factors come into play. Recently Babar
announced their first observations of the semileptonic decays
of B-mesons into third generation leptons at a rate in slight
excess over SM expectations. Since the lepton mass is now
large enough for the branching fraction B(B — Dtv) to
be sensitive to the scalar form factor fy(g?), this could be
a hint for some New Physics scalar exchange contribution.
Accurate SM predictions for the ratio

R(D®)=B(B— D®tv)/B(B— D®¢v) with t=e, 1
(154)

have therefore become important and timely. FNAL/MILC
has published the first unquenched lattice determination of
R(D) [453]. They use a subset of the MILC ensembles from
the ongoing B — D{v semileptonic project [448], namely
two light-quark masses each on a ~ 0.12 and 0.09 fm lat-
tices, and find,

R(D) = 0.316(12)(7). (155)
This SM prediction is about ~1.7c lower than the Babar
measurement.

8.4.4 Ratios of B and By semileptonic decay form factors

In addition to B — D¥v semileptonic decays there is also
interest in By — Dfv semileptonic decays. In particu-
lar, [By — Dgfv]/[B — D¢{v] semileptonic form factor
ratios can be used to obtain ratios of B,-meson (g = d, s)
fragmentation fractions, f;/fy. This latter ratio enters into
LHCb’s analysis of By — utu~ decays. There is now
one unquenched calculation by FNAL/MILC of ratios of the
scalar form factors fo(q)(qz) [454]:

M2/ £D(ME) = 1.046(44)(15),

d
FE M2 1P (M2) = 1.054(47)(17), (156)
where the first error is statistical and the second systematic.
These results lead to fragmentation fraction ratios f/f,; that
are consistent with LHCb’s measurements via other methods
(Fig. 21).

@ Springer

rBfD* 0)

FTAG2013
— our average for Ny =2+1
s ] FNAL/MILC 13B
N
Il
z
] FNAL/M|LC 10
—_—t FNAL/M|LC 08

0.875 0.900 0.925 0.950

Fig. 21 B — D*{v semileptonic form factor at zero recoil [values in
Table 29 and Eq. (157)]

8.4.5 Summary

In Table 29 we summarise the existing results for the B —
D*¢v, B — D{v, and By — Dgfv form factors at zero
recoil, F8=D" (1), GB~P (1), and GB~Ds (1), as well as
for the ratio R(D) = B(B — Dtv)/B(B — Dlv).
Further details of the lattice calculations are provided in
Appendix B.6.4. Selecting those results that are published in
refereed journals (or are straightforward updates thereof) and
have no red tags, our averages for FB—=D* (1) and R(D) are

Ny =2+1: FB=D" —0.906(4)(12),

R(D) = 0.316(12)(7). (157)

8.5 Determination of | V3|

We now use the lattice-determined Standard Model tran-
sition amplitudes for leptonic (Sect. 8.1) and semileptonic
(Sect. 8.3) B-meson decays to obtain exclusive determina-
tions of the CKM matrix element |V,;|. The relevant formu-
lae are Egs. (106) and (127). Among leptonic channels the
only input comes from B — tvy, since the rates for decays
to e and u have not yet been measured. In the semileptonic
case we only consider B — m{v, transitions (experimen-
tally measured for £ = e, ), since no theoretical prediction
for hadronic effects in other » — u transitions is currently
available that satisfies FLAG requirements for controlled sys-
tematics.

The branching fraction for the decay B — tv; has
been measured by the Belle and Babar collaborations with
both semileptonic [455,456] and hadronic tagging [457,458]
methods. The uncertainties in these measurements are still
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dominated by statistical errors, and none of them individually
are of 50 significance. When combined, however, they cross
the threshold needed to establish discovery of this mode.
Until recently, the various largely independent measurements
have agreed well within errors. Earlier this year, however, the
Belle collaboration published the single-most precise mea-
surement of B — tv using the hadronic tagging method
with an improved efficiency and the full data set [458], and
obtained a result which is more than 20 below the previous
average [74,126]. The errors on the analogous measurement
from Babar [457] are not competitive due to the smaller avail-
able data set, and the Babar result has not yet been published.

Both Belle and Babar quote averages of the hadronic and
the semileptonic tagging modes that we can use to obtain
| Vup|. In the case of Belle, the average BR(B* — tHv;) =
(0.96 + 0.26) x 10~* [458] includes slight correlations
between systematics with the two tagging methods, but it
does not include a rescaling factor due to the fact that the
hadronic and semileptonic measurements are inconsistent at
the ~1.50 level. The Babar average BR(BT™ — tTv;) =
(1.79 4 0.48) x 107* [457] neglects correlations. By com-
bining these values with the mean BT -meson lifetime 15+ =
1.641(8) ps quoted by the PDG, and our averages fp =
(189 &+ 8) MeV (Nt = 2), fp = 190.5 £ 4.2 MeV (Nt =
2+ 1)and fp = 186 £4 MeV (Nf = 2+ 1 + 1) for the
B-meson decay constants, we obtain

Belle B — tvy @ |Vip| = 3.90(53)(17) x 1073,

N =2,

Belle B — tv; @ |Vyup| = 3.87(52)(9) x 10_3,
N =241,

Belle B — tvy :  |Vip| = 3.96(54)(9) x 1073,
Ny =2+1+1;

Babar B — tv; @ |Vl = 5.32(71)(23) x 1073, (159)
Ni =2,

Babar B — tv; |Vl = 5.28(71)(12) x 1073,
N =241,

Babar B — tv; :  |Vip| = 5.41(73)(12) x 1073,
Ny =24+1+1,

where the first error comes from experiment and the second
comes from the uncertainty in fp. We can also average all
four results for BR(B™ — tTv;) from Belle and Babar. The
measurements using hadronic and semileptonic tagging are
statistically independent; further, because the measurements
are dominated by statistical errors, the correlations between
systematic errors in the two approaches can be reasonably
neglected. We obtain BR(BT — t7v;) = (1.12 £ 0.28) x

10~%, where we have applied a /(2 /dof) ~ 1.3 rescaling
factor because the Belle hadronic tagging measurement dif-

fers significantly from the other three. Using this value for the
branching fraction, and again combining with the Ny = 2,
Nt =2+ 1and Ny = 2+ 1 + 1 lattice-QCD averages for
fB from Eqgs. (110)—(112), our preferred determinations of
|Vup| from leptonic B — tv decay are

Belle + Babar B — tv; @ |V = 4.21(53)(18) x 10_3,

N =2,

Belle + Babar B — tv; @ |Vip| = 4.18(52)(9) x 1073,
Nr=2+1,

Belle + Babar B — vy | V| = 4.28(53)(9) x 1073,
Ny =2+1+1. (159)

In semileptonic decays, the experimental value of
| Vsl f4(g?) can be extracted from the measured branching
fractions of B — 7w~ ¢Tv decays by applying Eq. (127);
|Vup| can then be determined by performing fits to the con-
strained BCL z-parameterisation of the form factor f (¢?)
given in Eq. (140). This can be done in two ways: one
option is to perform separate fits to lattice (cf. Sect. 8.3)
and experimental results, and extract the value of |V,;| from
the ratio of the respective aq coefficients; a second option
is to perform a simultaneous fit to lattice and experimen-
tal data, leaving their relative normalisation |V,;| as a free
parameter. We adopt the second strategy because it more
optimally combines the lattice and experimental informa-
tion and minimises the uncertainty in |V, |. As experimental
input we take the latest untagged 12-bin Babar data [353]
and 13-bin Belle data [352], and we assume no correlation
between experimental and lattice data. As in the fit to lat-
tice data only in Sect. 8.3, we assume that the statistics plus
chiral-extrapolation errors are 100 % correlated between the
FNAL/MILC 08A and HPQCD 06 data, and we reduce the
correlations in the FNAL/MILC data by keeping only every
second data point.

Figure 22 shows both the lattice and experimental data for
(1 —q?/ m%*)f+ (g®) versus z. For illustration, the experi-
mental data are divided by the value of |V,;| obtained from
the preferred fit. Both the lattice-QCD and experimental data
are linear and display no visible signs of curvature; further,
the slopes of the lattice and experimental data sets appear
consistent. A simple three-parameter constrained BCL fit
(i.e. through O(z?) plus |Vy;]) is sufficient to describe the
combined data sets with a good x2/dof, however, the addi-
tion of the experimental points enables a better determina-
tion of higher-order terms in the z-expansion than from the
lattice-only fit. In order to address the potential systematic
uncertainty due to truncating the series in z, we continue to
add terms to the fit until the result for | V,,;| stabilises, i.e. the
central value settles and the errors stop increasing. We find
that this happens at O(z>), and we take the value of |V,p|
from this combined fit of the lattice-QCD and experimental
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Fig. 22 Lattice and experimental data for (1 —g?/ m%*) f+(g?) versus
z. The filled green symbols denote lattice-QCD points included in the
fit, while the open green symbols show those that are not included in
the fit (either because of unknown correlations or strong correlations).

data as our preferred result:

global lattice + Babar: |V,;,| = 3.37(21) x 1073,

N =2+1,
. 3 (160)
global lattice + Belle: |V;| = 3.47(22) x 1077,
N =2+1.

We do not quote a result for a combined lattice + Babar +
Belle fit, since we are unable to properly take into account
possible correlations between experimental results. Again,
we emphasise the importance of publishing statistical and
systematic correlation matrices in future lattice-QCD work
on semileptonic form factors, so that the lattice results can
be fully used to obtain CKM matrix elements and for other
phenomenological applications.

Our results for | V| are summarised in Table 30 and
Fig. 23, where we also show the inclusive determinations
from HFAG for comparison. The spread of values for | V3|
does not yield a clear picture. We observe the well-known
~30 tension between determinations of |V,;| from exclu-
sive and inclusive semileptonic decays. The determination
of |V,p| from leptonic B — tv decay lies in between the
inclusive and exclusive determinations, but the experimental
errors in BR(B — tv) are so large that it agrees with both
within ~1.5¢. If, however, we consider separately the differ-
ent experimental measurements of BR(B — tv), the Belle
measurement from hadronic tagging leads to a value of |V, |
that agrees well with the one from exclusive B — m£v decay,
while the remaining Belle and Babar measurements lead to
values of |V,;| that are larger than both the latter and inclu-
sive determinations. The exclusive determination of | V|
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The blue stars show the experimental data divided by the value of | V3|
obtained from the fit. The grey band in the left (right) plots shows the
preferred three-parameter BCL fit to the lattice-QCD and Belle (Babar)
data with errors

Table 30 Comparison of exclusive determinations of |V,;| (upper
panel) and inclusive determinations (lower panel). For B — tv, the two
uncertainties shown come from experiment (plus non-lattice theory) and
from the lattice calculation, respectively. Each inclusive determination
corresponds to a different theoretical treatment of the same experimental
partial branching fractions compiled by the Heavy Flavour Averaging
Group [465]; the errors shown are experimental and theoretical, respec-
tively

From [Vip| x 103
Our result for Ny = 2 B — v 4.21(53) (18)
Our result for B — v 4.18 (52) (9)
Ny =2+1
Our result for B — tv 4.28 (53) (9)
Ni=2+1+1
Our result for B — m{v (Babar) 3.37 (21)
Ny =2+1
Our result for B — mlv (Belle) 347 (22)
Ne=2+1
Bauer 01 [459] B — X, v 4.62 (20) (29)
Lange 05 [460] B — X, v 4.40 (15) (1))
Andersen 05 [461], B — X,lv 4.45 (15)(F 1)
Gardi 08 [462]
Gambino 07 [463] B — X, v 4.39 (15) (1%
Aglietti 07 [464] B — X, v 4.03 (13) (15
HFAG inclusive average B — X, tv 4.40 (15) (20)

[126]

will improve in the next few years with better lattice-QCD
calculations of the B — s £v form factor, while the improve-
ment in | V,;| from B — v decays will have to wait longer
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Fig. 23 Comparison of the results for |V,;| and |V, | obtained from
lattice methods with non-lattice determinations based on inclusive
semileptonic B decays. In the left plot, the results denoted by squares

for the Belle II experiment, which aims to begin running in
2016, to collect a larger data set than is currently available.

8.6 Determination of |V p|

We now interpret the lattice-QCD results forthe B — D) ¢y
form factors as determinations of the CKM matrix element
| Vep| in the Standard Model.

For the experimental branching fractions at zero recoil, we
use the latest experimental averages from the Heavy Flavour
Averaging Group [126]:3

FB=D (1w | Ves| = 35.90(45),

GE=P(Dnew|Vep| = 42.64(1.53). (161)

For FB=D" (1), there is only a single Ny = 2 + 1 lattice-
QCD calculation that satisfies the FLAG criteria, while there
is currently no such calculation of G8= 2 (1). Using the result
given in Eq. (157), we obtain our preferred value for |V, |:

B— D*0v : |V =39.36(56)(50) x 1073, Ny=2-+1

(162)

where the errors shown are from the lattice calculation and
experiment (plus non-lattice theory), respectively. Table 31
compares the determination of |V,| from exclusive B —
D*¢v decays to that from inclusive B — X fv decays,

35 We note that HFAG currently averages results for neutral and charged
B-meson decays without first removing the correction due to the
Coulomb attraction between the charged final-state particles for the
neutral B-meson decays.

3

62013 Veblx10
_ —-— our average for Ng=2+1
3
Il
4

H——H FNAL/MILC 13B

38
_‘f —e— Gambino 13 Inclusive
5

38 39 40 41 42 43
are from leptonic decays, while those denoted by triangles are from
semileptonic decays. The grey band indicates our Ny = 2 + | average

Table 31 Determinations of | V| obtained from semileptonic B decay.
The errors shown in the first row indicate those from lattice and exper-
imental (plus non-lattice theory) uncertainties, respectively, while the
error shown in the second row is the total (experimental plus theoretical)
uncertainty

Ref.  From [Vep| x 103
Our average for Ny =2+ 1 [444] B — D*fv  39.36 (56) (50)
Inclusive (Gambino 13) [466] B — X v 42.42 (86)

where X denotes all possible charmed hadronic final states.
The results, also shown in Fig. 23, differ by approximately
2.70. The exclusive determination of | V,,;| will improve sig-
nificantly over the next year or two with new lattice-QCD
calculations of the B — D® ¢y form factors at non-zero
recoil.

9 The strong coupling o
9.1 Introduction

The strong coupling g(u) defined at scale u, plays a key
role in the understanding of QCD and in its application for
collider physics. For example, the parametric uncertainty
from o is one of the dominant sources of uncertainty in the
Standard Model prediction for the H — bb partial width,
and the largest source of uncertainty for H — gg. Thus
higher precision determinations «g are needed to maximise
the potential of experimental measurements at the LHC, and
for high-precision Higgs studies at future colliders [467—
469]. The value of «g also yields one of the essential bound-
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ary conditions for completions of the standard model at high
energies.
In order to determine the running coupling at scale u

g*(w

4z’
we should first “measure” a short-distance quantity O atscale
1 either experimentally or by lattice calculations and then
match it with a perturbative expansion in terms of a running
coupling, conventionally taken as o5 (1),

as(p) = (163)

O(u) = crayg (1) + caoygs ()’ + -+ . (164)

The essential difference between continuum determinations
of s and lattice determinations is the origin of the values of
O in Eq. (164).

The basis of continuum determinations are experimen-
tally measurable cross sections from which O is defined.
These cross sections have to be sufficiently inclusive and at
sufficiently high scales such that perturbation theory can be
applied. Often hadronisation corrections have to be used to
connect the observed hadronic cross sections to the pertur-
bative ones. Experimental data at high ., where perturbation
theory is progressively more precise, usually have increasing
experimental errors, and it is not easy to find processes which
allow one to follow the u dependence of a single O(u) over
a range where og(u) changes significantly and precision is
maintained.

In contrast, in lattice gauge theory, one can design O(u)
as Euclidean short-distance quantities which are not directly
related to experimental observables. This allows us to follow
the © dependence until the perturbative regime is reached
and non-perturbative “corrections” are negligible. The only
experimental input for lattice computations of o is the
hadron spectrum which fixes the overall energy scale of the
theory and the quark masses. Therefore experimental errors
are completely negligible and issues such as hadronisation
do not occur. We can construct many short-distance quan-
tities that are easy to calculate non-perturbatively in lattice
simulations with small statistical uncertainties. We can also
simulate at parameter values that do not exist in nature (for
example with unphysical quark masses between bottom and
charm) to help control systematic uncertainties. These fea-
tures mean that very precise results for «g can be achieved
with lattice gauge-theory computations. Further, as in the
continuum, the many different methods available to deter-
mine oy in lattice calculations with different associated sys-
tematic uncertainties enable valuable cross-checks. Practical
limitations are discussed in the next section, but a simple one
is worth mentioning here. Experimental results (and there-
fore the continuum determinations) of course have all quarks
present, while in lattice gauge theories only the light ones are
included and one then is forced to use the matching at thresh-
olds, as discussed in the following subsection.

@ Springer

It is important to keep in mind that the dominant source of
uncertainty in most present day lattice-QCD calculations of
o s from the truncation of either continuum or lattice pertur-
bation theory. Perturbative truncation errors are of a different
nature than most other lattice (or experimental) systematics,
in that they often cannot be estimated from studying the data
themselves. Further, the size of higher-order coefficients in
the perturbative series can sometimes turn out to be larger
than naive expectations based on power-counting from the
behaviour of lower-order terms. Therefore for the purposes
of this review we choose to be cautious in the range presented
in Sect. 9.9 for a%(M 7) from lattice calculations.

The various phenomenological approaches to determin-
ing the running coupling, am(M z) are summarised by the
Particle Data Group [74]. The PDG review lists four cate-
gories of phenomenological results used to obtain the run-
ning coupling using hadronic t decays, hadronic final states
of e*e™ annihilation, deep inelastic lepton—nucleon scatter-
ing and electroweak precision data. Excluding lattice results,
the PDG quotes a weighted average of

a® (My) = 0.1183(12).

oS (165)

For a general overview of the status of the various phe-
nomenological and lattice approaches see e.g. [470]. We
note that perturbative truncation errors are also the domi-
nant source of uncertainty in several of the phenomenological
determinations of «s. In particular, the extraction of « from
T data, which is the most precise and has the largest impact
on the non-lattice average in Eq. (165) is especially sensitive
to the treatment of higher-order perturbative terms. This is
impoga)mt to keep in mind when comparing our chosen range

for am(M z) from lattice determinations in Eq. (205) with

the non-lattice average from the PDG.

9.1.1 Scheme and scale dependence of as and Aqcp

Despite the fact that the notion of the QCD coupling is ini-
tially a perturbative concept, the associated A-parameter is
non-perturbatively defined

A = w (bog> (1)) 01/ @60 g=1/2bog* ()

g 1 { b
1
— dx|{—+— — — , 166
X exp / X (ﬂ(x) + box3 béx) (166)

0

where § is the full renormalisation group function in the
scheme which defines g and by and b; are the first two
scheme-independent coefficients of the perturbative expan-
sion B(x) ~ —box® — byx> + ---. Thus the A-parameter
is renormalisation scheme dependent but in an exactly com-
putable way, and lattice gauge theory is an ideal method to
relate it to the low-energy properties of QCD.
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The change in the coupling from one scheme, S, to another
(taken here to be the MS scheme) is perturbative,

(1) = gs(w) (1 + ¢V g5 () + ), (167)

where cg) are the finite renormalisation coefficients. The
scale © must be taken high enough for the error in keep-
ing only the first few terms in the expansion to be small. The
conversion to the A-parameter in the MS scheme is given by

Ayig = Asexp [cg”/(Zbo)] : (168)

By convention ogyg is usually quoted at a scale u = Mz
where the appropriate effective coupling is the one in the
five-flavour theory: oz%(M 7). In order to obtain it from a
lower-flavour result, one connects effective theories with dif-
ferent number of flavour as discussed by Bernreuther and
Wetzel [471]. For example one considers the MS scheme,
matches the three-flavour theory to the four-flavour theory at
a scale given by the charm quark mass, runs with the four-
loop beta-function of the four-flavour theory to a scale given
by the b-quark mass and there matches to the five-flavour
theory, after which one runs up to u = M. For the match-
ing relation at a given quark threshold we use the mass m,
which satisfies m, = myzg(m,), where m is the running mass
(analogous to the running coupling). Then

gre—1(m) = gx.(my) x [1 + 12 gy (m.)

+13 88, (ma) + -+ (169)
with [472]
=L U (170)
2T @
L] 82043 S4T3L_ 2633
3= @)y | 276485 T 12aa16 ~ 31104
(171)

(where ¢3 is the Riemann zeta-function) provides the match-
ing at the thresholds in the MS-scheme. While t,, t3 are
numerically small coefficients, the charm threshold scale
is also relatively low and so there could be some non-
perturbative uncertainties in the matching procedure, which
are difficult to estimate. Obviously there is no perturbative
matching formula across the strange “threshold”; here match-
ing is entirely non-perturbative. Model-dependent extrapola-
tions of g,%,f from Ny = 0, 2 to Ny = 3 were done in the early
days of lattice gauge theory. We will include these in our
listings of results but not in our estimates, since such extrap-
olations are based on untestable assumptions.

9.1.2 Overview of the review of a

We begin by explaining lattice-specific difficulties in Sect. 9.2
and the FLAG quality criteria designed to assess whether

the associated systematic uncertainties can be controlled
and estimated in a reasonable manner. We then discuss, in
Sects. 9.3-9.8, the various lattice approaches. For complete-
ness, we present results from calculations with Ny =0, 2, 3
and 4 flavours. Finally, in Sect. 9.9, we present averages
together with our best estimates for o). These are deter-
mined from three- and four-flavour QCD simulations. The
earlier Ny = 0,2 works obtained results for Ny = 3
by extrapolation in N¢. Because this is not a theoretically
controlled procedure, we do not include these results in
our averages. For the A parameter, we also give results
for other number of flavours, including Ny = 0. Even
though the latter numbers should not be used for phe-
nomenology, they represent valuable non-perturbative infor-
mation concerning field theories with variable numbers of
quarks.

9.2 Discussion of criteria for computations entering
the averages

As in the PDG review, we only use calculations of «j
published in peer-reviewed journals, and that use NNLO
or higher-order perturbative expansions, to obtain our final
range in Sect. 9.9. We also, however, introduce further qual-
ity criteria designed to assess the ability to control important
systematics which we describe here. Some of these criteria,
e.g. that for the continuum extrapolation, are associated with
lattice-specific systematics and have no continuum analogue.
Other criteria, e.g. that for the renormalisation scale, could in
principle be applied to non-lattice determinations but are not
considered in the PDG average. Expecting that lattice cal-
culations will continue to improve significantly in the near
future, our goal in reviewing the state of the art here is to
be conservative and avoid prematurely choosing an overly
small range.

In lattice calculations, we generally take O to be some
combination of physical amplitudes or Euclidean correlation
functions which are free from UV and IR divergences and
have a well-defined continuum limit. Examples include the
force between static quarks and 2-point functions of quark
bilinear currents.

In comparison to values of observables O determined
experimentally, those from lattice calculations require two
more steps. The first step concerns setting the scale p in
GeV, where one needs to use some experimentally measur-
able low-energy scale as input. Ideally one employs a hadron
mass. Alternatively convenient intermediate scales such as
/o, wo, 1o, 1, [65,183,184,473] can be used if their rela-
tion to an experimental dimensionful observable is estab-
lished. The low-energy scale needs to be computed at the
same bare parameters where O is determined, at least as
long as one does not use the step-scaling method (see below).
This induces a practical difficulty given present computing
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resources. In the determination of the low-energy reference
scale the volume needs to be large enough to avoid finite-
size effects. On the other hand, in order for the perturbative
expansion of Eq. (164) to be reliable, one has to reach suffi-
ciently high values of u, i.e. short enough distances. To avoid
uncontrollable discretisation effects the lattice spacing a has
to be accordingly small. This means

L > hadron size ~ AééD and 1/a > u, (172)
(where L is the box size) and therefore
L/a >> u/Aqgcp- (173)

The currently available computer power, however, limits
L/a,typically to L /a = 20—64. Unless one accepts compro-
mises in controlling discretisation errors or finite-size effects,
this means one needs to set the scale x according to

<K L/ax Agcp ~5 —20GeV. (174)

Therefore, 1 canbe 1 —3 GeV at most. This raises the concern
whether the asymptotic perturbative expansion truncated at
one loop, two loop, or three loop in Eq. (164) is sufficiently
accurate. There is a finite-size scaling method, usually called
step-scaling method, which solves this problem by identify-
ing © = 1/L in the definition of O(w); see Sect. 9.3.

For the second step after setting the scale w in physical
units (GeV), one should compute O on the lattice, Oy (a, 1)
for several lattice spacings and take the continuum limit to
obtain the left hand side of Eq. (164) as

O = lin}) Olat(a, p) with p fixed. (175)
a—r
This is necessary to remove the discretisation error.

Here it is assumed that the quantity O has a continuum
limit, which is regularisation-independent up to discretisa-
tion errors. The method discussed in Sect. 9.6, which is based
on the perturbative expansion of a lattice-regulated, diver-
gent short-distance quantity Wiac(a) differs in this respect
and must be treated separately.

In summary, a controlled determination of o needs to
satisfy the following:

1. The determination of «y is based on a comparison of a
short-distance quantity O at scale x with a well-defined
continuum limit without UV and IR divergences to a per-
turbative expansion formula in Eq. (164).

2. Thescale u is large enough so that the perturbative expan-
sion in Eq. (164) is precise, i.e. it has good asymptotic
convergence.

3. If O is defined by physical quantities in infinite volume,
one needs to satisfy Eq. (173).

Non-universal quantities need a separate discussion; see
Sect. 9.6.
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Conditions 2. and 3. give approximate lower and upper
bounds for u, respectively. It is important to see whether
there is a window to satisfy 2. and 3. at the same time. If
it exists, it remains to examine whether a particular lattice
calculation is done inside the window or not.

Obviously, an important issue for the reliability of a cal-
culation is whether the scale u that can be reached lies in a
regime where perturbation theory can be applied with confi-
dence. However, the value of i does not provide an unam-
biguous criterion. For instance, the Schrodinger Functional,
or SF-coupling (Sect. 9.3) is conventionally identified with
u = 1/L, but one could also choose u = 2/L. Instead of
1 we therefore define an effective .. For schemes such as
SF (see Sect. 9.3) or gq (see Sect. 9.4.1) this is directly the
coupling constant of the scheme. For other schemes such as
the vacuum polarisation we use the perturbative expansion
Eq. (164) for the observable O to define

aefr = O/cy. (176)

If there is an os-independent term it should first be sub-
tracted. Note that this is nothing but defining an effective,
regularisation-independent coupling, a physical renormali-
sation scheme.

Let us now comment further on the use of the pertur-
bative series. Since it is only an asymptotic expansion, the
remainder R,(0) = O — > ciaé of a truncated pertur-
bative expression O ~ >

i<n
i<y Ci0tl cannot just be estimated
as a perturbative error k o1, The error is non-perturbative.
Often one speaks of “non-perturbative contributions”, but
non-perturbative and perturbative contributions cannot be
strictly separated due to the asymptotic nature of the series
(see e.g. [474]).

Still, we do have some general ideas concerning the size of
non-perturbative effects. The known ones such as instantons
or renormalons decay for large p like inverse powers of ©

and are thus roughly of the form

exp(—y/as), a7n

with some positive constant . Thus we have, loosely speak-
ing,

O = cras + 20 + -+ + cpa + O+

+O0(exp(—y /as)). (178)

For small «g, the exp(—y /o) is negligible. Similarly the
perturbative estimate for the magnitude of relative errors in
Eq. (178) is small; as an illustration for » = 3 and oy = 0.2
the relative error is ~0.8 % (assuming coefficients |c,/c1| ~
1).

For larger values of oy non-perturbative effects can
become significant in Eq. (178). An instructive example
comes from the values obtained from t decays, for which

os ~ 0.3. Here, different applications of perturbation
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theory (fixed order, FOPT, and contour improved, CIPT) each
look reasonably asymptotically convergent but the difference
does not seem to decrease much with the order (see, e.g., the
contribution of Pich in [470]). In addition non-perturbative
terms in the spectral function may be non-negligible even
after the integration up to m, (Golterman in [470]). All of
this is because oy is not really small.

Since the size of the non-perturbative effects is very hard
to estimate one should try to avoid such regions of the cou-
pling. In a fully controlled computation one would like to
verify the perturbative behaviour by changing o over a sig-
nificant range instead of estimating the errors as ~ ag'“.
Some computations try to take non-perturbative power ‘cor-
rections’ to the perturbative series into account by including
such terms in a fit to the u dependence. We note that this
is a delicate procedure, both because the separation of non-
perturbative and perturbative is theoretically not well defined
and because in practice a term like, e.g., o (1) is hard to dis-
tinguish from a 1/4? term when the p-range is restricted and
statistical and systematic errors are present. We consider it
safer to restrict the fit range to the region where the power
corrections are negligible compared to the estimated pertur-
bative error.

The above considerations lead us to the following special
quality criteria for the determination of «.

e Renormalisation scale

¢ all points relevant in the analysis have e < 0.2
O all points have aefr < 0.4 and at least one aegr < 0.25
® otherwise

e Perturbative behaviour

Y verified over a range of a factor 2 in aeg (without
power corrections)

O agreement with perturbation theory over a range of a
factor 1.5 in aefr (possibly fitting with power corrections)
® otherwise

e Continuum extrapolation
At a reference point of aerr = 0.3 (or less) we require

J three lattice spacings with ua < 1/2 and full O(a)
improvement, or three lattice spacings with ua < 1/4
and two-loop O (a) improvement, or pa < 1/8 and one-
loop O (a) improvement

O three lattice spacings with na < 1.5 reaching down
to ua = 1 and full O(a) improvement, or three lattice
spacings with pua < 1/4 and one-loop O (a) improve-
ment

B otherwise

We here assume that the two-loop relation between the
used coupling and oy is always known such that the three-

loop beta-function is known in the scheme considered. There-
fore we have no separate criterion for the order of perturba-
tion theory. Similarly we assume that quark mass effects of
light quarks (including strange) are negligible in the effective
coupling itself where large, perturbative, u is considered.

We also need to specify what is meant by . For SF we
mean u = 1/L, for gq itis u = 2/r, for schemes with
observables in momentum space we take the magnitude of
the momentum. Finally, for moments of heavy quark currents
with quark masses mj; we use u = 2mj;. We note again
that the above criteria cannot be applied when regularisation-
dependent quantities Wiy (a) are used instead of O(w). These
cases are specifically discussed in Sect. 9.6.

The usual criterion for the chiral extrapolation and the
control over finite-volume effects is missing here for the fol-
lowing reason. These criteria would apply only to the set-
ting of the scale. Usually this has been determined in pre-
ceding papers of the collaboration determining the coupling
constant (or indeed by another collaboration). However, the
determination of the scale does not need to be very precise,
since using the lowest-order S-function shows that a 3 %
error in the scale determination corresponds to a ~0.5 %
error in as(Mz). So as long as systematic errors from chiral-
extrapolation and finite-volume effects are below 3 % we do
not need to be concerned about those. This covers practi-
cally all cases. When, exceptionally, it matters we include
the precision of the scale setting in our discussion.

A popular scale choice is the intermediate ry scale,
although one should also bear in mind that its determination
from physical observables has also to be taken into account.
The phenomenological value of ry was originally determined
as ro ~ 0.49 fm through potential models describing quarko-
nia [65]. Recent determinations from 2-flavour QCD are
ro = 0.420(14) — 0.450(14) fm by the ETM collaboration
[169,241], using as input f; and fx and carrying out various
continuum extrapolations. On the other hand, the ALPHA
collaboration [59] determined ro = 0.503(10) fm with
input from fg, and the QCDSF Collaboration [475] cites
0.501(10)(11) fm from the mass of the nucleon (no contin-
uum limit). Recent determinations from three-flavour QCD
are consistent with r; = 0.313(3) fm and ryp = 0.472(5) fm
[159,186,476]. Due to the uncertainty in these estimates, and
as many results are based directly on r( to set the scale, we
shall often give both the dimensionless number oAz, as
well as Aygg. In case | Ayg is given in the publications, we
use ro/r1 = 1.508 [476] to convert, neglecting the error on
this ratio.

The attentive reader will have noticed that bounds such as
na < 1.5 and aef < 0.25 which we require for O are not
very stringent. There is a considerable difference between O
and . We have chosen the above bounds since not too many
computations would satisfy more stringent ones at present.
Nevertheless, we believe that the O criteria already give rea-
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sonable bases for estimates of systematic errors. In the future,
we expect that we will be able to tighten our criteria for inclu-
sion in the average, and that many more computations will
reach the present J rating in one or more categories.

In principle one should also account for electroweak radia-
tive corrections. However, both in the determination of o
at intermediate scales p and in the running to high scales,
we expect electroweak effects to be much smaller than the
presently reached precision. Such effects are therefore not
further discussed.

9.3 «g from the Schrodinger functional
9.3.1 General considerations

The method of step-scaling functions avoids the scale prob-
lem, Eq. (172). It is in principle independent of the particular
boundary conditions used and was first developed with peri-
odic boundary conditions in a two-dimensional model [477].
However, at present all applications in QCD use Schrodinger
functional boundary conditions [87,478]. An important rea-
son is that these boundary conditions avoid zero modes for
the quark fields and quartic modes [479] in the perturbative
expansion in the gauge fields. Furthermore the correspond-
ing renormalisation scheme is well studied in perturbation
theory [480-482] with the three-loop B-function and two-
loop cutoff effects (for the standard Wilson regularisation)
known.

Let us first briefly review the step-scaling strategy. The
essential idea is to split the determination of the running
coupling at large 1 and of a hadronic scale into two lattice
calculations and connect them by ‘step scaling’. In the for-
mer part, we determine the running coupling constant in a
finite-volume scheme, in practice a ‘Schrodinger Functional
(SF) scheme’ in which the renormalisation scale is set by the
inverse lattice size u = 1/L. In this calculation, one takes a
high renormalisation scale while keeping the lattice spacing
sufficiently small as
pnw=1/L~10...100GeV,

a/L < 1. (179)

In the latter part, one chooses a certain g2, = g>(1/Lmax),
typically such that L,y is around 0.5 fm. With a common
discretisation, one then determines Lmax/a and (in a large
volume L > 2-3 fm) a hadronic scale such as a hadron mass,
J/To/a or ro/a at the same bare parameters. In this way one
gets numbers for Lmax /7o and by changing the lattice spacing
a carries out a continuum limit extrapolation of that ratio.
In order to connect $2(1/Lmax) to (1) at high u, one
determines the change of the coupling in the continuum limit
when the scale changes from L to L/2, starting from L =
Lmax and arriving at ;& = 2% /L.« This part of the strategy
is called step scaling. Combining these results yields g2(u)
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at pu = 2K L:x:)ax Ty ! where ry stands for the particular chosen

hadronic scale.

In order to have a perturbatively well-defined scheme, the
SF scheme uses Dirichlet boundary condition at time ¢t = 0
and t+ = T. These break translation invariance and permit
O (a) counter terms at the boundary through quantum cor-
rections. Therefore, the leading discretisation error is O (a).
In practice, improving the lattice action is achieved by adding
one-loop or two-loop perturbative counter terms at the bound-
aries whose coefficients are denoted as ¢;, ¢;. A better pre-
cision in this step yields a better control over discretisation
errors, which is important, as can be seen, e.g., in [483,484].
The finite ¢\, Eq. (167), are known for i = 1, 2 [481,482].

9.3.2 Discussion of computations

In Table 32 we give results from various determinations of the
A-parameter. For a clear assessment of the Ny dependence,
the last column also shows results that refer to a common
hadronic scale, rg. As discussed above, the renormalisation
scale can be chosen large enough such that «g < 0.2 and the
perturbative behaviour can be verified. Consequently only
J is present for these criteria. With dynamical fermions,
results for the step-scaling functions are always available for
atleast a/L = pa = 1/4,1/6,1/8. All calculations have
a non-perturbatively O(a) improved action in the bulk. For
the discussed boundary O(a) terms this is not so. In most
recent calculations two-loop O(a) improvement is employed
together with at least three lattice spacings.>® This means a
¢ for the continuum extrapolation. In the other cases only
one-loop ¢; was available and we arrive at O. We note that
the discretisation errors in the step-scaling functions are usu-
ally found to be very small, at the percent level or below.
However, the overall desired precision is very high as well,
and the results in CP-PACS 04 [483] show that discretisa-
tion errors at the below percent level cannot be taken for
granted. In particular with staggered fermions (unimproved
except for boundary terms) few percent effects are seen in
Perez 10 [486].

In the work by PACS-CS 09A [487], the continuum extrap-
olation in the scale setting is performed using a constant
function in a and with a linear function. Potentially the for-
mer leaves a considerable residual discretisation error. We
here use, as discussed with the collaboration, the continuum
extrapolation linear in a, as given in the second line of PACS-
CS 09A results in Table 32.

A single computation, PACS-CS 09A [487], quotes also
ays(Mz). We take the linear continuum extrapolation as
discussed above:

36 With two-loop O(a) improvement we here mean ¢, including the
gé term and ¢; with the g(z) term. For gluonic observables such as the
running coupling this is sufficient for cutoff effects being suppressed to
O(gﬁa),
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Table 32 Results for the A-parameter from computations using step scaling of the SF-coupling. Entries without values for A computed the running

and established perturbative behaviour at large 1

Collaboration Ref. Nt Publication Renormalisation  Perturbative Continuum Scale Ays[MeV] 10 Ays
status scale behaviour extrapolation

ALPHA 10A [485] 4 A * * * Only running of e in Fig. 4

Perez 10 [486] 4 P * * (@) Only step-scaling function in Fig. 4

PACS-CS09A [487] 2+1 A * * o) m, 371 (13)@®)(H9)*  0.888 (30)(18)(t25)"‘
A * * o m, 345 (59)"* 0.824 (141)F

ALPHA 12* [59] 2 A * * * fx 310 (20) 0.789 (52)

ALPHA 04 [488] 2 A u * * ro’ 245 (16)(16)8 0.62(2)(2)"

ALPHA 01A [489] 2 A * * * Only running of e in Fig. 5

CP-PACS 04%  [483] 0 A * * (@) Only tables of géF

ALPHA 98T [490] O A * * (@) ro=0.5fm  238(19) 0.602 (48)

Liischer 93 [480] O A * * (@) ro=0.5fm 233 (23) 0.590 (60)%

# Result with a constant (in ) continuum extrapolation of the combination Lyaxm,

 In conversion to 70 Ajs» 7o is taken to be 0.472 fm

## Result with a linear continuum extrapolation in a of the combination Lyaxm,

* Supersedes ALPHA 04

§ The Nf = 2 results were based on values for rq /a which have later been found to be too small by [59]. The effect will be of the order of 10-15 %,
presumably an increase in Arp. We have taken this into account by a M in the renormalisation scale
& This investigation was a precursor for PACS-CS 09A and confirmed two step-scaling functions as well as the scale setting of ALPHA 98

ﬁ Uses data of Liischer 93 and therefore supersedes it
% Converted from ag5(37r5 ') = 0.1108(25)

a%(Mz) =0.118(3), (180)
where the conversion from a three-flavour result to five-
flavours was done perturbatively (see Sect. 9.2). Other
results do not have a sufficient number of quark flavours
(ALPHA 10A [485], Perez 10 [486]) or do not yet contain
the conversion of the scale to physical units. Thus no value
for a%(Mz) is quoted.

More results for oc%(M 7) using step-scaling functions
can be expected soon. Their precision is likely to be much
better than what we were able to report on here. A major
reason is the use of the gradient flow [183] in the definitions
of finite-volume schemes [491,492].

9.4 «s from the potential at short distances
9.4.1 General considerations

The basic method was introduced in [493] and developed
in [494]. The force or potential between an infinitely mas-
sive quark and antiquark pair defines an effective coupling
constant via
dv Ogq(r
(r) =Cp qq( )

F =
@) dr r2

(181)

The coupling can be evaluated non-perturbatively from the
potential through a numerical differentiation; see below. In
perturbation theory one also defines couplings in different
schemes oy, ay via

ay(r)

V(r) — _CF p ; aV(Q)

0%’
where one fixes the unphysical constant in the potential by
lim, oo V(r) = 0 and V(Q) is the Fourier transform of
V (r). Non-perturbatively, the subtraction of a constant in
the potential introduces an additional renormalisation con-
stant, the value of V (rrf) at some distance rf. Perturba-
tively, it entails a renormalon ambiguity. In perturbation the-
ory, these definitions are all simply related to each other, and
their perturbative expansions are known including the ag‘ and
ot log as terms [495-502].

The potential V (r) is determined from ratios of Wilson
loops, W (r, t), which behave as

or V(Q)=—-Cp (182)

(W(r, 1)) = |col?e” V! + Z e |2e™ VOt
n#0

(183)

where 7 is taken as the temporal extension of the loop, r is the
spatial one and V,, are excited-state potentials. To improve
the overlap with the ground state, and to suppress the effects
of excited states, ¢ is taken large. Also various additional
techniques are used, such as a variational basis of operators
(spatial paths) to help in projecting out the ground state. Fur-
thermore some lattice-discretisation effects can be reduced
by averaging over Wilson loops related by rotational sym-
metry in the continuum.

In order to reduce discretisation errors it is of advantage
to define the numerical derivative giving the force as

Vir)—V(r—a)

F(ry) = (184)
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Table 33 Short-distance potential results

Collaboration Ref.  Ng Publication Renormalisation  Perturbative Continuum Scale Agjis (MeV)  roAys

status scale behaviour extrapolation
Bazavov 12 [504] 2+1 A of (e) o* ro = 0.468 fm 295 (30)* 0.70 (7)**
ETM 11C [505] 2 A ) o o ro = 0.42 fm 315 (30)% 0.658 (55)
Brambilla 10 [506] 0 A o o) oft 0.637 (F32)T1+
UKQCD 92 [494] 0O A * o+t L] Jo =0.44 GeV 256 (20) 0.686 (54)
Bali 92 [507] O A * o+t Jo =0.44 GeV 247 (10) 0.661 (27)

T Since values of aefr within our designated range are used, we assign a O despite values of aefr up to et = 0.5 being used
# Since values of 2a/r within our designated range are used, we assign a O although only values of 2a/r > 1.14 are used at ey = 0.3

* Using results from [476]

b a%(l.s GeV) = 0.326(19), a;j;(Mz) =0.1156(*2))

§ Both potential and ro/a are determined on a small (L = 3.2rp) lattice

T Uses lattice results of [484], some of which have very small lattice spacings where according to more recent investigations a bias due to the

freezing of topology may be present
* Only ro Ay is given

T+ We give a O because only a NLO formula is used and the error bars are very large; our criterion does not apply well to these very early

calculations

where r; is chosen so that at tree level the force is the con-
tinuum force. F(r;) is then a ‘tree-level improved’ quantity
and similarly the tree-level improved potential can be defined
[503].

Finally, as was noted in Sect. 9.2, a determination of the
force can also be used to determine the g scale, by defining
it from the static force by

reF(ro) = 1.65. (185)

9.4.2 Discussion of computations

In Table 33, we list results of determinations of roAgyg
(together with A using the scale determination of the
authors).

The first determinations in the three-colour Yang Mills
theory are by UKQCD 92 [494] and Bali 92 [507], who used
aqq as explained above, but not in the tree-level improved
form. Rather a phenomenologically determined lattice arte-
fact correction was subtracted from the lattice potentials. The
comparison with perturbation theory was on a more qualita-
tive level on the basis of a two-loop formula and a contin-
uum extrapolation could not be performed as yet. A much
more precise computation of «gq With continuum extrapo-
lation was performed in [484,503]. Satisfactory agreement
with perturbation theory was found [503] but the stability of
the perturbative prediction was not considered sufficient to
be able to extract a A-parameter.

In Brambilla 10 [506] the same quenched lattice results
of [503] were used and a fit was performed to the continuum
potential, instead of the force, using three-loop perturbation
theory with the a? In g term. Close agreement with pertur-
bation theory was found when a renormalon subtraction was

@ Springer

performed. Note that the renormalon subtraction introduces
a second scale into the perturbative formula which is absent
when the force is considered.

For the quenched calculation very small lattice spacings
were available. For both ETM 11C [505] and Bazavov 12
[504] using dynamical fermions such small lattice spacings
are not yet realised. They use the tree-level improved poten-
tial as described above. We note that the value of Ayg in
physical units by ETM 11C [505] is based on a value of
ro = 0.42 fm. This is at least 10 % smaller than the large
majority of other values of r(. Also the value of ry/a on the
finest lattice in that computation comes from a rather small
lattice with L ~ 3.2rg ~ 2.4/my.

One of the main issues for all these computations is
whether the perturbative running of the coupling constant has
been reached. While for quenched or Ny = 0 fermions this
seems to be the case at the smallest distances, for dynam-
ical fermions at present there is no consensus. While both
Brambilla 10 [506] and Bazavov 12 [504] find good agree-
ment with perturbation theory after the renormalon is sub-
tracted, Ref. [508] uses the force, where no renormalon con-
tributes, and finds that far shorter distances are needed than
are presently accessible for dynamical fermion simulations in
order to match to perturbation theory. Further work is needed
to clarify this point.

9.5 a4 from the vacuum polarisation at short distances
9.5.1 General considerations
The vacuum polarisation function for the flavour non-singlet

currents J ,‘j (a = 1, 2, 3) in the momentum representation is
parameterised as
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Table 34 Vacuum polarisation results

Collaboration Ref. N¢ Publication Renormalisation Perturbative Continuum Scale Asjis (MeV) roAys

status scale behaviour  extrapolation
JLQCD 10 [512] 2+1 A u ro = 0.472fm 247 (5)" 0.591 (12)
JLQCD/TWQCD 08C [513] 2 A o ro=0.49fm 234 (9)(7%) 0.581(22)("5")

T The paper cites oz

be revised by JLQCD

(JETD) =818, Q% — 0,011V (Q)
-0,0,1%(0)1, (186)

where Q,, is a space like momentum and J, = V,, for a

vector current and J, = A, for an axial-vector current.

Defining IT; (Q) = H(JO)(Q) + H(Jl)(Q), the operator prod-
uct expansion (OPE) of the vacuum polarisation function
[My1+4(Q) =My (Q) + MA(Q) is given by

Myt alopE(Q?, as)

=c+C1(QY) + C/TA(0?)

+ ¥ cV+A(Q)m§ffq>

m*(Q)
Q2

q=u,d,s

GG
+C66(0% (6:GG)

Q4
for large 0% CYT4(0?) = ¥, o(Cy ™) Dt (0?) are the
perturbative coefficient functions for the operators X (X =
1, gq, GG). Here C; is known up to four- loop order in a
continuum renormalisation scheme such as the MS scheme
[509,510]. Non-perturbatively, there are terms in Cx which
do not have a series expansion in «. For an example for the
unit operator see [511]. The term ¢ is Q—independent and
divergent in the limit of infinite ultraviolet cutoff. However
the Adler function defined as

,dI1(Q%)

do? ’
is a scheme independent finite quantity. Therefore one can
determine the running coupling constant in the MS scheme
from the vacuum polarisation function computed by a lattice
QCD simulation.

In more detail, the lattice data of the vacuum polarisation
are fitted with the perturbative formula (187) with fit param-
eter Ayjg parameterising the running coupling on—s(Qz).

While there is no problem in discussing the OPE at the
non-perturbative level, the ‘condensates’ such as (¢sGG) are
ambiguous, since they mix with lower-dimensional operators
including the unity operator. Therefore one should work in
the high Q2 regime where power corrections are negligible
within the given accuracy. Thus setting the renormalisation
scale as yu = \/@, one should seek, as always, the window
Agep € L al.

+0(079), (187)

D(QH) =-0 (188)

(M 7z) =0.1181 (3)(+12). As aresult of an inconsistency found in this estimate by the FLAG working group, the number will

9.5.2 Discussion of computations

Results using this method are, to date, only available using
overlap fermions. These are collected in Table 34 for Ny = 2,
JLQCD/TWQCD 08C [513] and for Ny =2+ 1,JLQCD 10
[512]. At present, only one lattice spacing a ~ 0.11 fm has
been simulated.

The fit to Eq. (187) is done with the four-loop relation
between the running coupling and Agg. It is found that
without introducing condensate contributions, the momen-
tum scale where the perturbative formula gives good agree-
ment with the lattice results is very narrow, a Q ~ 0.8-1.0.
When condensate contributions are included the perturbative
formula gives good agreement with the lattice results for the
extended range aQ ~ 0.6—1.0. Since there is only a sin-
gle lattice spacing there is a ® for the continuum limit. The
renormalisation scale p is in the range of QO = 1.6-2 GeV.
Choosing aefr = agg(Q), we find that aerr = 0.25—0.30 for
Nf =2 and aerr = 0.29 —0.33 for Ny = 2+ 1. Thus we give
a O and ® for Ny = 2 and Ny = 2 + 1 respectively for the
renormalisation scale and a ® for the perturbative behaviour.

9.6 o from observables at the lattice spacing scale
9.6.1 General considerations

The general method is to evaluate a short-distance quantity
O at the scale of the lattice spacing ~1/a and then determine
its relationship to oz via a power series expansion.

This is epitomised by the strategy of the HPQCD Col-
laboration [514,515], discussed here for illustration, which
computes and then fits to a variety of short-distance quanti-
ties, Y,

Nmax

Y = Z cnay (g").

n=1

(189)

Y is taken as the logarithm of small Wilson loops (includ-
ing some non-planar ones), Creutz ratios, ‘tadpole-improved’
Wilson loops and the tadpole-improved or ‘boosted’ bare
coupling (O (20) quantities in total). ¢, are perturbative coef-
ficients (each depending on the choice of Y) known ton = 3
with additional coefficients up to nmax being numerically fit-
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ted. oy is the running coupling constant related to oy from
the static quark potential (see Sect. 9.4.1).37

The coupling constant is fixed at a scale ¢* = d/a. This
is chosen as the mean value of In ¢ with the one gluon loop
as measure, [516,517]. (Thus a different result for d is found
for every short-distance quantity.) A rough estimate yields
d =~ m, and in general the renormalisation scale is always
found to lie in this region.

For example for the Wilson loop W,,,, = (W (ma, na))
we have

W,
In (W%) = cray(g*) + c203,(g%)
0

+e3o (g*) + - (190)

for the tadpole-improved version, where ci, ¢z, ... are the
appropriate perturbative coefficients and ug = Wlll/ 4. Substi-
tuting the non-perturbative simulation value in the left hand
side, we can determine ay (¢ ™), at the scale ¢*. Note that one
finds empirically that perturbation theory for these tadpole-
improved quantities have smaller ¢, coefficients and so the
series has a faster apparent convergence.

Using the B function in the V'-scheme, results can be run
to a reference value, chosen as ag = ay(qo), go = 7.5 GeV.
This is then converted perturbatively to the continuum MS
scheme

axis(qo) = oo + diaf + doad + - - (191)

where d1, dy are known one and two loop coefficients.

Other collaborations have focussed more on the bare
‘boosted’ coupling constant and directly determined its rela-
tionship to ag;g. Specifically, the boosted coupling is defined
by

18

4 ué’

ap(l/a) = (192)
again determined at a scale ~1/a. As discussed previously
since the plaquette expectation value in the boosted cou-
pling contains the tadpole diagram contributions to all orders,
which are dominant contributions in perturbation theory,
there is an expectation that the perturbation theory using the
boosted coupling has smaller perturbative coefficients [516],
and hence smaller perturbative errors.

9.6.2 Continuum limit

Lattice results always come along with discretisation errors,
which one needs to remove by a continuum extrapolation.
As mentioned previously, in this respect the present method

differs in principle from those in which oy is determined

37 @y isdefinedby Ay = Ay andbY = b fori =0, 1,2buth; =0
fori > 3.
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from physical observables. In the general case, the numeri-
cal results of the lattice simulations at a value of u fixed in
physical units can be extrapolated to the continuum limit, and
the result can be analysed as to whether it shows perturbative
running as a function of y in the continuum. For observables
at the cutoff-scale (¢* = d/a), discretisation effects cannot
easily be separated out from perturbation theory, as the scale
for the coupling comes from the lattice spacing. Therefore
the restriction apu < 1 (the ‘continuum-extrapolation’ cri-
terion) is not applicable here. Discretisation errors of order
a? are, however, present. Since a ~ exp(—1/ (Zbog(z))) ~
exp(—1/(8mboa(g*)), these errors now appear as power cor-
rections to the perturbative running, and have to be taken into
account in the study of the perturbative behaviour, which is
to be verified by changing a. One thus always should fit with
power corrections in this method.

In order to keep a symmetry with the ‘continuum-
extrapolation’ criterion for physical observables and to
remember that discretisation errors are, of course, relevant,
we replace it here by one for the lattice spacings used:

e Lattice spacings
¢ three or more lattice spacings, at least two points below
a=0.1fm
O two lattice spacings, at least one point below a =
0.1 fm
® otherwise

9.6.3 Discussion of computations

Note that due to . ~ 1/a being relatively large the results
easily have a % or O in the rating on renormalisation scale.

The work of El-Khadra 92 [524] employs a one-loop for-
mula to relate oz%(n /a) to the boosted coupling for three

lattice spacings a”! = 1.15, 1.78, 2.43 GeV. (The lat-
tice spacing is determined from the charmonium 1S-1P
splitting.) They obtain A% = 234MeV, corresponding

to oeff = oz%(n/a) ~ 0.15-0.2. The work of Aoki 94

[523] calculates ozg,z )

and oz% for a single lattice spacing

a~! ~ 2GeV again determined from charmonium 15-1P

splitting in two-flavour QCD. Using one-loop perturbation

theory with boosted coupling, they obtain ag,z ) = 0.169 and
(©)

O = 0.142. Davies 94 [522] gives a determination of ay

from the expansion

4
— Wy = T”a(VNf>(3.41 /a)

x[1 — (1.185 + 0.070Np)a, "1, (193)

neglecting higher-order terms. They compute the Y spec-
trum in Ny = 0, 2 QCD for single lattice spacings at
a~! = 2.57, 2.47GeV and obtain ay(3.41/a) ~ 0.15,
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0.18 respectively. Extrapolating the inverse coupling linearly
in Np, a value of o’ (8.3GeV) = 0.196(3) is obtained.
SESAM 99 [520] follows a similar strategy, again for a
single lattice spacing. They linearly extrapolated results for
1/0[(0) 1/0{(2) at a fixed scale of 9 GeV to give ag), which
is then perturbatively converted to a(3) This finally gave

ﬁ) (Mz) = 0.1118(17). Wingate 95 [521] also follow this
method. With the scale determined from the charmonium
15—1P splitting for single lattice spacings in Ny =0, 2 giv-
inga~! ~ 1.80GeV for Ny = 0 and a~! ~ 1.66GeV for
Ni = 2 they obtain &’ (3.41/a) ~ 0.15 and o =~ 0.18
respectively. Extrapolating the coupling linearly in Ny, they
obtain &} (6.48 GeV) = 0.194(17).

The QCDSF/UKQCD Collaborations, QCDSF/UKQCD
[519,525-527], use the two-loop relation (re-written here in
terms of «)

1
ays (i)

1
= + 47 (2boInap —tF)
ap(1/a) :

+(4m)22by Inap — tf)ap(1/a), (194)

where tIP and tzP are known. (A two-loop relation corresponds
to athree-loop lattice beta function.) This was used to directly
compute aqgg, and the scale was chosen so that the O (“(1)3)
term vanishes, i.e.

2.63/a Nf=0

*_1 P ~ .
W= geXp[fl /(Ebo)]~{ 14/a Ny =2 (195)

The method is to first compute ap(1/a) and from this using
Eq. (194) to find agg(u*). The RG equation, Eq. (166), then
determines u*/ Ay and hence using Eq. (195) leads to the
result for ro Aggg. This avoids giving the scale in MeV until
the end. In the Ny = 0 case 7 lattice spacings were used
[484], giving arange ¥/ Ayjg ~ 24-72 (ora~! ~ 2-7GeV)
and oefr = agg(pn™®) ~ 0.14-0.11. Neglecting higher-order
perturbative terms (see discussion after Eq. (196) below) in
Eq. (194) this is sufficient to allow a continuum extrapo-

lation of roAyg. A similar computation for Ny = 2 by
QCDSF/UKQCD 05 [519] gave u*/Ayg =~ 12-17 (or
roughly a=! ~ 2-3GeV) and aefr = ayg(n*) ~ 0.20-

0.18.

The Ny = 2 results of QCDSF/UKQCD 05 are affected
by an uncertainty which was not known at the time of pub-
lication: It has been realised that the values of ro/a of [519]
were significantly too low [59]. As this effect is expected to
depend on a, it influences the perturbative behaviour leading
us to assign a W for that criterion.

The work of HPQCD 05A [514] (which supersedes the
original work [528]) uses three lattice spacings al~12,

1.6,2.3 GeV for 2+ 1 flavour QCD. Typically the renormal-
isation scale ¢ =~ w/a ~ 3.50 — 7.10 GeV, corresponding to
Oeff = Xy’ =~ 0.22-0.28.
In the later update HPQCD 08A [515] twelve data sets
(with six lattice spacings) are now used reaching up to
1~ 44Gev corresponding to oerr & 0.18. The values
used for the scale r| were further updated in HPQCD 10 [73].
Maltman 08 [518] uses most of the same lattice ensembles as
HPQCD 08A [515] but considers a much smaller set of quan-
tities (3 versus 22) that are less sensitive to condensates. They
also use different strategies for evaluating the condensates
and for the perturbative expansion, and a slightly different
value for the scale r;. The central values of the final results
from Maltman 08 and HPQCD 08A differ by 0.0009 (which
would be decreased to 0.0007 taking into account a reduction
of 0.0002 in the value of the r; scale used by Maltman 08).
As mentioned before, the perturbative coefficients are
computed through three-loop order [529], while the higher-
order perturbative coefficients ¢, with nmax > n > 3 (with
nmax = 10) are numerically fitted using the lattice simula-
tion data for the lattice spacings with the help of Bayesian
methods. It turns out that corrections in Eq. (190) are of order
lci/ct |ai =20%,5-15% and 3-10 % fori = 1, 2, 3, respec-
tively. The inclusion of a fourth-order term is necessary to
obtain a good fit to the data, and leads to a shift of the result
by 1-2 sigma. For all but one of the 22 quantities, central
values of ~2—4 were found, with errors from the fits of ~2.
For many of the quantities, the fitted central values of the
ratios |c4/c1| appear to be larger than corresponding lower-
order ratios (which would be worrying for the application of
perturbation theory), but the coefficients |c5/c1| are essen-
tially undetermined by the data and the errors on |c4/c| are
sufficiently large that it is premature to decide this issue.
Perturbative truncation errors are the largest source of
uncertainty in HPQCD 08A/10A, and a significant contri-
bution in Maltman; both estimate this error to be about 0.3—
0.4 %. Maltman uses the changes observed from fitting to
data at the three finest versus fitting to data at all lattice
spacings, while HPQCD uses the (correlated) errors in their
fitted coefficients c4 and cs. As discussed in the introduc-
tion and conclusions, however, perturbative truncation errors
are notoriously difficult to estimate. In the concluding sec-
tion (Sect. 9.9), we therefore also consider a more conserva-
tive power-counting estimate of the perturbative error, tak-
ing the estlmated size of the ¢4 term as the uncertainty. With
o] = ozf(S GeV) and ap = a (MZ) we have

c4

c4
Aa;=|—
1

AA 1 Aa
o2, LA Aay

a?, Aoy =

A =87Tb0a1 o
(196)

In order to obtain a numerical value we need |c4/c1]|. It has
been estimated as part of the fit by HPQCD. Since the fit
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Table 35 Wilson loop results

Collaboration Ref. Ng Publication Renormalisation Perturbative Lattice Scale Ajis (MeV)  roAyg
status scale behaviour  spacings

HPQCD 1048 [73] 241 A o * * r1 = 0.3133(23) fm 340 (9) 0.812 (22)

HPQCD 08A¢ [515] 2+1 A o * * r1 = 0.321(5) fm™ 338 (12)* 0.809 (29)

Maltman 08¢ [518] 2+1 A e} o o) r1 =0.318fm 352 (17)F 0.841 (40)

HPQCD 05A“ [514] 2+1 A o o) o) it 319 (17)*  0.763 (42)

QCDSF/UKQCD 05 [519] 2 A * u * ro = 0.467 (33) fm 261 (17) (26) 0.617 (40) (21)”

SESAM 99¢ [520] 2 A o u u cc (1S —1P)

Wingate 95¢ [521] 2 A * u u cc (1S —1P)

Davies 94¢ [522] 2 A * u u b

Aoki 94/ 52312 A * L L] cc(1S—1P)

QCDSF/UKQCD 05 [519] O A * o * ro = 0.467 (33)fm 259 (1) (20) 0.614 (2) (5)°

SESAM 99¢ [520] O A * u u cc (1S —1P)

Wingate 954 [521] O A * u u cc(1S—1P)

Davies 94¢ [522] 0 A * u [ T

El-Khadra 928 [524] O A * o ) cc(1S—1P) 234 (10) 0.593 (25)"

(5> O (Mz) = 0.1192(11)

>(7 5GeV) = 0.2120(28), a“’) (Mz) = 0.1183(8), supersedes HPQCD 05
(3) (5 GeV) = 0.2034(21), a(s) (Mz) = 0.1184(6), only update of intermediate scale and ¢, b quark masses, supersedes HPQCD 08A and

Ma tman 08

1 Scale is originally determined from Y mass splitting. r is used as an intermediate scale. In conversion to roAggs» 7o is taken to be 0.472 fm

* ol (7.5GeV) = 0.2082(40), a(S) (M) = 0.1170(12)

% The numbers for A have been converted from the values for ag 2 (Mz)
IEZ) (Mz) = 0.112(1)(2). The Ny = 2 results were based on values for ry/a which have later been found to be too

> This supersedes [525-527].

@mall [59]. The effect will be of the order of 10—15 %, presumably an increase in Arg

<5> ) (Mz) = 0.1118(17)

)(6 48 GeV) = 0.194(7) extrapolated from N¢ = 0, 2. a@ (Mz) = 0.107(5)

(%)(8 2GeV) = 0.1959(34) extrapolated from Ny =

f Estimated oz (MZ) =0.108(5)(4)

0,2. a%(MZ) =0.115(2)

& This early computauon violates our requirement that scheme conversions are done at the two-loop level

h Used ry = 0.5 fm to convert to ro Ay A(4)

results are |c4/c1| = 4 £ 2 for the (log of the) plaquette and
unimproved Wilson loops, the estimated four-loop correction
from Eq. (196) is of order 2-6 %.

As perturbative coefficients are fit parameters, it is impor-
tant to have isolated the perturbative piece of the short-
distance quantity, or to show that non-perturbative effects
are small. Checks were made expanding the short-distance
quantity in a Taylor expansion in the quark mass and adding
‘gluon condensate’-like terms. This did not change the fits
perceptibly. With the «ef values given above we assign a
O for the renormalisation scale. According to our criterion
the perturbative behaviour is verified. However, one should
keep mind that it was necessary to include fitted higher-
order coefficients in order to describe the data. The fact
that these fitted coefficients are not well-determined by the
data makes the test less stringent. Table 35 summarises the
results.
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160(F4))MeV, a&(SGeV) = 0.174(12). We converted this number to give a<5’ (M) = 0.106(4)

9.7 a from current two-point functions
9.7.1 General considerations

The method has been introduced in [85] and updated in [73];
see also [530]. The basic observable is constructed from a
current J (x) = ithh (x)ys¥ (x) of two mass-degenerate
heavy valence quarks, &, h’. The pre-factor m;, denotes the
bare mass of the quark. With a residual chiral symmetry,
J(x) is a renormalisation group invariant local field, i.e. it
requires no renormalisation. Staggered fermions and twisted
mass fermions have such a residual chiral symmetry. The
(Euclidean) time-slice correlation function

Gy =a* Y (7 @) J0)), (197)
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(JT(x) = imp Py (x)ys¥n(x)) has a ~ x> singularity at
short distances and moments
T/2—a

G,=a Z

t=—(T/2—a)

" G(1), (198)

are finite for n > 4. Here T is the time extent of the lattice.
The moments are dominated by contributions at ¢ of order
1/my,. For large mass my, these are short distances and the
moments become increasingly perturbative for decreasing n.
Denoting the lowest-order perturbation theory moments by
G},O), one defines the normalised moments

G4/GY  forn=4,

myGY=
2my (GO =)

R, = (199)

forn > 6,

of even order n. The mass, m,,, of the pseudoscalar flavoured
hh' state is used to make G, dimensionless, while in the
denominator the bare quark mass is used for this purpose. In
the continuum limit the normalised moments can be param-
eterised in terms of functions

ra(os(p), u/mp(u))  forn =4,
R, = _ 2
{z (@5 (). /i () forn > 6, (200)
where
P . (201)
© 2mp(p)’

with mj, (i) being the renormalised quark mass. The prefac-
tor z parameterises the heavy quark mass and the quantities
r, have a perturbative expansion

rn=14ry 106 + r,,,zots2 + rn,gas + -, (202)

where the written terms r, ; (it /mp (i), i < 3 are known for
low n from [509,510,531-533]. In practice, the expansion
is used in the MS scheme. Matching non-perturbative lattice
results for the moments to the perturbative expansion, one
can determine an approximation to argg(10) as well as my (w).
With the lattice spacing (scale) determined from some extra
physical input, this calibrates /.

A difficulty with this approach is that large masses are
needed to enter the perturbative domain. Lattice artefacts can
then be sizeable and have a complicated form. The ratios in
Eq. (199) use the tree-level lattice results in the usual way
for normalisation. This results in unity as the leading term in
Eq. (202), suppressing some of the kinematical lattice arte-
facts. We note that in contrast to e.g. the definition of agq,
here the cutoff effects are of order a” «s, while there the tree-
level term defines « and therefore the cutoff effects after
tree-level improvement are of order a" a2

Furthermore finite-size effects (FSE) due to the omis-
sion of [t| > T/2 in Eq. (198) grow with n as (mpT/2)"
exp (—=mpT/2). In practice, however, since the (lower)
moments are short-distance dominated, the FSE are expected

to be irrelevant at the present level of precision. In the defini-
tions above, the mass of an artificial non-singlet pseudoscalar
meson has been used, since this is done in the simulations. In
the determinations of the quark masses, this mass is approxi-
mated by the mass of the n (or ;) in Nature. The difference,
due to quark-line disconnected diagrams is usually assumed
to be small. For the determination of «g, this approximation
is actually irrelevant, since one can consider the moments at
arbitrary (valence) quark masses.

Moments of correlation functions of the quark’s electro-
magnetic current can also be obtained from experimental data
for ete™ annihilation [534,535]. This enables a non-lattice
determination of o using a similar analysis method. In par-
ticular, the same continuum perturbation theory enters both
the lattice and the phenomenological determinations.

9.7.2 Discussion of computations

The method has been applied in HPQCD 08B [85] and in
HPQCD 10 [73], based on the MILC ensembles with 2 + 1
flavours of ASQTAD staggered quarks and HISQ valence
quarks. The scale was setusing r; = 0.321(5) fm in HPQCD
08B and the updated value r; = 0.3133(23) fm in HPQCD
10. The effective range of couplings used is here given for
n = 4, which is the moment most dominated by short (per-
turbative) distances and important in the determination of
as. The range is similar for other ratios. With r4 1 = 0.7427
and R4 = 1.281(5) determined in the continuum limit at
the charm mass in [85], we have a.sf = 0.38 at the charm
quark mass, which is the mass value where HPQCD 08B
carries out the analysis. In HPQCD 10 a set of masses
is used, with R4 € [1.090, 1.293] which corresponds to
aeff € [0.121, 0.395].

The available data of HPQCD 10 are summarised in
Fig. 24 where we plot aefr against mprq. For the continuum
limit criterion, we choose the scale u = 2m;, ~ mp/1.1,
where we have taken 7, in the MS scheme at scale 7, and
the numerical value 1.1 was determined in HPQCD 10B.

The data in Fig. 24 are grouped according to the range of
a that they cover. The vertical spread of the results for oefr
at fixed rymp in the figure measures the discretisation errors
seen for large masses: in the continuum we would expect all
the points to lie on one universal curve. The plots illustrate
the selection applied by our quality criterion for the contin-
uum limit with our choices for p. Figure 24 gives reason
for concern, since it shows that the discretisation errors that
need to be removed in the continuum extrapolation are not
small.

With our choices for u, the continuum limit criterion is
satisfied for 3 lattice spacings when aeff < 0.3 and n = 4.
Larger n moments are more influenced by non-perturbative
effects. For the n values considered, adding a gluon con-
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Fig. 24 o for Ry (left) and Re/ Rg (right) versus rymy,. Symbols correspond to our continuum limit criterion, namely O fordatawith1 < au < 1.5

and ® for ap > 1.5, while % is not present

Table 36 Current two point function results

Collaboration Ref. Nt Publication Renormalisation  Perturbative Continuum Scale Ayg (MeV)  roAym
status scale behaviour extrapolation

HPQCD 10 [73] 2+1 A e} @) r1 =0.3133 (23) fm" 338 (10)* 0.809 (25)

HPQCD 08B [85] 2+1 A L u u ri = 0.321(5) fm’ 325 (18)* 0.777 (42)

T Scale is determined from Y mass splitting

* a0 (5GeV) = 0.203421). a0X(M7) = 0.1183(7)

0 (3GeV) = 0.251(6), al(M7) = 0.1174(12)

densate term, which largely accounts for these effects, only
changed error bars slightly. We note that HPQCD in their
papers perform a global fit to all data using a joint expansion
in powers of a, (A/(mp/ 2))/ to parameterise the heavy-
quark mass dependence, and (am,,/ 2)% to parameterise the
lattice-spacing dependence. To obtain a good fit, they must
exclude data with am, > 1.95 and include lattice-spacing
terms a” with i greater than 10. Because these fits include
many more fit parameters than data points, HPQCD uses their
expectations for the sizes of coefficients as Bayesian priors.
The fits include data with masses as large as amp/2 ~ 0.86,
so there is only minimal suppression of the many high-order
contributions for the heavier masses. It is not clear, however,
how sensitive the final results are to the larger amp/2 values
in the data. The continuum limit of the fit is in agreement
with a perturbative scale dependence (a five-loop running
agg With a fitted five-loop coefficient in the beta-function is
used). Indeed, Fig. 2 of Ref. [73] suggests that HPQCD’s fit
describes the data well.

In Table 36 we list the current two point function results.
Thus far, only one group has used this approach, which mod-
els complicated and potentially large cutoff effects together
with a perturbative coefficient. We therefore are waiting to
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see confirmation by other collaborations of the small sys-
tematic errors obtained (cf. discussion in Sect. 9.9.2). We do
however include the values of a5 (M z) and Ay of HPQCD
10 in our final range.

9.8 a from QCD vertices
9.8.1 General considerations

The most intuitive and in principle direct way to determine
the coupling constant in QCD is to compute the appropri-
ate three or four point gluon vertices or alternatively the
quark—quark—gluon vertex or ghost—ghost—gluon vertex (i.e.
qq A or ccA vertex respectively). A suitable combination of
renormalisation constants then leads to the relation between
the bare (lattice) and renormalised coupling constant. This
procedure requires the implementation of a non-perturbative
renormalisation condition and the fixing of the gauge. For
the study of non-perturbative gauge fixing and the associ-
ated Gribov ambiguity, we refer to [536-538] and references
therein.

In practice the Landau gauge is used and the renormalisa-
tion constants are defined by requiring that the vertex is equal
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to the tree-level value at a certain momentum configuration.
The resulting renormalisation schemes are called ‘MOM’

—~

scheme (symmetric momentum configuration) or ‘MOM’
(one momentum vanishes), which are then converted per-
turbatively to the MS scheme.

A pioneering work to determine the three gluon vertex in
the Ny = 0 theory is Alles 96 [539] (which was followed by
[540] for two flavour QCD); a more recent Ny = 0 compu-
tation was [541] in which the three gluon vertex as well as
the ghost—ghost—gluon vertex was considered. (This requires
in general a computation of the propagator of the Faddeev—
Popov ghost on the lattice.) The latter paper concluded that
the resulting Agg depended strongly on the scheme used, the
order of perturbation theory used in the matching and also
on non-perturbative corrections, [542].

Subsequently in [543,544] a specific 1\761\71 scheme with
zero ghost momentum for the ghost—ghost—gluon vertex was
used. In this scheme, dubbed the ‘MM’ (Minimal MOM) or
‘Taylor’ (T) scheme, the vertex is not renormalised, and so
the renormalised coupling reduces to

ghost

2
gy(a)
ar(n) = Dy 22002

gluon
(I'La a)Dlat (/’Lva) 47_[

(203)

where Dlga}IOSt and Dlgaltu " are the (bare lattice) dressed ghost
and gluon ‘form factors’ of these propagator functions in the

Landau gauge,

Dghost (p)
p*

pm) Delvon(p)
p? pr

Dab(p) — _8(117

(204)

Db (p) = 8 (aw —~

and we have written the formula in the continuum with
pehost/gluon ),y — Dlg;thSt/ gluon( p, 0). Thus there is now no
need to compute the ghost—ghost—gluon vertex, just the ghost

and gluon propagators.

9.8.2 Discussion of computations

For the calculations considered here, to match to perturbative
scaling, it was first necessary to reduce lattice artefacts by an
H (4) extrapolation procedure (addressing O (4) rotational
invariance), e.g. ETM 10F [550] or lattice perturbation the-
ory, e.g. Sternbeck 12 [548]. To match to perturbation theory,
collaborations vary in their approach. In ETM 10F [550] it
was necessary to include the operator A” in the OPE of the
ghost and gluon propagators, while in Sternbeck 12 [548]
very large momenta are used and a” p* and a*p* terms are
included in their fit to the momentum dependence. A fur-
ther later refinement was the introduction of non-perturbative
OPE power corrections in ETM 11D [547] and ETM 12C
[546]. Although the expected leading power correction, 1/¢%,

was tried, ETM finds good agreement with their data only
when they fit with the next-to-leading order term, 1/¢%. The
update ETM 13D [545] investigates this point in more detail,
using better data with reduced statistical errors. They find that
after again including the 1/¢° term they can describe their
data over a large momentum range from about 1.75-7 GeV.

In all calculations except for Sternbeck 10 [549], Stern-
beck 12 [548], the matching with the perturbative formula is
performed including power corrections in the form of con-
densates, in particular (A?).

Three lattice spacings are present in almost all calcula-
tions with Ny = 0, 2, but the scales ap are rather large. This
mostly results in a B on the continuum extrapolation. (Stern-
beck 10 [549], Boucaud 01B [540] for Ny = 2. Ilgenfritz 10
[551], Boucaud 08 [544], Boucaud 05 [541], Becirevic 99B
[556], Becirevic 99A [557], Boucaud 98B [558], Boucaud
98A [559], Alles 96 [539] for N¢ = 0).

A 0 is reached in the Ny = 0 computations Boucaud
00A [555], 00B [554], O1A [553], Soto 01 [552] due to a
rather small lattice spacing, but this is done on a lattice of a
small physical size. The N =2 4 1 + 1 calculation, fitting
with condensates, is carried out for two lattice spacings and
with ap > 1.5, giving ® for the continuum extrapolation
as well. In ETM 10F [550] we have 0.25 < o < 0.4,
while in ETM 11D, ETM 12C (and ETM 13) we find 0.24 <
aeff < 0.38 which gives a green circle in these cases for the
renormalisation scale. In ETM 10F the values of ap violate
our criterion for a continuum limit only slightly, and we give
a o.

In Sternbeck 10 [549], the coupling ranges over 0.07 <
oeff < 0.32 for Ny = 0and 0.19 < aefr < 0.38 for Ny = 2
giving Y and O for the renormalisation scale, respectively.
The fit with the perturbative formula is carried out without
condensates, giving a satisfactory description of the data.
In Boucaud 01A [553], depending on a, a large range of
oeff 1S used which goes down to 0.2 giving a O for the
renormalisation scale and perturbative behaviour, and sev-
eral lattice spacings are used leading to O in the continuum
extrapolation. The Ny = 2 computation Boucaud 01B [553],
fails the continuum limit criterion because both au is too
large and an unimproved Wilson fermion action is used.
Finally in the conference proceedings Sternbeck 12 [548],
the Ny = 0, 2, 3 coupling o is studied. Subtracting one-loop
lattice artefacts and subsequently fitting with a” p? and a* p*
additional lattice artefacts, agreement with the perturbative
running is found for large momenta (rg p? > 600) without
the need for power corrections. In these comparisons, the
values of ro Ayg from other collaborations are used. As no
numbers are given, we have not introduced ratings for this
study.

In Table 37 we summarise the results. Presently there are
no Ny > 3 calculations of «g from QCD vertices that satisfy
the FLAG criteria to be included in the range.
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Table 37 Results for the gluon—ghost vertex

Collaboration Ref.  Np Publication Renormalisation Perturbative Continuum Scale AWS(MeV) ro ANTS
status scale behaviour extrapolation
ETM 13D [545] 2+1+1 A o) o) u fr 314(7) (14) 10)8  0.752 (18) 34) (81) T
ETM 12C [546] 24+1+1 A 0] ) fr 324 (17)8 0.775 @)t
ETM 11D [547] 24141 A O o Fr 316 (13) (8) cg)* 0.756 31) (19) (F9,)"
Sternbeck 12 [548] 2+1 C Only running of « in Fig. 4
Sternbeck 12 [548] 2 C Agreement with rq NV value of [59]
Sternbeck 10 [549] 2 C (o) * [ | 0.60 (3) ()
ETM 10F [550] 2 A o) o) o) fa 30@3) @Y 02t
Boucaud 01B  [540] 2 A (@) ©) u K*—K 264 27)** 0.669 (69)
Sternbeck 12 [548] 0 C Agreement with rg Ayfg value of [506]
Sternbeck 10 [549] 0O C * * u 0.62 (1)*
Ilgenfritz 10~ [551] O A * * ] Only running of oy in Fig. 13
Boucaud 08  [544] 0 A o) o) u Jo=445MeV  2243) (FH) 059 (1) (t3)
Boucaud 05 [541] O A L] ©) L] Jo = 445MeV 320 (32) 0.85(9)
Soto 01 [552] 0 A o o o Jo =445MeV 260 (18) 0.69 (5)
Boucaud 01A  [553] 0 A o o o Jo = 445MeV 233 (28) MeV 0.62 (7)
Boucaud 00B  [554] 0 A (@) (@) (@) Only running of ag
Boucaud 00A  [555] 0 A o o o Jo=45Mev 2373 (H) 0.63(1) (*Y
Becirevic 9B [556] 0 A o) o) u Vo =445MeV  319014) (L) 0.84 @) (T
Becirevic 99A [557] 0 A o) o) u Jo=445MeV <353 () <093¢T)
Boucaud 98B [558] 0 A L] ©) L] Jo = 445MeV 295 (5) (15) 0.78 (4)
Boucaud 98A  [559] 0 A u o) u Jo = 445MeV 300 (5) 0.79 (1)
Alles 96 [539] O A ] (@] ] Jo =440MeVtt 340 (50) 0.91 (13)

f We use the 2 + 1 value rop = 0.472 fm
§ a%(Mz) = 0.1200(14)

* First error is statistical; second is due to the lattice spacing and third is due to the chiral extrapolation. a%(M 7z) =0.1 198(9)(5)@2)

# Only roAgfg is given
* The determination of r( from the f; scale is found in [241]
Kk 5
a>l (M) = 0.113(3)(4)
T+ The scale is taken from the string tension computation of [507]

9.9 Summary

9.9.1 The present situation

We first summarise the status of lattice-QCD calculations of
the QCD scale Agg. Figure 25 shows all results for ro Aygg
discussed in the previous sections.

Many of the numbers are the ones given directly in the
papers. However, when only Ayg in physical units (MeV) is
available, we have converted them by multiplying with the
value of rg in physical units. The notation used is full green
squares for results used in our final average, while an open
green square indicates that there are no red squares in the
previous colour coding but the computation does not enter
the ranges because either it has been superseded by an update
or it is not published. Red open squares mean that there is at
least one red square in the colour coding.

For Ny = 0 there is relatively little spread in the more
recent numbers, even in those which do not satisfy our quality
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criteria. Clearly one could improve the statistical and many
systematic errors considerably nowadays, but the emphasis
is on the theory with quarks.

When two flavours of quarks are included, the num-
bers extracted by the various groups show a considerable
spread, as in particular older computations did not yet con-
trol the systematics sufficiently. This illustrates the diffi-
culty of the problem and emphasises the need for strict
quality criteria. The agreement among the more modern
calculations with three or more flavours, however, is quite
good.

We now turn to the status of the essential result for phe-
nomenology, oz%(M 7). In Table 38 and Fig. 26 we show all

the results for a%(M z) (i.e. agpg at the Mz mass) obtained
from Ny =2+ 1 and Ny = 2+ 1 + 1 simulations. For com-
parison, we also include results from Ny = 0, 2 simulations,
which are not relevant for phenomenology. For the Ny > 3
simulations, the conversion from Nf = 3 to N = 5 is made
by matching the coupling constant at the charm and bottom
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Fig. 25 roAg estimates for Ny = 0, 2, 3, 4 flavours. Full green
squares are used in our final ranges, open green squares also indicate
that there are no red squares in the colour coding but the computations
were superseded by later more complete ones, while red open squares
mean that there is at least one red square in the colour coding

Table 38 Results for agg(Mz). Nt = 3 results are matched at the
charm and bottom thresholds and scaled to M  to obtain the Ny = 5
result. The arrows in the N¢ column indicates which Ny (Nf = 0, 2

quark thresholds and using the scale as determined or used
by the authors. For Ny = 0, 2 the results for a;g in the sum-
mary table come from evaluations of a5 at a low scale and
are extrapolated in Ny to Ny = 3.

As can be seen from the tables and figures, at present
there are several computations satisfying the quality crite-
ria to be included in the FLAG average. We note that none
of those calculations of al%(M z) satisfy all of our more
stringent criteria: a % for the renormalisation scale, pertur-
bative behaviour and continuum extrapolation. The results,
however, are obtained from four different methods that have
different associated systematics, and agree well within the
stated uncertainties.

Q)
9.9.2 Our range for NS

We now explain the determination of our range. We only
include those results without a red tag and that are published
in a refereed journal. We also do not include any numbers
which were obtained by extrapolating from theories with less
than three flavours. There is no real basis for such extrapola-
tions; rather they use ad hoc assumptions on the low-energy
behaviour of the theories. One also notices from the pub-
lished results that the estimated numbers are quite signifi-
cantly below those with at least 2 + 1 flavours.

or a combination of both) were used to first extrapolate to Ny = 3
or estimate the Ny = 3 value through a model/assumption. The exact
procedures used vary and are given in the various papers

Collaboration Ref.  N¢ Publication ~ Renormalisation Perturbative ~ Continuum ayg(Mz) Method Table
status scale behaviour extrapolation
ETM 13D [545] 2+141 A o o u 0.1196 (4) (8) (16)  Gluon—ghost vertex 37
ETM 12C [546] 2+1+1 A (@) (@) u 0.1200 (14) Gluon—ghost vertex 37
ETM 11D [547] 24+1+1 A (@] (@] u 0.1198 (9) (5) (fg) Gluon—ghost vertex 37
Bazavov 12 [504] 2+ 1 A o o o 0.1156 (3)) 0-0 potential 33
HPQCD 10 [731 2+1 A (@] (@] o 0.1183 (7) Current two points 36
HPQCD 10 [73] 2+1 A (@] * * 0.1184 (6) Wilson loops 35
PACS-CS 09A [487] 2+1 A * * (@] 0.118 3)* Schrodinger functional 32
Maltman 08 [518] 241 A (o] (o] o 0.1192 (11) Wilson loops 35
HPQCD 08B [85] 241 A u u u 0.1174 (12) Current two points 36
HPQCD 08A [515] 241 A (©) * * 0.1183 (8) Wilson loops 35
HPQCD 05A [514] 241 A (6] (©) (0] 0.1170 (12) Wilson loops 35
QCDSF/UKQCD 05 [519] 0,2—>3 A * ] * 0.112 (1) (2) Wilson loops 35
Boucaud 01B [540] 2 —3 A (@] (@] u 0.113 (3) (4) Gluon—ghost vertex 37
SESAM 99 [520] 0,2—>3 A * ] u 0.1118 (17) Wilson loops 35
Wingate 95 [5211 0,2—>3 A * | u 0.107 (5) Wilson loops 35
Davies 94 [522] 0,2—3 A * ] u 0.115(2) Wilson loops 35
Aoki 94 [523] 2—>3 A * u u 0.108 (5) (4) Wilson loops 35
El-Khadra 92 [524] 0—>3 A * (@) (0] 0.106 (4) Wilson loops 35

# Result with a linear continuum extrapolation in a
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Fig. 26 oc](vST)(M 7), the coupling constant in the MS scheme at the Z
mass. The results labelled Ny = 0, 2 use estimates for Ny = 3 obtained
by first extrapolating in N from Nf = 0, 2 results. Since this is not
a theoretically justified procedure, these are not included in our final
estimate and are thus given a red symbol. However, they are shown
to indicate the progress made since these early calculations. The PDG
entry indicates the outcome of their analysis excluding lattice results
(see Sect. 9.9.4)

A general issue with most recent lattice calculations of
ayg is that they are dominated by perturbative trunca-
tion errors, which are difficult to estimate. This concern
also applies to many non-lattice determinations. Further,
all results except for those of Sects. 9.3, 9.6 are based on
extractions of a5 that are largely influenced by data with
aeff > 0.3. At smaller « the momentum scale p quickly is
at or above a~'. We have included computations using a
up to 1.5 and oefr up to 0.4, but one would ideally like to be
significantly below that. Accordingly we wish at this stage to
estimate the error ranges in a conservative manner, and not
simply perform weighted averages of the individual errors
estimated by each group.

Many of the methods have thus far only been applied by
a single collaboration, and with simulation parameters that
could still be improved. We therefore think that the following
aspects of the individual calculations are important to keep
in mind, and look forward to additional clarification and/or
corroboration in the future.

e The potential computations Brambilla 10 [506], ETM
11C [505] and Bazavov 12 [504] give evidence that they
have reached distances where perturbation theory can be
used. However, in addition to Aqcp, a scale is introduced
into the perturbative prediction by the process of subtracting
the renormalon contribution. The extractions of A are domi-
nated by data with aegr > 0.3. In contrast, Ref. [508], which
studies the force instead of the potential and therefore does
not need a renormalon subtraction, finds that significantly
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smaller lattice spacings would be needed in order for pertur-
bation theory to be reliable. Further study is needed to clarify
the situation.

e In the determination of o from observables at the lat-
tice spacing scale, there is an interplay of higher-order per-
turbative terms and lattice artefacts. In HPQCD 05A [514],
HPQCD 08A [515] and Maltman 08 [518] both lattice arte-
facts (which are power corrections in this approach) and
higher-order perturbative terms are fitted. We note that, Malt-
man 08 [518] and HPQCD 08A [515] analyse largely the
same data set but use different versions of the perturbative
expansion and treatments of non-perturbative terms. After
adjusting for the slightly different lattice scales used, the
values of ag(Mz) differ by 0.0004-0.0008 for the three
quantities considered. In fact the largest of these differences
(0.0008) comes from a tadpole-improved loop, which is
expected to be best behaved perturbatively.

e Another computation with very small errors is HPQCD 10
[73], where correlation functions of heavy quarks are used
to construct short-distance quantities. Due to the large quark
masses needed to reach the region of small coupling, consid-
erable discretisation errors are present; see Fig. 24. These are
treated by fits to the perturbative running (a five-loop running
ag With a fitted five-loop coefficient in the beta-function is
used) with high-order terms in a double expansion in a>A>
and azmi supplemented by priors which limit the size of the
coefficients. The priors play an especially important role in
these fits given the much larger number of fit parameters than
data points. We note, however, that the size of the coefficients
does not prevent high-order terms from contributing signifi-
cantly, since the data include values of am /2 that are rather
close to 1. It is not clear how sensitive the final results are to
these large values of am,,/2.

As previously discussed a%(M 7z) is summarised in
Table 38 and Fig. 26. Early computations estimated the effect
of the strange quark by extrapolations from Ny = 0 and
Nt = 2. They are included in the table and figure but do
not enter the final range. Indeed with our present knowledge
we see that such estimates were rather rough ones, but also
other systematic errors such as a lack of control of discreti-
sation errors presumably play a role in the differences seen
with today’s results. A number of calculations that include
the effect of the strange quark make up our final estimate.
These are Bazavov 12, HPQCD 10A/10B, PACS-CS 09A,
Maltman 08 while HPQCD 08A/O5A have been superseded
by more complete calculations. We obtain the central value
for our range,

O (My) = 0.1184(12),

)
S (205)

from the weighted average of the five results. Of the
results that enter our range, those from Wilson loops
(HPQCD 10A and Maltman 08) and current two-point cor-
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relators (HPQCD 10B) presently have the smallest quoted
errors. In both cases the uncertainties are dominated by per-
turbative truncation errors. Such errors are difficult to esti-
mate, and there is a considerable spread in opinion both in the
lattice and continuum phenomenology communities regard-
ing how they should be estimated. We therefore choose to
be conservative, and take a larger range for a%(M 7) than
one would obtain from the weighted average, or even from
the most precise individual calculation. We make a conser-
vative estimate of the perturbative uncertainty in the calcula-
tion of «g from small Wilson loops, and take that estimate as
the error range of the current weighted average of all lattice
results. One approach for making such an estimate would be
to take the largest of the differences between the calculations
of Maltman 08 [518] and HPQCD 08A [515], 0.0008, which
comes from the quantity computed by both groups that is
expected to be best behaved perturbatively. This is somewhat
larger than some of the estimates in the individual papers. An
even more conservative estimate increases this error further
to make it commensurate with a power-counting estimate
of the truncation errors in the Wilson loop analyses. Taking
the coefficient |ca/c1| &~ 2 in Eq. (196) yields the estimate
Aay = 0.0012 for a%(Mz). This is what we adopt as our
final range.

The range for a]%(M z) presented here is based on results
with rather different systematics (apart from the matching
across the charm threshold). We therefore believe that the
true value is quite likely to lie within this range.

We would like to emphasise once more that all computa-
tions which enter this range rely on a perturbative inclusion
of the charm and beauty quarks. While perturbation theory
for the matching of gsz and g%\,ffl looks very well behaved
even at the mass of the charm, this scale is rather low and
we have no reliable information about the precision of per-
turbation theory. However, it seems unlikely that the associ-
ated uncertainty is comparable with the present errors. With
future improved precision, this will become a relevant issue.
Note that this uncertainty is also present in some of the phe-
nomenological determinations, in particular from t decays.

9.9.3 Ranges for [ro ATV and Ayis

In the present situation, we give ranges for [roA1YD and
Ajfs, discussing their determination case by case. We include
results with Ny < 3 because it is interesting to see the N¢-
dependence of the connection of low- and high-energy QCD.
This aids our understanding of the field theory and helps in
finding possible ways to tackle it beyond the lattice approach.
It is also of interest in providing an impression on the size of
the vacuum polarisation effects of quarks, in particular with
an eye on the still difficult-to-treat heavier charm and beauty
quarks. Even if this information is rather qualitative, it may

be valuable, given that it is of a completely non-perturbative
nature.

We emphasise that results for [roA]® and [rgA]® are
notmeant to be used in phenomenology.

For Ny = 2 + 1 + 1, we presently do not quote a range.
Our best estimate is given by using the Ny = 2+ 1 result and
converting it to Ny = 2 + 1 + 1 perturbatively at the charm
quark-mass threshold.

For Ny = 2 4 1, we take as a central value the weighted
average of Bazavov 12, HPQCD 10A, 10B, PACS-CS 09A
and Maltman 08. For the error we take our own conserva-
tive estimate of the perturbative uncertainty remaining in the
determinations from small Wilson loops, HPQCD 10A and
Maltman 08. From an estimate of |c4/c;| &~ 2 we obtain
(Eq. (196) in Sect. 9.6) AA/A = 0.05. An independent esti-
mate of the uncertainty due to the fit to the a-dependence in
the analysis of moments of heavy quark correlators is much
more difficult to make; as discussed above, and in the absence
of confirmation by other groups, we are not yet ready to use
the result of HPQCD 10 to reduce our conservative estimate
of the errors from other approaches. Noting that the statisti-
cal error is negligible, we thus assign the just mentioned 5 %
error to the overall range,

[roA51® = 0.81(4). (206)

Itis in good agreement with all 24 1 results without red tags.
In physical units, using o = 0.472 fm, this means

ASL =339(17) MeV. (207)

For Ny = 2, at present there is one computation with a
rating for all criteria, ALPHA 12. We adopt it as our central
value and enlarge the error to cover the central values of the
other two results with filled green boxes. This results in an
asymmetric error. Our present range is

[roAsl® = 0.79(7 ), (208)
and in physical units, using ro = 0.472 fm,
A% =330(*2}) Mev. (209)

A weighted average of the three eligible numbers would yield
[roAWs](z) = 0.725(30), not covering the best result and in
particular leading to a smaller error than we feel is justified,
given the issues discussed above. Thus we believe that our
estimate is a conservative choice; the lower value of ETM
11C [505] leads to the large downwards error. We hope that
future work will improve the situation.

For Ny = 0, ALPHA 98 has a O in the continuum
limit since the O(a) improvement at the boundary was
carried out only to one-loop order. On the other hand,
QCDSF/UKQCD 05 receives a O for the perturbative
behaviour since a power law correction was fitted to the
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results, and additionally we note again that it is not obvi-
ous that higher-order perturbative terms are negligible; an
estimate as for HPQCD 10A (with |ca/c1| =~ 2) would
be A[roAm](O) = 0.018. A third result which enters our
average is Brambilla 10 but we exclude the older estimates
shown in the graph. They have a limited control of the sys-
tematic errors due to power law corrections and discretisa-
tion errors.’® Taking a weighted average of the three num-
bers, we obtain [roAWs](O) = 0.615(5), dominated by the
QCDSF/UKQCD 05 result. Since we are not yet convinced
that such a small uncertainty has been reached, we prefer to
presently take a range which encompasses all three central
values and whose uncertainty comes close to our estimate of
the perturbative error:

[roAxis]? = 0.62(2). (210)
Converting to physical units, using ro = 0.472 fm,

0 _
Ajrg = 260(7) MeV. (211)

While the conversion of the A-parameter to physical units
is quite unambiguous for Ny = 2 + 1, our choice of rp =
0.472 fm also for smaller numbers of flavour amounts to a
convention, in particular for Ny = 0. Indeed, in the Tables 32,
33, 34, 35, 36, and 37 somewhat different numbers in MeV
are found.

How sure are we about our ranges for [roAgg]? In one
case we have a result, Eq. (208) which easily passes our
criteria, in another one (Eq. (210)) we have three compatible
results which are close to that quality and agree. For Ny =
2 + 1 the range (Eq. (206)) takes account of results with
rather different systematics (apart from the matching across
the charm threshold). We therefore find it difficult to imagine
that the ranges could be violated by much.

9.9.4 Conclusions

With the present results our range for the strong coupling is
(repeating Eq. (205))
a%(Mz) — 0.1184(12).
As can be seen from Fig. 26, when surveying the green data
points, the individual lattice results agree within their quoted
errors. Further those points are based on different methods
for determining o, each with its own difficulties and limi-
tations. Thus the overall consistency of the lattice o results
engenders confidence in our range.

While our range for og5(Mz) in Eq. (205) has about the
same central value as the PDG average of lattice results,

3 We have assigned a O for the continuum limit, in Boucaud 00A
[555], 00B [554], 01 A [553], Soto 01 [552] but these results are from
lattices of a very small physical size with finite size effects that are not
easily quantified.
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ays(Mz) = 0.1185(5), our error estimate is more conserva-
tive, derived from an estimate of perturbative uncertainties.
In contrast, in the PDG review all published lattice results are
taken with their errors at face value and a x -squared weighted
average is chosen because the results are largely independent
and compatible within errors. We note that there is a diver-
sity of opinion over the size of our range for agyg(Mz) in
Eq. (205) within FLAG. Some members are sufficiently con-
vinced by the overall consistency of the results from various
groups within their quoted errors, as well as by the inter-
nal tests performed by individual groups, to take the quoted
errors at face value. Others prefer the more conservative error
estimate cited above, which aims to account for the difficulty
associated with estimating perturbative truncation errors, the
largest source of uncertainty in most of the calculations that
enter the range. Given this diversity of opinion, we think it
is appropriate to choose the more conservative estimate for
our quoted range.

It is also interesting to compare our result, Eq. (205), with
the value quoted by the PDG for the average over all other
(non-lattice) sources, ag = 0.1183(12). In the 2013 review,
for all subclasses of «g determinations except for the lattice
results, the results disagree beyond those expected from the
quoted errors, presumably because of the challenges of eval-
uating systematic uncertainties. Thus the quoted range for
each subclass is increased to encompass the central values of
all individual determinations. This leads to subclass averages
with errors that are larger than the smallest error of individual
determinations by factors between two and four.

Our range for the lattice determination of agg(Mz) in
Eq. (205) is in excellent agreement with the PDG non-lattice
average: the work done on the lattice provides an entirely
independent determination, which already reaches the same
precision even with our conservative estimate of the pertur-
bative error.

We finish by commenting on perspectives for the future.
In the next few years we anticipate that a growing number of
lattice calculations of «s from different quantities and by dif-
ferent collaborations will enable increasingly precise deter-
minations, coupled with stringent cross-checks. The deter-
mination of «s from observables at the lattice spacing scale
will improve due to a further reduction of the lattice spac-
ing. This reduces aefr and thus the dominating error in g
Schrodinger functional methods for Ny = 2 + 1 will cer-
tainly reach the precision of the present Ny = 2 results soon,
as this just requires an application of the presently known
techniques. Furthermore, we may expect a significant reduc-
tion of errors due to new definitions of running couplings
[491,492] using the Yang Mills gradient flow [183]. Factors
of two and more in precision are certainly possible. At this
point it will then also be necessary to include the charm quark
in the computations such that the perturbative matching of
Nf =2+ 1and 2+ 1+ 1 theories at the charm quark thresh-
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old is avoided. Ny = 2 + 1 4 1 simulations are presently
being carried out.
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Appendix A: Glossary
A.1 Lattice actions

In this appendix we give brief descriptions of the lattice
actions used in the simulations and summarise their main
features.

A.1.1 Gauge actions

The simplest and most widely used discretisation of the
Yang—Mills part of the QCD action is the Wilson plaque-
tte action [560]:

Se=BY_ Y. <1 - —ReTr wlxl(x)) ,

X pu<v

212)

where 8 = 6/ g(z) (with go the bare gauge coupling) and the
plaquette W&vx I(x) is the product of link variables around an
elementary square of the lattice, i.e.

W () = Up (U (x + a) Uy (x +ad) " Uy (1)
(213)

This expression reproduces the Euclidean Yang—Mills action
in the continuum up to corrections of order a”. There is a
general formalism, known as the “Symanzik improvement
programme” [9,10], which is designed to cancel the leading
lattice artefacts, such that observables have an accelerated
rate of convergence to the continuum limit. The improvement
programme is implemented by adding higher-dimensional
operators, whose coefficients must be tuned appropriately
in order to cancel the leading lattice artefacts. The effec-
tiveness of this procedure depends largely on the method
with which the coefficients are determined. The most widely
applied methods (in ascending order of effectiveness) include
perturbation theory, tadpole-improved (partially resummed)
perturbation theory, renormalisation group methods, and the
non-perturbative evaluation of improvement conditions.

In the case of Yang—Mills theory, the simplest version of
an improved lattice action is obtained by adding rectangular
1 x 2 loops to the plaquette action, i.e.

"“P ,BZ COZ(I——ReTr W‘X‘(x)>

n<v

+e Z (1 - —ReTr W1X2(x)) ,

where the coefficients cg, ¢ satisfy the normalisation condi-
tion cg + 8c1 = 1. The Symanzik-improved [561], Iwasaki
[562], and DBW?2 [563,564] actions are all defined through
Eq. (214) via particular choices for cg, c1. Details are listed in
Table 39 together with the abbreviations used in the summary
tables.

(214)

A.1.2 Light-quark actions

If one attempts to discretise the quark action, one is faced with
the fermion doubling problem: the naive lattice transcription
produces a 16-fold degeneracy of the fermion spectrum.

Wilson fermions

Wilson’s solution to the fermion doubling problem is based
on adding a dimension-5 (irrelevant) operator to the lattice
action. The Wilson-Dirac operator for the massless case reads
[560,565]

1
Dy, = EV“(V“ + V) +av,V, (215)

where V,,, V7 denote the covariant forward and backward
lattice derivatives, respectively. The addition of the Wilson

@ Springer



2890 Page 114 of 179

Eur. Phys. J. C (2014) 74:2890

Table 39 Summary of lattice

Description

gauge actions. The leading Abbrev. Cl1

lattice artefacts are O(az) or wil 0

better for all discretisations tison
tISym —1/12
tadSym Variable
Iwasaki —0.331
DBW2 —1.4088

Wilson plaquette action

Tree-level Symanzik-improved gauge action
Tadpole Symanzik-improved gauge action
Renormalisation group improved (“Iwasaki”) action

Renormalisation group improved (“DBW2”) action

term aV; V., results in fermion doublers acquiring a mass
proportional to the inverse lattice spacing; close to the con-
tinuum limit these extra degrees of freedom are removed
from the low-energy spectrum. However, the Wilson term
also results in an explicit breaking of chiral symmetry even at
zero bare quark mass. Consequently, it also generates diver-
gences proportional to the UV cutoff (inverse lattice spac-
ing), besides the usual logarithmic ones. Therefore the chiral
limit of the regularised theory is not defined simply by the
vanishing of the bare quark mass but must be appropriately
tuned. As aconsequence quark mass renormalisation requires
a power subtraction on top of the standard multiplicative log-
arithmic renormalisation. The breaking of chiral symmetry
also implies that the non-renormalisation theorem has to be
applied with care [566,567], resulting in a normalisation fac-
tor for the axial current which is a regular function of the bare
coupling. On the other hand, vector symmetry is unaffected
by the Wilson term and thus a lattice (point split) vector cur-
rent is conserved and obeys the usual non-renormalisation
theorem with a trivial (unity) normalisation factor. Thus,
compared to lattice fermion actions which preserve chiral
symmetry, or a subgroup of it, the Wilson regularisation typ-
ically results in more complicated renormalisation patterns.

Furthermore, the leading-order lattice artefacts are of order
a. With the help of the Symanzik improvement programme,
the leading artefacts can be cancelled in the action by adding
the so-called “Clover” or Sheikholeslami—Wohlert (SW)
term [568]. The resulting expression in the massless case
reads

o~

Dsw = Dy + % Cswopuw Fpy, (216)
where 0, = %[Vu’ w1, and I?,w is a lattice transcription of
the gluon field strength tensor F),,. The coefficient cgy can
be determined perturbatively at tree level (cgy, = 1; tree-level
improvement or tISW for short), via a mean-field approach
[516] (mean-field improvement or mfSW) or via a non-
perturbative approach [569] (non-perturbatively improved or
npSW). Hadron masses, computed using Dy, with the coef-
ficient cgy, determined non-perturbatively, will approach the
continuum limit with a rate proportional to a?; with tISW for
csw the rate is proportional to g(%a.

Other observables require additional improvement coef-
ficients [568]. A common example consists in the compu-
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tation of the matrix element («|Q|B) of a composite field
Q of dimension-d with external states |«) and |B). In the
simplest cases, the above bare matrix element diverges log-
arithmically and a single renormalisation parameter Zg is
adequate to render it finite. It then approaches the contin-
uum limit with a rate proportional to the lattice spacing a,
even when the lattice action contains the Clover term. In
order to reduce discretisation errors to O (a?), the lattice def-
inition of the composite operator Q must be modified (or
“improved”), by the addition of all dimension-(d + 1) oper-
ators with the same lattice symmetries as Q. Each of these
terms is accompanied by a coefficient which must be tuned
in a way analogous to that of cgy. Once these coefficients
are determined non-perturbatively, the renormalised matrix
element of the improved operator, computed with a npSW
action, converges to the continuum limit with a rate propor-
tional to a?. A tISW improvement of these coefficients and
cgw Will result in a rate proportional to g%a.

It is important to stress that the improvement procedure
does not affect the chiral properties of Wilson fermions; chi-
ral symmetry remains broken.

Finally, we mention “twisted-mass QCD” as a method
which was originally designed to address another problem
of Wilson’s discretisation: the Wilson-Dirac operator is not
protected against the occurrence of unphysical zero modes,
which manifest themselves as “exceptional” configurations.
They occur with a certain frequency in numerical simulations
with Wilson quarks and can lead to strong statistical fluctu-
ations. The problem can be cured by introducing a so-called
“chirally twisted” mass term. The most common formulation
applies to a flavour doublet ¢ = (1 d) of mass degenerate
quarks, with the fermionic part of the QCD action in the
continuum assuming the form [310]

S;n;cont:/dzlx’&(x)(yul)u +m e ipgyst )Y (). 217)

Here, 14 is the twisted-mass parameter, and 73 is a Pauli
matrix in flavour space. The standard action in the contin-
uum can be recovered via a global chiral field rotation. The
physical quark mass is obtained as a function of the two mass
parameters m and u,. The corresponding lattice regularisa-
tion of twisted-mass QCD (tmWil) for Ny = 2 flavours is
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defined through the fermion matrix

D, +m0+iuqy513. (218)

Although this formulation breaks physical parity and flavour
symmetries, resulting in non-degenerate neutral and charged
pions, is has a number of advantages over standard Wilson
fermions. Firstly, the presence of the twisted-mass param-
eter g protects the discretised theory against unphysical
zero modes. A second attractive feature of twisted-mass lat-
tice QCD is the fact that, once the bare mass parameter m
is tuned to its “critical value” (corresponding to massless
pions in the standard Wilson formulation), the leading lat-
tice artefacts are of order a® without the need to add the
Sheikholeslami—Wohlert term in the action, or other improv-
ing coefficients [570]. A third important advantage is that,
although the problem of explicit chiral symmetry breaking
remains, quantities computed with twisted fermions with a
suitable tuning of the mass parameter 4, are subject to renor-
malisation patterns which are simpler than the ones with stan-
dard Wilson fermions. Well-known examples are the pseu-
doscalar decay constant and Bk .

Staggered fermions

An alternative procedure to deal with the doubling problem is
based on so-called “staggered” or Kogut—Susskind fermions
[571-574]. Here the degeneracy is only lifted partially, from
16 down to 4. It has become customary to refer to these
residual doublers as “tastes” in order to distinguish them from
physical flavours. Taste-changing interactions can occur via
the exchange of gluons with one or more components of
momentum near the cutoff 7 /a. This leads to the breaking of
the SU(4) vector symmetry among tastes, thereby generating
order a? lattice artefacts.

The residual doubling of staggered quarks (four tastes
per flavour) is removed by taking a fractional power of the
fermion determinant [575]—the “fourth-root procedure,” or,
sometimes, the “fourth-root trick.” This procedure would be
unproblematic if the action had full SU(4) taste symmetry,
which would give a Dirac operator that was block-diagonal in
taste space. However, the breaking of taste symmetry at non-
zero lattice spacing leads to a variety of problems. In fact, the
fourth root of the determinant is not equivalent to the deter-
minant of any local lattice Dirac operator [576]. This in turn
leads to violations of unitarity on the lattice [577-580].

According to standard renormalisation group lore, the
taste violations, which are associated with lattice operators
of dimension greater than four, might be expected go away
in the continuum limit, resulting in the restoration of locality
and unitarity. However, there is a problem with applying the
standard lore to this non-standard situation: the usual renor-
malisation group reasoning assumes that the lattice action is
local. Nevertheless, Shamir [581,582] shows that one may
apply the renormalisation group to a “nearby” local theory,

and thereby gives a strong argument that the desired local,
unitary theory of QCD is reproduced by the rooted staggered
lattice theory in the continuum limit.

A version of chiral perturbation that includes the lattice
artefacts due to taste violations and rooting (“rooted stag-
gered chiral perturbation theory”) can also be worked out
[583-585] and shown to correctly describe the unitarity-
violating lattice artefacts in the pion sector [578,586]. This
provides additional evidence that the desired continuum limit
can be obtained. Further, it gives a practical method for
removing the lattice artefacts from simulation results. Ver-
sions of rooted staggered chiral perturbation theory exist for
heavy-light mesons with staggered light quarks but non-
staggered heavy quarks [587], heavy—light mesons with stag-
gered light and heavy quarks [339,588], staggered baryons
[589], and mixed actions with a staggered sea [317,590], as
well as the pion-only version referenced above.

There is also considerable numerical evidence that the
rooting procedure works as desired. This includes investi-
gations in the Schwinger model [591-593], studies of the
eigenvalues of the Dirac operator in QCD [594-597], and
evidence for taste restoration in the pion spectrum as a — 0
[15,36].

Issues with the rooting procedure have led Creutz [598—
604] to argue that the continuum limit of the rooted stag-
gered theory cannot be QCD. These objections have, how-
ever, been answered in Refs. [12—14,597,605-608]. In par-
ticular, a claim that the continuum ’t Hooft vertex [609,610]
could not be properly reproduced by the rooted theory has
been refuted [597,6006].

Overall, despite the lack of rigorous proof of the correct-
ness of the rooting procedure, we think the evidence is strong
enough to consider staggered QCD simulations on a par with
simulations using other actions. See the following reviews for
further evidence and discussion: [11-15].

Improved staggered fermions

An improvement program can be used to suppress taste-
changing interactions, leading to “improved staggered
fermions,” with the so-called “Asqtad” [611], “HISQ” [612],
“Stout-smeared” [613], and “HYP” [614] actions as the most
common versions. All these actions smear the gauge links in
order to reduce the coupling of high-momentum gluons to the
quarks, with the main goal of decreasing taste-violating inter-
actions. In the Asqtad case, this is accomplished by replac-
ing the gluon links in the derivatives by averages over 1-, 3-,
5-, and 7-link paths. The other actions reduce taste changing
even further by smearing more. In addition to the smear-
ing, the Asqtad and HISQ actions include a three-hop term
in the action (the “Naik term” [615]) to remove order a>
errors in the dispersion relation, as well as a “Lepage term”
[616] to cancel other order a2 artefacts introduced by the
smearing. In both the Asqtad and HISQ actions, the leading
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taste violations are of order a%az, and “generic” lattices arte-
facts (those associated with discretisation errors other than
taste violations) are of order aga?®. The overall coefficients
of these errors are, however, significantly smaller with HISQ
than with Asqtad. With the Stout-smeared and HYP actions,
the errors are formally larger (order azga? for taste violations
and order a2 for generic lattices artefacts). Nevertheless, the
smearing seems to be very efficient, and the actual size of
errors at accessible lattice spacings appears to be at least as
small as with HISQ.

Although logically distinct from the light-quark improve-
ment program for these actions, it is customary with the
HISQ action to include an additional correction designed
to reduce discretisation errors for heavy quarks (in practice,
usually charm quarks) [612]. The Naik term is adjusted to
remove leading (amc)4 and ozs(amc)2 errors, where m, is
the charm quark mass and “leading” in this context means
leading in powers of the heavy-quark velocity v (v/c ~ 1/3
for D). With these improvements, the claim is that one can
use the staggered action for charm quarks, although it must
be emphasised that it is not obvious a priori how large a value
of am, may be tolerated for a given desired accuracy, and this
must be studied in the simulations.

Ginsparg—Wilson fermions

Fermionic lattice actions, which do not suffer from the dou-
bling problem whilst preserving chiral symmetry go under
the name of “Ginsparg—Wilson fermions”. In the continuum
the massless Dirac operator (D) anticommutes with ys. At
non-zero lattice spacing a chiral symmetry can be realised if
this condition is relaxed to [617-619]
{D, ys} =aDysD, (219)
which is now known as the Ginsparg—Wilson relation [312].
The Nielsen—Ninomiya theorem [620], which states that
any lattice formulation for which D anticommutes with
ys necessarily has doubler fermions, is circumvented since
{D,ys} #0.

A lattice Dirac operator which satisfies Eq. (219) can
be constructed in several ways. The so-called “overlap”
or Neuberger—Dirac operator [621] acts in four space-time
dimensions and is, in its simplest form, defined by

Dy = l(l —€(A)), where €(A) = A(ATA)™/2,
a

A=1+s—aD,, a= (220)

D,, is the massless Wilson-Dirac operator and |s| < 1 is
a tunable parameter. The overlap operator Dy removes all
doublers from the spectrum, and can readily be shown to sat-
isfy the Ginsparg—Wilson relation. The occurrence of the sign
function € (A) in Dy renders the application of Dy in a com-
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puter program potentially very costly, since it must be imple-
mented using, for instance, a polynomial approximation.

The most widely used approach to satisfying the
Ginsparg—Wilson relation Eq. (219) in large-scale numer-
ical simulations is provided by Domain-Wall Fermions
(DWF) [622-624] and we therefore describe this in some
more detail. Following early exploratory studies [625]. this
approach has been developed into a practical formulation of
lattice QCD with good chiral and flavour symmetries lead-
ing to results which contribute significantly to this review.
In this formulation, the fermion fields v (x, s) depend on a
discrete fifth coordinate s = 1, ..., N as well as the physi-
cal four-dimensional space-time coordinates x;,, u = 1...4
(the gluon fields do not depend on s). The lattice on which
the simulations are performed, is therefore a five-dimensional
oneofsize L3 x T x N, where L, T and N represent the num-
ber of points in the spatial, temporal and fifth dimensions,
respectively. The remarkable feature of DWF is that for each
flavour there exists a physical light mode corresponding to
the field g (x):

1 5 1—y5

() = J’ZV Vo D+ =g ) (221)
o 1 5 o 1— 5

G0 = T M G = (222)

2

The left and right-handed modes of the physical field are
located on opposite boundaries in the five-dimensional space
which, for N — oo, allows for independent transformations
of the left and right components of the quark fields, that is,
for chiral transformations. Unlike Wilson fermions, where
for each flavour the quark mass parameter in the action is
fine-tuned requiring a subtraction of contributions of O (1/a)
where a is the lattice spacing, with DWF no such subtraction
is necessary for the physical modes, whereas the unphysical
modes have masses of O(1/a) and decouple.

In actual simulations N is finite and there are small viola-
tions of chiral symmetry which must be accounted for. The
theoretical framework for the study of the residual breaking
of chiral symmetry has been a subject of intensive investiga-
tion (for a review and references to the original literature see
e.g. [626]). The breaking requires one or more crossings of
the fifth dimension to couple the left and right-handed modes;
the more crossings that are required the smaller the effect. For
many physical quantities the leading effects of chiral symme-
try breaking due to finite N are parameterised by a residual
mass, mregs. For example, the PCAC relation (for degenerate
quarks of mass m) 9, A, (x) = 2mP(x), where A, and P
represent the axial current and pseudoscalar density, respec-
tively, is satisfied withm = mPWF 4 s, where mPWF is the
bare mass in the DWF action. The mixing of operators which
transform under different representations of chiral symmetry
is found to be negligibly small in current simulations. The
important thing to note is that the chiral symmetry-breaking
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Table 40 The most widely used discretisations of the quark action and
some of their properties. Note that in order to maintain the leading lat-
tice artefacts of the action in non-spectral observables (like operator

matrix elements) the corresponding non-spectral operators need to be
improved as well

Abbreyv. Discretisation Leading lattice artefacts ~ Chiral symmetry Remarks
Wilson Wilson O(a) Broken
tmWil Twisted-mass Wilson 0(a?) at maximal twist ~ Broken Flavour symmetry breaking:
(M{)* — (Mgg)* ~ 0(a?)
tISW Sheikholeslami—Wohlert O(gza) Broken Tree-level impr., cgy = 1
n-HYP tISW Sheikholeslami—Wohlert O(gza) Broken Tree-level impr., csw = 1,
n-HYP-smeared gauge links
Stout tISW Sheikholeslami—Wohlert O(gza) Broken Tree-level impr., csy = 1, stout-smeared
gauge links
HEX tISW Sheikholeslami—Wohlert O(gza) Broken Tree-level impr., ¢y = 1, HEX-smeared
gauge links
mfSW Sheikholeslami—Wohlert (0] (gza) Broken Mean-field impr.
npSW Sheikholeslami-Wohlert O (a?) Broken Non-perturbatively impr.
KS Staggered 0(a?) U(1) ® U(1) subgr. Rooting for Ny < 4
unbroken
Asqtad Staggered 0(@a?) U(1) ® U(1) subgr. Asqtad smeared gauge links, rooting for
unbroken N <4
HISQ Staggered 0(a?) U(1) ® U(1) subgr. HISQ-smeared gauge links, rooting for
unbroken N <4
DwW Domain Wall Asymptotically O (a?) Remnant breaking Exact chiral symmetry and O (a) impr.
exponentially suppr. only in the limit Ly — oo
Overlap Neuberger 0(a®) Exact

effects are small and that there are techniques to mitigate
their consequences.

The main price which has to be paid for the good chiral
symmetry is that the simulations are performed in five dimen-
sions, requiring approximately a factor of N in computing
resources and resulting in practice in ensembles at fewer val-
ues of the lattice spacing and quark masses than is possi-
ble with other formulations. The current generation of DWF
simulations is being performed at physical quark masses so
that ensembles with good chiral and flavour symmetries are
being generated and analysed [25]. For a discussion of the
equivalence of DWF and overlap fermions see [627,628].

A third example of an operator which satisfies the
Ginsparg—Wilson relation is the so-called fixed-point action
[629-631]. This construction proceeds via a renormalisation
group approach. A related formalism are the so-called “chi-
rally improved” fermions [632].

Smearing

A simple modification which can help improve the action
as well as the computational performance is the use of
smeared gauge fields in the covariant derivatives of the
fermionic action. Any smearing procedure is acceptable as
long as it consists of only adding irrelevant (local) opera-
tors. Moreover, it can be combined with any discretisation
of the quark action. The “Asqtad” staggered quark action
mentioned above [611] is an example which makes use of

so-called “Asqtad” smeared (or “fat”) links. Another exam-
ple is the use of n-HYP-smeared [614,633], stout-smeared
[634,635] or HEX (hypercubic stout) smeared [636] gauge
links in the tree-level clover improved discretisation of the
quark action, denoted by “n-HYP tISW”, “stout tISW” and
“HEX tISW” in the following.

In Table 40 we summarise the most widely used discreti-
sations of the quark action and their main properties together
with the abbreviations used in the summary tables. Note that
in order to maintain the leading lattice artefacts of the actions
as given in the table in non-spectral observables (like operator
matrix elements) the corresponding non-spectral operators
need to be improved as well.

A.1.3 Heavy-quark actions

Charm and bottom quarks are often simulated with differ-
ent lattice-quark actions than up, down, and strange quarks
because their masses are large relative to typical lattice spac-
ings in current simulations; for example, am, ~ 0.4 and
amp ~ 1.3 at a = 0.06 fm. Therefore, for the actions
described in the previous section, using a sufficiently small
lattice spacing to control generic (amy)" discretisation errors
is computationally costly, and in fact prohibitive at the phys-
ical b-quark mass.

One approach for lattice heavy quarks is direct appli-
cation of effective theory. In this case the lattice heavy-
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quark action only correctly describes phenomena in a specific
kinematic regime, such as Heavy-Quark Effective Theory
(HQET) [637-639] or Non-relativistic QCD (NRQCD) [640,
641]. One can discretise the effective Lagrangian to obtain,
for example, Lattice HQET [642] or Lattice NRQCD [643,
6441], and then simulate the effective theory numerically. The
coefficients of the operators in the lattice-HQET and lattice-
NRQCD actions are free parameters that must be determined
by matching to the underlying theory (QCD) through the cho-
sen order in 1/my, or vi, where my, is the heavy-quark mass
and vy, is the heavy-quark velocity in the heavy—light meson
rest frame.

Another approach is to interpret a relativistic quark action
such as those described in the previous section in a man-
ner suitable for heavy quarks. One can extend the stan-
dard Symanzik improvement program, which allows one
to systematically remove lattice cutoff effects by adding
higher-dimension operators to the action, by allowing the
coefficients of the dimension 4 and higher operators to
depend explicitly upon the heavy-quark mass. Different pre-
scriptions for tuning the parameters correspond to different
implementations: those in common use are often called the
Fermilab action [645], the relativistic heavy-quark action
(RHQ) [646], and the Tsukuba formulation [647]. In the Fer-
milab approach, HQET is used to match the lattice theory to
continuum QCD at the desired order in 1/my,.

More generally, effective theory can be used to estimate
the size of cutoff errors from the various lattice heavy-quark
actions. The power counting for the sizes of operators with
heavy quarks depends on the typical momenta of the heavy
quarks in the system. Bound-state dynamics differ consid-
erably between heavy-heavy and heavy-light systems. In
heavy-light systems, the heavy quark provides an approxi-
mately static source for the attractive binding force, like the
proton in a hydrogen atom. The typical heavy-quark momen-
tum in the bound-state rest frame is |py| ~ Aqcp, and
heavy-light operators scale as powers of (Aqcp/mp)". This
is often called “HQET power-counting”, although it applies
to heavy-light operators in HQET, NRQCD, and even rela-
tivistic heavy-quark actions described below. Heavy—heavy
systems are similar to positronium or the deuteron, with the
typical heavy-quark momentum |p;| ~ asmy. Therefore
motion of the heavy quarks in the bound state rest frame can-
not be neglected. Heavy—heavy operators have complicated
power counting rules in terms of v,% [644]; this is often called
“NRQCD power counting.”

Alternatively, one can simulate bottom or charm quarks
with the same action as up, down, and strange quarks pro-
vided that (1) the action is sufficiently improved, and (2) the
lattice spacing is sufficiently fine. These qualitative criteria
do not specify precisely how large a numerical value of amy,
can be allowed while obtaining a given precision for physical
quantities; this must be established empirically in numer-
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ical simulations. At present, both the HISQ and twisted-
mass Wilson actions discussed previously are being used to
simulate charm quarks. Simulations with HISQ quarks have
employed heavier quark masses than those with twisted-mass
Wilson quarks because the action is more highly improved,
but neither action can be used to simulate at the physical
amy, for current lattice spacings. Therefore calculations of
heavy-light decay constants with these actions still rely on
effective theory to reach the b-quark mass: the ETM Collab-
oration interpolates between twisted-mass Wilson data gen-
erated near am, and the static point [336], while the HPQCD
Collaboration extrapolates HISQ data generated below am,
up to the physical point using an HQET-inspired series expan-
sion in (1/mp)" [366].

Heavy-quark effective theory

HQET was introduced by Eichten and Hill in Ref. [638]. It
provides the correct asymptotic description of QCD correla-
tion functions in the static limit my,/|py| — oo. Subleading
effects are described by higher-dimensional operators whose
coupling constants are formally of O((1/mj)"). The HQET
expansion works well for heavy-light systems in which the
heavy-quark momentum is small compared to the mass.

The HQET Lagrangian density at the leading (static) order
in the rest frame of the heavy quark is given by

L (x) = Yy, (x) Do Y (x), (223)
with

_ _ 1
Potn=1vn.  UpPr=Tp Pi=-—0 (4

A bare quark mass mf)t:rte has to be added to the energy levels
ES computed with this Lagrangian to obtain the physical
ones. For example, the mass of the B-meson in the static
approximation is given by

stat stat
mp = E”" + Mpare-

(225)

At tree level m;f:‘rte is simply the (static approximation of the)

b-quark mass, but in the quantised lattice formulation it has to
further compensate a divergence linear in the inverse lattice
spacing. Weak composite fields are also rewritten in terms of
the static fields, e.g.

Ag(0)*™™ = ZE* (Y ()yoys¥n(v)) , (226)
where the renormalisation factor of the axial current in
the static theory Z%* is scale-dependent. Recent lattice-
QCD calculations using static b quarks and dynamical light
quarks [336,406] perform the operator matching at one loop
in mean-field improved lattice perturbation theory [648,
649]. Therefore the heavy-quark discretisation, truncation,
and matching errors in these results are of O(a2A6CD),
O(Aqcp/my) and O(Olsz, OlszaAQCD).
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In order to reduce heavy-quark truncation errors in B-
meson masses and matrix elements to the few-percent level,
state-of-the-art lattice-HQET computations now include cor-
rections of O(1/my). Adding the 1/mj, terms, the HQET
Lagrangian reads

LHET (1) = £59 (%) — wkin Okin (¥) — @spin Ospin (¥),  (227)
Okin () =V, (1)D* Y5 (x),  Ospin(x) =V, (x)0 - By (x).
(228)

At this order, two other parameters appear in the Lagrangian,
@kin and wspin. The normalisation is such that the tree-level
values of the coefficients are wkin = wgpin = 1/(2my). Sim-
ilarly the operators are formally expanded in inverse powers
of the heavy-quark mass. The time component of the axial
current, relevant for the computation of mesonic decay con-
stants is given by

2
A(I){QET(x) _ ZEQET (Af)tat(x) + ZCX)A(()Z)()C)) , (229)
i=1

(D —1 <~
Ay (x) = WEVSVk(Vk = Vyrx), k=1,2,3 (230)

A = AT @), A =VWnysun(o, (23D
and depends on two additional parameters cg) and cff).

A framework for non-perturbative HQET on the lat-
tice has been introduced in [642,650]. As pointed out in
Refs. [651,652], since og(m ) decreases logarithmically with
my, whereas corrections in the effective theory are power-like
in A /my,, itis possible that the leading errors in a calculation
will be due to the perturbative matching of the action and the
currents at a given order (A /my,)" rather than to the missing
O((A/my)'*1) terms. Thus, in order to keep matching errors
below the uncertainty due to truncating the HQET expansion,
the matching is performed non-perturbatively beyond lead-
ing order in 1/my,. The asymptotic convergence of HQET in
the limit mj; — oo indeed holds only in that case.

The higher-dimensional interaction terms in the effective
Lagrangian are treated as space-time volume insertions into
static correlation functions. For correlators of some multi-
local fields O and up to the 1/my corrections to the operator,
this means

(O) = (O)star + a)kina4 Z (OOkin (X)) stat

+ wspina4 Z <Oospin (%)) stat» (232)

where (O)ga denotes the static expectation value with
L5 (x) + £lght(x) Non-perturbative renormalisation of

these correlators guarantees the existence of a well-defined
continuum limit to any order in 1/my. The parameters of the
effective action and operators are then determined by match-
ing a suitable number of observables calculated in HQET
(to a given order in 1/mj) and in QCD in a small vol-
ume (typically with L ~ 0.5 fm), where the full relativistic
dynamics of the b-quark can be simulated and the param-
eters can be computed with good accuracy. In [650,653]
the Schrodinger Functional (SF) setup has been adopted to
define a set of quantities, given by the small volume equiva-
lent of decay constants, pseudoscalar—vector splittings, effec-
tive masses and ratio of correlation functions for different
kinematics, which can be used to implement the matching
conditions. The kinematical conditions are usually modi-
fied by changing the periodicity in space of the fermions,
i.e. by directly exploiting a finite-volume effect. The new
scale L, which is introduced in this way, is chosen such
that higher orders in 1/my L and in Agcp/my, are of about
the same size. At the end of the matching step the param-
eters are known at lattice spacings which are of the order
of 0.01 fm, significantly smaller than the resolutions used
for large volume, phenomenological, applications. For this
reason a set of SF-step scaling functions is introduced in
the effective theory to evolve the parameters to larger lattice
spacings. The whole procedure yields the non-perturbative
parameters with an accuracy which allows to compute phe-
nomenological quantities with a precision of a few per-
cent (see [370,390] for the case of the B, decay con-
stants). Such an accuracy cannot be achieved by perform-
ing the non-perturbative matching in large volume against
experimental measurements, which in addition would reduce
the predictivity of the theory. For the lattice-HQET action
matched non-perturbatively through O(1/my,), discretisation
and truncation errors are of O(aAéCD /mp, azAéCD) and
O((Aqep/mn)?).

The noise-to-signal ratio of static-light correlation func-
tions grows exponentially in Euclidean time, ox /0. The rate
W is non-universal but diverges as 1/a as one approaches
the continuum limit. By changing the discretisation of the
covariant derivative in the static action one may achieve an
exponential reduction of the noise-to-signal ratio. Such a
strategy led to the introduction of the Syfyp, , actions [654],
where the thin links in Dy are replaced b)} HYP-smeared
links [614]. These actions are now used in all lattice appli-
cations of HQET.

Non-relativistic QCD

Non-relativistic QCD (NRQCD) [643,644] is an effective
theory that can be matched to full QCD order by order in
the heavy-quark velocity vi (for heavy—heavy systems) or
in Aqcp/my, (for heavy-light systems) and in powers of a.
Relativistic corrections appear as higher-dimensional opera-
tors in the Hamiltonian.
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As an effective field theory, NRQCD is only useful with
an ultraviolet cutoff of order my, or less. On the lattice this
means that it can be used only for am; > 1, which means
that O (a") errors cannot be removed by taking a — 0 at
fixed mj,. Instead heavy-quark discretisation errors are sys-
tematically removed by adding additional operators to the
lattice Hamiltonian. Thus, while strictly speaking no con-
tinuum limit exists at fixed mj,, continuum physics can be
obtained at finite lattice spacing to arbitrarily high precision
provided enough terms are included, and provided that the
coefficients of these terms are calculated with sufficient accu-
racy. Residual discretisation errors can be parameterised as
corrections to the coefficients in the non-relativistic expan-
sion, as shown in Eq. (235). Typically they are of the form
(a| pn])" multiplied by a function of am, that is smooth over
the limited range of heavy-quark masses (with am; > 1)
used in simulations, and can therefore can be represented
by a low-order polynomial in amj, by Taylor’s theorem (see
Ref. [364] for further discussion). Power-counting estimates
of these effects can be compared to the observed lattice spac-
ing dependence in simulations. Provided that these effects are
small, such comparisons can be used to estimate and correct
the residual discretisation effects.

An important feature of the NRQCD approach is that the
same action can be applied to both heavy—heavy and heavy—
light systems. This allows, for instance, the bare b-quark
mass to be fixed via experimental input from Y so that simu-
lations carried out in the B or Bs systems have no adjustable
parameters left. Precision calculations of the Bg-meson mass
(or of the mass splitting Mp — M~ /2) can then be used to
test the reliability of the method before turning to quantities
one is trying to predict, such as decay constants fp and fp_,
semileptonic form factors or neutral B mixing parameters.

Given the same lattice-NRQCD heavy-quark action, sim-
ulation results will not be as accurate for charm quarks
as for bottom (1/mp < 1/m,, and v, < v, in heavy—
heavy systems). For charm, however, a more serious con-
cern is the restriction that amj must be greater than one.
This limits lattice-NRQCD simulations at the physical am,
to relatively coarse lattice spacings for which light-quark
and gluon discretisation errors could be large. Thus recent
lattice-NRQCD simulations have focussed on bottom quarks
because am; > 1 in the range of typical lattice spacings
between & 0.06 and 0.15 fm.

In most simulations with NRQCD b-quarks during the
past decade one has worked with an NRQCD action that
includes tree-level relativistic corrections through (’)(vﬁ) and
discretisation corrections through O(a®),

alH LZH() n
SNRQCD:a4Z [\IJ:\IJI—‘-IJIT (1— > ) (1—2)
x t nJy

Ho\" SH
x Ul (t—a) (1—”—(’) (1—” ) w,a}, (233)
2n J,_, 2 Jia
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where the subscripts “¢”” and “t —a” denote that the heavy-

quark, gauge, E and B-fields are on time slices ¢ or t—a, res-

pectively. Hy is the non-relativistic kinetic energy operator,
A

Hy=——-"

, 234
2 (234)

and § H includes relativistic and finite-lattice-spacing correc-
tions,

h
B CAY a0 s
—C4 —— O - C — .
4 mp 24my, 16nm%

my, is the bare heavy-quark mass, A® the lattice Laplacian,
V the symmetric lattice derivative and A® the lattice dis-
cretisation of the continuum ), D;‘. V is the improved sym-
metric lattice derivative and the E and B fields have been
improved beyond the usual clover leaf construction. The sta-
bility parameter # is discussed in [644]. In most cases the ¢;’s
have been set equal to their tree-level values ¢; = 1. With
this implementation of the NRQCD action, errors in heavy—
light meson masses and splittings are of O(asAqcp/nn),
O(as(Aqen/mn)?), O((Aqen/mp)?) and O(asa® Ajep)s
with coefficients that are functions of amj,. One-loop correc-
tions to many of the coefficients in Eq. (235) have now been
calculated, and they are starting to be included in simulations
[383,655,656].

Most of the operator matchings involving heavy-light
currents or four-fermion operators with NRQCD b-quarks
and AsqTad or HISQ light quarks have been carried out at
one-loop order in lattice perturbation theory. In calculations
published to date of electroweak matrix elements, heavy—
light currents with massless light quarks have been matched
through  O(as, Agep/my, as/(amy), asAgep/my)  and
four-fermion operators through O(as, Agep/mp, s/
(amp)). NRQCD/HISQ currents with massive HISQ quarks
are also of interest, e.g. for the bottom-charm currents in
B — D™ v semileptonic decays and the relevant match-
ing calculations have been performed at one-loop order in
Ref. [657]. Taking all the above into account, the most sig-
nificant systematic error in electroweak matrix elements pub-
lished to date with NRQCD b-quarks is the O(asz) perturba-
tive matching uncertainty. Work is therefore under way to use
current—current correlator methods combined with very high-
order continuum perturbation theory to do current matchings
non-perturbatively [658].

Relativistic heavy quarks

An approach for relativistic heavy-quark lattice formulations
was first introduced by El-Khadra et al. in Ref. [645]. Here
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they showed that, for a general lattice action with massive
quarks and non-Abelian gauge fields, discretisation errors
can be factorised into the form f (mya)(a|py|)", and that the
function f(mpa) is bounded to be of O(1) or less for all
values of the quark mass m;,. Therefore cutoff effects are of
O(aAqcp)” and O((alprl)™), even for amy, 2 1, and they
can be controlled using a Symanzik-like procedure. As in
the standard Symanzik improvement program, cutoff effects
are systematically removed by introducing higher-dimension
operators to the lattice action and suitably tuning their coeffi-
cients. In the relativistic heavy-quark approach, however, the
operator coefficients are allowed to depend explicitly on the
quark mass. By including lattice operators through dimen-
sion n and adjusting their coefficients ¢, ;(mpa) correctly,
one enforces that matrix elements in the lattice theory are
equal to the analogous matrix elements in continuum QCD
through (a|pn|)", such that residual heavy-quark discretisa-
tion errors are of O(a|p,|)*t.

The relativistic heavy-quark approach can be used to com-
pute the matrix elements of states containing heavy quarks
for which the heavy-quark spatial momentum |py,| is small
compared to the lattice spacing. Thus it is suitable to describe
bottom and charm quarks in both heavy-light and heavy—
heavy systems. Calculations of bottomonium and charmo-
nium spectra serve as non-trivial tests of the method and its
accuracy.

At fixed lattice spacing, relativistic heavy-quark formula-
tions recover the massless limit when (amy) < 1, recover
the static limit when (amj) > 1, and smoothy interpolate
between the two; thus they can be used for any value of
the quark mass, and, in particular, for both charm and bot-
tom. Discretisation errors for relativistic heavy-quark formu-
lations are generically of the form aé‘ f(amp)(a|pn|)"™, where
k reflects the order of the perturbative matching for operators
of O((a|pn)™). For each n, such errors are removed com-
pletely if the operator matching is non-perturbative. When
(amp) ~ 1, this gives rise to non-trivial lattice-spacing
dependence in physical quantities, and it is prudent to com-
pare estimates based on power-counting with a direct study
of scaling behaviour using a range of lattice spacings. At
fixed quark mass, relativistic heavy-quark actions possess
a smooth continuum limit without power divergences. Of
course, as my — oo at fixed lattice spacing, the power diver-
gences of the static limit are recovered (see, e.g. Ref. [659]).

The relativistic heavy-quark formulations in use all begin
with the anisotropic Sheikholeslami—Wohlert (“clover”)
action [660]:

S =a* Y ¥ (x) (mo + Do +¢7 - D — %(DO)2

x,x’

—%’;(ﬁ)2+2§cswowm> Yx),  (236)

v

where D, is the lattice covariant derivative and Fj,, is the
lattice field-strength tensor. Here we show the form of the
action given in Ref. [646]. The introduction of a space-
time anisotropy, parameterised by ¢ in Eq. (236), is con-
venient for heavy-quark systems because the characteristic
heavy-quark four-momenta do not respect space-time axis
exchange (p; < my in the bound-state rest frame). Fur-
ther, the Sheikoleslami—Wohlert action respects the contin-
uum heavy-quark spin and flavour symmetries, so HQET
can be used to interpret and estimate lattice-discretisation
effects [659,661,662]. We discuss three different prescrip-
tions for tuning the parameters of the action in common use
below. In particular, we focus on aspects of the action and
operator improvement and matching relevant for evaluating
the quality of the calculations discussed in the main text.
The meson energy-momentum dispersion relation plays
an important role in relativistic heavy-quark formulations:

=2

o p -4
E(P) = M| + — + O(ph,
(p) 1+2M2+ r"

(237)
where M7 and M, are known as the rest and kinetic masses,
respectively. Because the lattice breaks Lorentz invariance,
there are corrections proportional to powers of the momen-
tum. Further, the lattice rest masses and kinetic masses are not
equal (M| # M>), and only become equal in the continuum
limit.

The Fermilab interpretation [645] is suitable for calcu-
lations of mass splittings and matrix elements of systems
with heavy quarks. The Fermilab action is based on the
hopping-parameter form of the Wilson action, in which «;,
parameterises the heavy-quark mass. In practice, «y, is tuned
such that the kinetic meson mass equals the experimen-
tally measured heavy-strange meson mass (m g, for bottom
and mp, for charm). In principle, one could also tune the
anisotropy parameter such that My = M;. This is not nec-
essary, however, to obtain mass splittings and matrix ele-
ments, which are not affected by M; [661]. Therefore in
the Fermilab action the anisotropy parameter is set equal to
unity. The clover coefficient in the Fermilab action is fixed
to the value csw = 1/ ug from mean-field improved lattice
perturbation theory [516]. With this prescription, discreti-
sation effects are of O(asal|pl, (a|pr])?). Calculations of
electroweak matrix elements also require improving the lat-
tice current and four-fermion operators to the same order,
and matching them to the continuum. Calculations with
the Fermilab action remove tree-level O(a) errors in elec-
troweak operators by rotating the heavy-quark field used
in the matrix element and setting the rotation coefficient
to its tadpole-improved tree-level value (see e.g. Egs. (7.8)
and (7.10) of Ref. [645]). Finally, electroweak operators
are typically renormalised using a mostly non-perturbative
approach in which the flavour-conserving light-light and
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heavy-heavy current renormalisation factors Z éﬁ and Z (‘,h are
computed non-perturbatively [663]. The flavour-conserving
factors account for most of the heavy-light current renor-
malisation. The remaining correction is expected to be close
to unity due to the cancellation of most of the radiative cor-
rections including tadpole graphs [659]; therefore it can be
reliably computed at one loop in mean-field improved lattice
perturbation theory with truncation errors at the percent to
few-percent level.

The relativistic heavy-quark (RHQ) formulation devel-
oped by Li et al. builds upon the Fermilab approach,
but it tunes all the parameters of the action in Eq. (236)
non-perturbatively [646]. In practice, the three parameters
{moa, csw, ¢} are fixed to reproduce the experimentally mea-
sured Bs-meson mass and hyperfine splitting (m g — mp,),
and to make the kinetic and rest masses of the lattice B;-
meson equal [385]. This is done by computing the heavy-
strange meson mass, hyperfine splitting, and ratio M/M>
for several sets of bare parameters {moa, csw, ¢} and inter-
polating linearly to the physical B, point. By fixing the By-
meson hyperfine splitting, one loses a potential experimental
prediction with respect to the Fermilab formulation. How-
ever, by requiring that M| = M>, one gains the ability to
use the meson rest masses, which are generally more pre-
cise than the kinetic masses, in the RHQ approach. The non-
perturbative parameter-tuning procedure eliminates O(a)
errors from the RHQ action, such that discretisation errors
are of O((a| pp|)?). Calculations of B-meson decay constants
and semileptonic form factors with the RHQ action are in
progress [409,434], as is the corresponding one-loop mean-
field improved lattice perturbation theory [664]. For these
works, cutoff effects in the electroweak vector and axial-
vector currents will be removed through O (asa), such that the
remaining discretisation errors are of O(asza| pul, (@l pr?).
Matching the lattice operators to the continuum will be done
following the mostly non-perturbative approach described
above.

The Tsukuba heavy-quark action is also based on the
Sheikholeslami—Wohlert action in Eq. (236), but it allows
for further anisotropies and hence has additional parameters:
specifically the clover coefficients in the spatial (cp) and tem-
poral (cE) directions differ, as do the anisotropy coefficients
of the D and D? operators [647]. In practice, the contribu-
tion to the clover coefficient in the massless limit is computed
non-perturbatively [665], while the mass-dependent contri-
butions, which differ for cp and cg, are calculated at one loop
in mean-field improved lattice perturbation theory [666].
The hopping parameter is fixed non-perturbatively to repro-
duce the experimentally measured spin-averaged 1S char-
monium mass [333]. One of the anisotropy parameters (r; in
Ref. [333]) is also set to its one-loop perturbative value, while
the other (v in Ref. [333]) is fixed non-perturbatively to obtain
the continuum dispersion relation for the spin-averaged char-
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monium 18§ states (such that M| = M>). For the renormal-
isation and improvement coefficients of weak current oper-
ators, the contributions in the chiral limit are obtained non-
perturbatively [21,667], while the mass-dependent contribu-
tions are estimated using one-loop lattice perturbation the-
ory [668]. With these choices, lattice cutoff effects from the
action and operators are of O(a2al|p|, (a|pn|)?).

Light-quark actions combined with HOQET

The heavy-quark formulations discussed in the previous sec-
tions use effective field theory to avoid the occurrence of
discretisation errors of the form (amy,)". In this section we
describe methods that use improved actions that were origi-
nally designed for light-quark systems for B physics calcula-
tions. Such actions unavoidably contain discretisation errors
that grow as a power of the heavy-quark mass. In order to
use them for heavy-quark physics, they must be improved to
at least O(amy,)?. However, since amp, > 1 at the smallest
lattice spacings available in current simulations, these meth-
ods also require input from HQET to guide the simulation
results to the physical b-quark mass.

The ETM collaboration has developed two methods,
the “ratio method” [392] and the “interpolation method”
[669,670]. They use these methods together with simulations
with twisted-mass Wilson fermions, which have discretisa-
tion errors of O (amy,)?. In the interpolation method ®;,; and
D¢ (or Opg/Dyye) are calculated for a range of heavy-quark
masses in the charm region and above, while roughly keep-
ing amy, < 0.5. The relativistic results are combined with
a separate calculation of the decay constants in the static
limit, and then interpolated to the physical b quark mass.
In ETM’s implementation of this method, the heavy Wilson
decay constants are matched to HQET using NLO in con-
tinuum perturbation theory. The static limit result is renor-
malised using one-loop mean-field improved lattice pertur-
bation theory, while for the relativistic data PCAC is used to
calculate absolutely normalised matrix elements. Both, the
relativistic and static limit data are then run to the common
reference scale u, = 4.5 GeV at NLO in continuum pertur-
bation theory. In the ratio method, one constructs physical
quantities P (my,) from the relativistic data that have a well-
defined static limit (P (my) — const. for m, — 00) and
evaluates them at the heavy-quark masses used in the simu-
lations. Ratios of these quantities are then formed at a fixed
ratio of heavy quark masses, z = P(my)/P(mp/A) (where
1 < & < 1.3), which ensures that z is equal to unity in the
static limit. Hence, a separate static limit calculation is not
needed with this method. In ETM’s implementation of the
ratio method for the B-meson decay constant, P (my,) is con-
structed from the decay constants and the heavy-quark pole
mass as P(myp) = fre(mp)- (mp()le) 12 The corresponding z-
ratio therefore also includes ratios of perturbative matching
factors for the pole mass to MS conversion. For the inter-
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Table 41 Discretisations of the quark action most widely used for heavy ¢ and b quarks and some of their properties

Abbreyv. Discretisation Leading lattice artefacts Remarks
and truncation errors
for heavy—light mesons
tmWil Twisted-mass Wilson O((amp)?) PCAC relation for axial-vector current
HISQ Staggered O(as(amy )Z(U/C), (amh)4(v/c)2) PCAC relation for axial-vector current; Ward
identity for vector current
Static Static effective action O(azAéCD, Aqcp/mhp, ozsz, afaAQCD) Implementations use APE, HYP1, and HYP2
smearing
HQET Heavy-Quark Effective O(ahgep/mn, a* Agep, (Age/mn)?) Non-perturbative matching through O(1/my,)
Theory
NRQCD Non-relativistic QCD O(asAqcp/mp, as(Agep/m 2, Tree-level relativistic corrections through O(v:)
(Aqep/mp)?, OlsazAéCD) and discretisation corrections through O(a?)
Fermilab Sheikholeslami—Wohlert O(asqa AQep, (aAQCD)z) Hopping parameter tuned non-perturbatively;
clover coefficient computed at tree level in
mean-field improved lattice perturbation theory
Tsukuba Sheikholeslami—Wohlert O(afa Aqcp, (aAQCD)Z) NP clover coefficient at ma = 0 plus

mass-dependent corrections calculated at one
loop in lattice perturbation theory; v calculated
NP from dispersion relation; ry calculated at
one loop in lattice perturbation theory

polation to the physical b-quark mass, ratios of perturbative
matching factors converting the data from QCD to HQET are
also included. The QCD-to-HQET matching factors improve
the approach to the static limit by removing the leading-
logarithmic corrections. In ETM’s implementation of this
method (ETM 11 and 12) both conversion factors are eval-
uated at NLO in continuum perturbation theory. The ratios
are then simply fit to a polynomial in 1/m, and interpolated
to the physical b-quark mass. The ratios constructed from
fne (fns) are called z (z5). In order to obtain the B-meson
decay constants, the ratios are combined with relativis-
tic decay-constant data evaluated at the smallest reference
mass.

The HPQCD collaboration has introduced a method in
Ref. [366] which we shall refer to as the “heavy HISQ”
method. The first key ingredient is the use of the HISQ action
for the heavy and light valence quarks, which has leading dis-
cretisation errors of O (et (v/c)(amp)?, (v/c)*(amp)*). With
the same action for the heavy and light valence quarks it is
possible to use PCAC to avoid renormalisation uncertainties.
Another key ingredient is the availability of gauge ensembles
over a large range of lattice spacings, in this case in the form
of the library of Ny = 2 4 1 asqtad ensembles made public
by the MILC collaboration which includes lattice spacings
as small as a ~ 0.045 fm. Since the HISQ action is so highly
improved and with lattice spacings as small as 0.045 fm,
HPQCD is able to use a large range of heavy-quark masses,
from below the charm region to almost up to the physical b
quark mass with amj; < 0.85. They then fit their data in a
combined continuum and HQET fit (i.e. using a fit function
that is motivated by HQET) to a polynomial in 1/mpy (the

heavy pseudo scalar meson mass of a meson containing a
heavy (h) quark).

In Table 41 we list the discretisations of the quark action
most widely used for heavy ¢ and b quarks together with
the abbreviations used in the summary tables. We also sum-
marise the main properties of these actions and the leading
lattice-discretisation errors for calculations of heavy-light
meson matrix quantities with them. Note that in order to
maintain the leading lattice artefacts of the actions as given
in the table in non-spectral observables (like operator matrix
elements) the corresponding non-spectral operators need to
be improved as well.

A.2 Setting the scale

In simulations of lattice QCD quantities such as hadron
masses and decay constants are obtained in “lattice units”
i.e. as dimensionless numbers. In order to convert them into
physical units they must be expressed in terms of some exper-
imentally known, dimensionful reference quantity Q. This
procedure is called “setting the scale”. It amounts to com-
puting the non-perturbative relation between the bare gauge
coupling go (which is an input parameter in any lattice sim-
ulation) and the lattice spacing a expressed in physical units.
To this end one chooses a value for go and computes the
value of the reference quantity in a simulation: This yields the
dimensionless combination, (a Q)|g,, at the chosen value of
go- The calibration of the lattice spacing is then achieved via

0 |exp (MeV)

1 MeV) =
@ MV == T

) (238)
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where Q|exp denotes the experimentally known value of the
reference quantity. Common choices for Q are the mass of
the nucleon, the 2 baryon or the decay constants of the pion
and the kaon. Vector mesons, such as the p or K *-meson, are
unstable and therefore their masses are not very well suited
for setting the scale, despite the fact that they have been used
over many years for that purpose.

Another widely used quantity to set the scale is the
hadronic radius rg, which can be determined from the force
between static quarks via the relation [65]

F(ro)rg = 1.65. (239)

If the force is derived from potential models describing
heavy quarkonia, the above relation determines the value of
ro as rop &~ 0.5 fm. A variant of this procedure is obtained
[473] by using the definition F (rl)rl2 = 1.00, which yields
r1 &~ 0.32 fm. It is important to realise that both 7y and 7
are not directly accessible in experiment, so that their values
derived from phenomenological potentials are necessarily
model-dependent. Inspite of the inherent ambiguity when-
ever hadronic radii are used to calibrate the lattice spacing,
they are very useful quantities for performing scaling tests
and continuum extrapolations of lattice data. Furthermore,
they can be easily computed with good statistical accuracy
in lattice simulations.

A.3 Matching and running

The lattice formulation of QCD amounts to introducing a
particular regularisation scheme. Thus, in order to be useful
for phenomenology, hadronic matrix elements computed in
lattice simulations must be related to some continuum ref-
erence scheme, such as the MS-scheme of dimensional reg-
ularisation. The matching to the continuum scheme usually
involves running to some reference scale using the renormal-
isation group.

In principle, the matching factors which relate lattice
matrix elements to the MS-scheme can be computed in per-
turbation theory formulated in terms of the bare coupling. It
has been known for a long time, though, that the perturbative
expansion is not under good control. Several techniques have
been developed which allow for a non-perturbative matching
between lattice regularisation and continuum schemes, and
they are briefly introduced here.

Regularisation-independent momentum subtraction

In the Regularisation-independent momentum subtraction
(“RI/MOM” or “RI”) scheme [297] a non-perturbative renor-
malisation condition is formulated in terms of Green func-
tions involving quark states in a fixed gauge (usually Landau
gauge) at non-zero virtuality. In this way one relates operators
in lattice regularisation non-perturbatively to the RI scheme.
In a second step one matches the operator in the RI scheme to
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its counterpart in the MS-scheme. The advantage of this pro-
cedure is that the latter relation involves perturbation theory
formulated in the continuum theory. The uncontrolled use of
lattice perturbation theory can thus be avoided. A technical
complication is associated with the accessible momentum
scales (i.e. virtualities), which must be large enough (typ-
ically several GeV) in order for the perturbative relation to
MS to be reliable. The momentum scales in simulations must
stay well below the cutoff scale (i.e. 27t over the lattice spac-
ing), since otherwise large lattice artefacts are incurred. Thus,
the applicability of the RI scheme traditionally relies on the
existence of a “window” of momentum scales, which satisfy

Aqep S p S2mal (240)

However, solutions for mitigating this limitation, which
involve continuum limit, non-perturbative running to higher
scales in the RI/MOM scheme, have recently been proposed
and implemented [22,23,315,671].

Schrodinger functional

Another example of a non-perturbative matching procedure
is provided by the Schrédinger functional (SF) scheme [87].
It is based on the formulation of QCD in a finite volume. If all
quark masses are set to zero the box length remains the only
scale in the theory, such that observables like the coupling
constant run with the box size L. The great advantage is that
the RG running of scale-dependent quantities can be com-
puted non-perturbatively using recursive finite-size scaling
techniques. It is thus possible to run non-perturbatively up to
scales of, say, 100 GeV, where one is sure that the perturba-
tive relation between the SF and MS-schemes is controlled.

Perturbation theory

The third matching procedure is based on perturbation the-
ory in which higher order are effectively resummed [516].
Although this procedure is easier to implement, it is hard to
estimate the uncertainty associated with it.

Mostly non-perturbative renormalisation

Some calculations of heavy-light and heavy—heavy matrix
elements adopt a mostly non-perturbative matching approach.
Let us consider a weak decay process mediated by a current
with quark flavours £ and g, where 4 is the initial heavy quark
(either bottom or charm) and ¢ can be a light (¢ = u, d),
strange, or charm quark. The matrix elements of lattice cur-
rent Jp, are matched to the corresponding continuum matrix
elements with continuum current Jy, by calculating the
renormalisation factor Z, . The mostly non-perturbative
renormalisation method takes advantage of rewriting the cur-
rent renormalisation factor as the following product:

Zo = P 2t 20,

(241)



Eur. Phys. J. C (2014) 74:2890

Page 125 of 179 2890

Table 42 The most widely used matching and running techniques

Abbrev. Description

RI Regularisation-independent momentum
subtraction scheme

SF Schrodinger functional scheme

PT1¢ Matching/running computed in perturbation
theory at one loop

PT2¢ Matching/running computed in perturbation
theory at two loops

mNPR Mostly non-perturbative renormalisation

The flavour-conserving renormalisation factors Z v and
Z vz, can be obtained non-perturbatively from standard
heavy—h ght and light-light meson charge normalisation con-
ditions. Z v and Z vz, account for the bulk of the renor-
malisation. "The remalqmng correction py,, is expected to
be close to unity because most of the radiative correc-
tions, including self-energy corrections and contributions
from tadpole graphs, cancel in the ratio [659,662]. The one-
loop coefficients of py,, have been calculated for heavy—
light and heavy-heavy currents for Fermilab heavy and both
(improved) Wilson light [659,662] and asqtad light [672]
quarks. In all cases the one-loop coefficients are found to be
very small, yielding sub-percent to few percent level correc-
tions.

In Table 42 we list the abbreviations used in the compila-
tion of results together with a short description.

A.4 Chiral extrapolation

As mentioned in the introduction, Symanzik’s framework
can be combined with Chiral Perturbation Theory. The well-
known terms occurring in the chiral effective Lagrangian are
then supplemented by contributions proportional to powers
of the lattice spacing a. The additional terms are constrained
by the symmetries of the lattice action and therefore depend
on the specific choice of the discretisation. The resulting

effective theory can be used to analyse the a-dependence of
the various quantities of interest—provided the quark masses
and the momenta considered are in the range where the trun-
cated chiral perturbation series yields an adequate approxi-
mation. Understanding the dependence on the lattice spacing
is of central importance for a controlled extrapolation to the
continuum limit.

For staggered fermions, this program has first been car-
ried out for a single staggered flavour (a single staggered
field) [583] at O(a?). In the following, this effective the-
ory is denoted by S xPT. It was later generalised to an arbi-
trary number of flavours [584,673], and to next-to-leading
order [585]. The corresponding theory is commonly called
Rooted Staggered chiral perturbation theory and is denoted
by RS x PT.

For Wilson fermions, the effective theory has been devel-
oped in [245,246,674] and is called W x PT, while the theory
for Wilson twisted-mass fermions [273,675,676] is termed
tmW x PT.

Another important approach is to consider theories in
which the valence and sea quark masses are chosen to be
different. These theories are called partially quenched. The
acronym for the corresponding chiral effective theory is
PQxPT [677-680].

Finally, one can also consider theories where the fermion
discretisations used for the sea and the valence quarks are dif-
ferent. The effective chiral theories for these “mixed-action”
theories are referred to as MA x PT [247,590,681-685].

A.5 Summary of simulated lattice actions

In the following tables we summarise the gauge and quark
actions used in the various calculations with Ny = 2,2 + 1
and 2 + 1 + 1 quark flavours. The calculations with Ny =
0 quark flavours mentioned in Sect. 9 all used the Wilson
gauge action and are not listed. Abbreviations are explained
in Sects. A.1.1, A.1.2 and A.1.3, and summarised in Tables
39, 40, 41 and 42 (Tables 43, 44, 45).

Table 43 Summary of simulated lattice actions with Ny = 2 quark flavours

Collab. Ref. Nt Gauge action Quark action
ALPHA 01A, 04, 05, 12 [59,64,488,489] 2 Wilson npSW

Aoki 94 [523] 2 Wilson KS
Bernardoni 10 [261] 2 Wilson npSWT
Bernardoni 11 [259] 2 Wilson npSW

Brandt 13 [257] 2 Wilson npSW
Boucaud 01B [540] 2 Wilson Wilson
CERN-TOV 06 [272] 2 Wilson Wilson/npSW
CERN 08 [215] 2 Wilson npSW
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Table 43 continued

Collab. Ref. Nt Gauge action Quark action
CP-PACS 01 [63] 2 Iwasaki mfSW
Davies 94 [522] 2 Wilson KS
Diirr 11 [61] 2 Wilson npSW
ETM 07, 07A, 08, 09, 09A-D, 10B, 10D, [60,62,145,146,169,217,238,241,258, 2 tISym tmWil

10F, 11C, 12, 13 263,392,505,550,686]
ETM 10A [314] 2 tISym tmWil*
Giilpers 13 [270] 2 Wilson npSW
Hasenfratz 08 [264] 2 tadSym n-HYP tISW
JLQCD 08 [320] 2 Iwasaki Overlap
JLQCD 02, 05 [70,149] 2 Wilson npSW
JLQCD/TWQCD 07, 08A, 10 [67,252,265] 2 Iwasaki Overlap
QCDSF 07 [147] 2 Wilson npSW
QCDSF/UKQCD 04, 06, 06A, 07 [66,68,170,276] 2 Wilson npSW
RBC 04, 06, 07 [34,148,313] 2 DBW2 DW
UKQCD/UKQCD 07 [144] 2 Wilson npSW
RMI123 11, 13 [45,105] 2 tISym tmWil
Sesam 99 [520] 2 Wilson Wilson
Sternbeck 10, 12 [548,549] 2 Wilson npSW
SPQcdR 05 [69] 2 Wilson Wilson
TWQCD 11, 11A [185,260] 2 Wilson Optimal DW
UKQCD 04 [144,321] 2 Wilson npSW
Wingate 95 [521] 2 Wilson KS

T The calculation uses overlap fermions in the valence quark sector
* The calculation uses Osterwalder—Seiler fermions [340] in the valence quark sector

Table 44 Summary of simulated lattice actions with Ny =2 4 1 or Ny = 2 4 1 4 1 quark flavours

Collab. Ref. Nt Gauge action Quark action
ALPHA 10A [485] 4 Wilson npSW

Aubin 08, 09 [163,298] 2+1 tadSym AsqtadT

Bazavov 12 [504] 2+ 141 tISym HISQ

Blum 10 [32] 241 Iwasaki DW

BMW 10A-C, 11, 13 [22,23,43,254,301] 241 tISym 2-level HEX tISW
BMW 10 [161] 241 tISym 6-level stout tISW
CP-PACS/JLQCD 07 [80] 2+1 Iwasaki npSW

ETM 10, 10E, 11, 11D, 12C, 13, 13D [98,158,217,266,545-547] 24141 Iwasaki tmWil
FNAL/MILC 12 [415] 241 tadSym Asqtad
FNAL/MILC 12B, 13 [329,330] 24141 tadSym HISQ

HPQCD 05, 05A, 08A, 13A [81,156,514,515] 241 tadSym Asqtad

HPQCD 10 [73] 241 tadSym Asqtad*®
HPQCD/UKQCD 06 [319] 241 tadSym Asqtad
HPQCD/UKQCD 07 [165] 241 tadSym Asqtad*
HPQCD/MILC/UKQCD 04 [82] 2+1 tadSym Asqtad

JLQCD 09, 10 [251,512] 241 Iwasaki Overlap

JLQCD 11, 12 [141,142] 241 Iwasaki (fixed topology) Overlap
JLQCD/TWQCD 08B, 09A [162,256] 2+1 Iwasaki Overlap
JLQCD/TWQCD 10 [252] 2+4+1,3 Iwasaki Overlap
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Table 44 continued

Collab. Ref. Nt Gauge action Quark action
Laiho 11 [77] 241 tadSym Asgtad?
LHP 04 [275] 241 tadSym Asqtad’
Maltman 08 [518] 2+ 1 tadSym Asqtad
MILC 04, 07, 09, 09A, 10, 10A [15,36,75,82,159,687] 2+1 tadSym Asqtad
NPLQCD 06 [166] 241 tadSym Asgtad?
PACS-CS 08, 08A, 09, 09A, 10, 12 [19-21,164,487] 2+1 Iwasaki npSW
Perez 10 [486] 4 Wilson npSW
RBC/UKQCD 07, 08, 08A, 10, 10A-B, 11, 12, 13 [25,78,79,139,143,253,315,318,688] 2+ 1 Iwasaki, Iwasaki+DSDR DW
Sternbeck 12 [548] 241 tISym npSW
SWME 10, 11, 11A, 13 [299,300,316,317] 241 tadSym Asqtad™
TWQCD 08 [255] 2+1 Iwasaki DW
T The calculation uses domain-wall fermions in the valence quark sector
* The calculation uses HISQ staggered fermions in the valence quark sector
T The calculation uses domain-wall fermions in the valence quark sector
T The calculation uses HYP-smeared improved staggered fermions in the valence quark sector
Table 45 Summary of lattice simulations with » and ¢ valence quarks
Collab. Ref. N Gauge Quark actions
action
Sea Light Heavy
valence

ALPHA 11, 12A, 13 [365,370,404] Plaquette ~ npSW npSW HQET
Atoui 13 [449] tISym tmWil tmWil tmWil
ETM 09, 09D, 11B, 12A, 12B, [169,335,345,392,393,405,414] tISym tmWil tmWil tmWil

13B, 13C
ETM 11A [336] 2 tISym tmWil tmWil tmWil, static
ETM 13E, 13F [155,399] 24141 Iwasaki tmWil tmWil tmWil
FNAL/MILC 04, 04A, 05, 08, [332,334,351,357,412,415,444— 241 tadSym Asqtad  Asqtad Fermilab

08A, 10, 11, 11A, 12, 13B 447]
FNAL/MILC 12B, 13 [329,330] 24+1+1 tadSym HISQ HISQ HISQ
HPQCD 06, 06A, 08B, 09 [85,403,413,427] 2+1 tadSym Asqtad  Asqtad NRQCD
HPQCD 12 [402] 2+1 tadSym Asqtad  HISQ NRQCD
HPQCD/UKQCD 07, HPQCD [94,165,331,338,342,348,366] 2+1 tadSym Asqtad  HISQ HISQ

10A, 10B, 11, 11A, 12A, 13C
HPQCD 13 [400] 24+1+1 tadSym HISQ HISQ NRQCD
RBC/UKQCD 10C [406] 2+1 Iwasaki DWF DWF Static
RBC/UKQCD 13A [401] 2+1 Iwasaki DWF DWF RHQ
PACS-CS 11 [333] 241 Iwasaki npSW npSW Tsukuba

Appendix B: Notes

B.1 Notes to Sect. 3 on quark masses

See Tables 46, 47, 48, 49, 50, 51, 52, and 53.
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Table 46 Continuum extrapolations/estimation of lattice artefacts in determinations of m,4, mg and, in some cases m, and my, with Ny = 2 + 1
quark flavours

Collab. Ref. N¢ a (fm) Description

RBC/UKQCD 12 [25] 241 0.144,0.113, 0.085 Scale set through Mg. Coarsest lattice uses
Iwasaki+DSDR gauge action

PACS-CS 12 [76] 1+14+1 0.09 Reweighting of PACS-CS 08 Ny =2 + 1 QCD
configurations with e.m. and m,, # my

Laiho 11 [77] 2+1 0.15, 0.09, 0.06 MILC staggered ensembles [75], scale set using r|

determined by HPQCD with Y splittings,
pseudoscalar decay constants, through | [186]

PACS-CS 10 [21] 241 0.09 cf. PACS-CS 08

MILC 10A [75] 241 cf. MILC 09, 09A

BMW 10A, 10B [22,23] 2+1 0.116, 0.093, 0.077, 0.065, 0.054  Scale setting via M, Mg, Mq

RBC/UKQCD 10A [78] 2+1 0.114, 0.087 Scale set through Mg

Blum 10 [32] 241 0.11 Relies on RBC/UKQCD 08 scale setting

PACS-CS 09 [20] 2+1 0.09 Scale setting via Mg

HPQCD 09A, 10 [72,73] 241

MILC 09A, 09 [15,37] 241 0.045, 0.06, 0.09 Scale set through r; and Y and continuum extrapolation
based on RSy PT

PACS-CS 08 [19] 2+1 0.09 Scale set through Mg. Non-perturbatively
O (a)-improved

RBC/UKQCD 08 [79] 241 0.11 Scale set through Mgq. Automatic O (a)-improvement

due to approximate chiral symmetry. (Aqcpa)? ~ 4 %
systematic error due to lattice artefacts added

CP-PACS/JLQCD 07 [80] 241 0.07,0.10, 0.12 Scale set through M or M. Non-perturbatively
O (a)-improved
HPQCD 05 [81] 241 0.09, 0.12 Scale set through the Y — Y’ mass difference
HPQCD/MILC/UKQCD [36,82] 241 0.09, 0.12 Scale set through r; and Y and continuum extrapolation
04, MILC 04 based on RSy PT

Table 47 Continuum extrapolations/estimation of lattice artefacts in determinations of m,4, mg and, in some cases m, and mg, with Ny = 2 quark
flavours

Collab. Ref. Nt a (fm) Description

RM123 13 [45] 2 0.098, 0.085, 0.067, 0.054 cf. ETM 10B

ALPHA 12 [59] 2 0.076, 0.066, 0.049 Scale set through Fg
RM123 11 [105] 2 0.098, 0.085, 0.067, 0.054 cf. ETM 10B

Diirr 11 [61] 2 0.076, 0.072, 0.060 Scale for light quark masses set through m,
ETM 10B [60] 2 0.098, 0.085, 0.067, 0.054 Scale set through Fy
JLQCD/TWQCD 08A [67] 2 0.12 Scale set through rg
RBC 07 [34] 2 0.12 Scale set through M,
ETM 07 [62] 2 0.09 Scale set through F;
QCDSF/UKQCD 06 [68] 2 0.065-0.09 Scale set through rg
SPQcdR 05 [69] 2 0.06, 0.08 Scale set through Mg+
ALPHA 05 [64] 2 0.07-0.12 Scale set through rg
QCDSF/UKQCD 04 [66] 2 0.07-0.12 Scale set through rg
JLQCD 02 [70] 2 0.09 Scale set through M,
CP-PACS 01 [63] 2 0.11,0.16, 0.22 Scale set through M,
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Table 48 Chiral extrapolation/minimum pion mass in determinations of m, 4, mg and, in some cases m, and my, with Ny = 2 + 1 quark flavours

Collab. Ref. N¢ My min MeV) Description

RBC/UKQCD 12 [25] 2+1 170 Combined fit to Iwasaki and Iwasaki+DSDR
gauge action ensembles

PACS-CS 12 [76] 1+14+1 cf. PACS-CS 08

Laiho 11 [77] 2+1 210 (val.) 280 (sea-RMS)  NLO SU(3), mixed-action xPT [590], with
N2LO-N*LO analytic terms

PACS-CS 10 [21] 2+1 cf. PACS-CS 08

MILC 10A [75] 2+1 NLO SU(2) SxPT. Cf. also MILC 09A,09

BMW 10A, 10B [22,23] 241 135 Interpolation to the physical point

RBC/UKQCD 10A [78] 2+1 290

Blum 10 [32,79] 241 242 (valence), 330 (sea) Extrapolation done on the basis of PQxPT
formulae with virtual photons

PACS-CS 09 [20] 2+1 135 Physical point reached by reweighting
technique, no chiral extrapolation needed

HPQCD 09A, 10 [72,73] 241

MILC 09A, 09 [15,37] 2+1 177, 240 NLO SU(3) RSy PT, continuum xPT at
NNLO and NNNLO and NNNNLO analytic
terms. The lightest Nambu—Goldstone mass
is 177 MeV (09A) and 224 MeV (09) (at
a = 0.09 fm) and the lightest RMS mass is
258MeV (at a = 0.06 fm)

PACS-CS 08 [19] 2+1 156 NLO SU(2) xPT and SU(3) (Wilson) x PT

RBC/UKQCD 08 [79] 2+1 242 (valence), 330 (sea) SU(@3) PQxPT and heavy kaon NLO SU(2)
PQyPT fits

CP-PACS/JLQCD 07 [80] 241 620 NLO Wilson xPT fits to meson masses

HPQCD 05 [81] 2+1 240 PQ RS PT fits

HPQCD/MILC/UKQCD 04, MILC 04 [36,82] 2+1 240 PQ RS PT fits

Table 49 Chiral extrapolation/minimum pion mass in determinations of m,4, m; and, in some cases m, and mg, with Ny = 2 quark flavours

Collab. Ref. Ny My min (MeV) Description

RM123 13 [45] 2 270 Fits based on NLO xPT and Symanzik expansion up to
0(a?). O(a) e.m. effects included

ALPHA 12 [59] 2 270 NLO SU(2) and SU(3) xPT and O (a?) on LO LEC

RM123 11 [105] 2 270 Fits based on NLO xPT and Symanzik expansion up to
0(a?)

Diirr 11 [61] 2 285 m./ms determined by quadratic or cubic extrapolation in
My

ETM 10B [60] 2 270 Fits based on NLO xPT and Symanzik expansion up to
0(a?)

JLQCD/TWQCD 08A [67] 2 290 NLO xPT fits

RBC 07 [34] 2 440 NLO fit including O(«) effects

ETM 07 [62] 2 300 Polynomial and PQx PT fits

QCDSF/UKQCD 06 [68] 2 520 (valence), 620 (sea) NLO (PQ)xPT fits

SPQcdR 05 [69] 2 600 Polynomial fit

ALPHA 05 [64] 2 560 LO xPT fit

QCDSF/UKQCD 04 [66] 2 520 (valence), 620 (sea) NLO (PQ)xPT fits

JLQCD 02 [70] 2 560 Polynomial and xPT fits

CP-PACS 01 [63] 2 430 Polynomial fits
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Table 50 Finite-volume effects in determinations of m,,4, mg and, in some cases m,, and mg4, with Ny = 2 + 1 quark flavours

Collab. Ref. Ny L (fm) Mz minL Description

RBC/UKQCD 12 [25] 241 2.7,4.6 > 4.0 Uses FV chiral perturbation theory to
estimate the error

PACS-CS 12 [76] 1+1+1 cf. PACS-CS 08

Laiho 11 [77] 2+1 2.5,2.9,3.0,3.6,3.8,4.8 4.1 (val.)4.1 Data corrected using NLO SU(3) xPT

(sea) finite-V formulae

PACS-CS 10 [21] 2+1 cf. PACS-CS 08

MILC 10A [75] 2+1 cf. MILC 09A,09

BMW 10A, 10B [22,23] 2+1 >5.0 > 4.0 FS corrections below 5 per mil on the
largest lattices

RBC/UKQCD 10A [78] 2+1 2.7 > 4.0

Blum 10 [32] 2+1 1.8,2.7 - Simulations done with quenched photons;
large finite-volume effects analytically
corrected for, but they are not related to
M,L

PACS-CS 09 [20] 2+1 29 2.0 Only one volume

HPQCD 09A, 10 [72,73] 2+1

MILC 09A, 09 [15,37] 2+1 25,29,34,3.6,3.8,5.8 4.1,3.8

PACS-CS 08 [19] 2+1 29 23 Correction for FSE from xPT using [689]

RBC/UKQCD 08 [79] 241 1.8,2.7 4.6 Various volumes for comparison and
correction for FSE from xPT
[189,190,689]

CP-PACS/JILQCD 07 [80] 241 2.0 6.0 Estimate based on the comparison to a
L = 1.6 fm volume assuming
power-like dependence on L

HPQCD 05 [81] 2+1 24,29 35

HPQCD/MILC/UKQCD 04, [36,82] 2+1 24,29 35 NLO SxPT

MILC 04

Table 51 Finite-volume effects in determinations of m,4, mg and, in some cases m,, and mg4, with Ny = 2 quark flavours

Collab. Ref. N L (fm) My minL Description

RMI123 13 [45] 2 =20 3.5 One volume L = 1.7 fm at m; = 495, a = 0.054 fm

ALPHA 12 [59] 2 2.1-32 4.2 Roughly 2 distinct volumes; no analysis of FV
effects

RMI123 11 [105] 2 =2.0 35 One volume L = 1.7 fm at m, = 495, a = 0.054 fm

Diirr 11 [61] 2 1.22-2.30 2.8 Number of volumes in determination of m./my, but
all but one have L < 2 fm

ETM 10B [60] 2 >2.0 3.5 One volume L = 1.7 fm at m; = 495, a = 0.054 fm

JLQCD/TWQCD 08A [67] 2 1.9 2.8 Corrections for FSE based on NLO xPT

RBC 07 [34] 2 1.9 4.3 Estimate of FSE based on a model

ETM 07 [62] 2 2.1 3.2 NLO PQxPT

QCDSF/UKQCD 06 [68] 2 1.4-1.9 4.7

SPQcdR 05 [69] 2 1.0-1.5 4.3 Comparison between 1.0 and 1.5 fm

ALPHA 05 [64] 2 2.6 74

QCDSF/UKQCD 04 [66] 2 1.7-2.0 4.7

JLQCD 02 [70] 2 1.8 5.1 Numerical study with three volumes

CP-PACS 01 [63] 2 2.0-2.6 5.7
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Table 52 Renormalisation in determinations of m,q, my and, in some cases m, and mg, with Ny = 2 + 1 quark flavours

Collab. Ref. Nt Description
RBC/UKQCD 12 [25] 2+1 Non-perturbative renormalisation (RI/SMOM)
PACS-CS 12 [76] I1+14+1 cf. PACS-CS 10
Laiho 11 [77] 241 Z 4 from AWl and Z4/Zs — 1 from one-loop, tadpole-improved,
perturbation theory
PACS-CS 10 [21] 2+1 Non-perturbative renormalisation and running; Schrédinger functional
method
MILC 10A [75] 241 cf. MILC 09A,09
BMW 10A, 10B [22,23] 241 Non-perturbative renormalisation (tree-level improved RI-MOM),
non-perturbative running
RBC/UKQCD 10A [78] 241 Non-perturbative renormalisation (RI/SMOM)
Blum 10 [32] 2+1 Relies on non-perturbative renormalisation factors calculated by
RBC/UKQCD 08; no QED renormalisation
PACS-CS 09 [20] 2+1 Non-perturbative renormalisation; Schrodinger functional method
HPQCD 09A, 10 [72,73] 2+1 Lattice calculation of mg/m.: mg derived from a perturbative
determination of m,
MILC 09A, 09 [15,37] 2+1 Two-loop perturbative renormalisation
PACS-CS 08 [19] 241 One-loop perturbative renormalisation
RBC/UKQCD 08 [79] 2+1 Non-perturbative renormalisation, three-loop perturbative matching
CP-PACS/JILQCD 07 [80] 241 One-loop perturbative renormalisation, tadpole improved
HPQCD 05 [81] 2+1 Two-loop perturbative renormalisation
HPQCD/MILC/UKQCD 04, MILC 04 [36,82] 2+1 One-loop perturbative renormalisation
Table 53 Renormalisation in
determinations of m,4, mg and, Collab. Ref. Ny Description
in some cases m,, and my, with
Np = 2 quark flavours RM123 13 [45] 2 Non-perturbative renormalisation
ALPHA 12 [59] 2 Non-perturbative renormalisation
RMI123 11 [105] 2 Non-perturbative renormalisation
Diirr 11 [61] 2 Lattice calculation of m/m.: mg derived from a
perturbative determination of m
ETM 10B [60] 2 Non-perturbative renormalisation
JLQCD/TWQCD 08A [67] 2 Non-perturbative renormalisation
RBC 07 [34] 2 Non-perturbative renormalisation
ETM 07 [62] 2 Non-perturbative renormalisation
QCDSF/UKQCD 06 [68] 2 Non-perturbative renormalisation
SPQcdR 05 [69] 2 Non-perturbative renormalisation
ALPHA 05 [64] 2 Non-perturbative renormalisation
QCDSF/UKQCD 04 [66] 2 Non-perturbative renormalisation
JLQCD 02 [70] 2 One-loop perturbative renormalisation
CP-PACS 01 [63] 2 One-loop perturbative renormalisation

@ Springer



2890 Page 132 of 179

Eur. Phys. J. C (2014) 74:2890

B.2 Notes to Sect. 4 on |V,4| and | V|

See Tables 54, 55, 56, 57, 58, 59, 60, 61, and 62.

Table 54 Continuum extrapolations/estimation of lattice artefacts in determinations of f (0)

Collab. Ref. Nr a (fm) Description

FNAL/MILC 13C [138] 2+1+1 0.09, 0.12, 0.15 Relative scale through rq, physical scale from f; calculated
by MILC 09A at Ny =2 + 1

FNAL/MILC 12 [140] 241 0.09, 0.12 Relative scale ry, physical scale determined from a mixture
of fr, fk, radial excitation of Y and mp, — %m,,(.

RBC/UKQCD 13 [139] 2+1 0.09,0.11,0.14 Scale set through €2 mass

JLQCD 12 [141] 241 0.112 Scale set through €2 mass

JLQCD 11 [142] 241 0.112 Scale set through €2 mass

RBC/UKQCD 07,10 [143,144] 2+1 0.114 (2) Scale fixed through €2 baryon mass. Add (AQCDa)2 ~4 %
systematic error for lattice artefacts. Fifth dimension with
extension L = 16, therefore small residual chiral
symmetry breaking and approximate O (a)-improvement

ETM 10D [145] 2 0.05, 0.07, 0.09, 0.10 Scale set through F;. Automatic O (a) impr., flavour
symmetry breaking: (M%¢)? — (M£5)> ~ 0(a?)

ETM 09A [146] 2 0.07, 0.09, 0.10 Scale set through F;. Automatic O (a) impr., flavour
symmetry breaking: (M%¢)? — (M34)> ~ O(a?). Three
lattice spacings only for pion mass 470 MeV

QCDSF 07 [147] 2 0.075 Scale set with ro. Non-perturbatively O (a)-improved
Wilson fermions, not clear whether currents improved

RBC 06 [148] 2 0.12 Scale set through M,,. Automatic O (a)-improvement due to
approximate chiral symmetry of the action

JLQCD 05 [149] 2 0.0887 Scale set through M,,. Non-perturbatively O (a)-improved

Wilson fermions

Table 55 Chiral extrapolation/minimum pion mass in determinations
of f4(0). The subscripts RMS and 7, 5 in the case of staggered fermions
indicate the root-mean-square mass and the Nambu—Goldstone boson

mass, respectively. In the case of twisted-mass fermions 7° and 7+
indicate the neutral- and charged-pion mass where applicable

Collab. Ref. Nt My min (MeV) Description

FNAL/MILC 13C [138] 2+1+1 173rMms (128, 5) NLO SU(3) PQ staggered xPT with continuum x PT at NNLO.
Lightest Nambu—Goldstone mass is 128 MeV and lightest RMS
mass is 173 MeV for the same gauge ensemble with a >~ 0.09 fm

FNAL/MILC 12 [140] 2+1 378rMms (2637.5) NLO SU(3) PQ staggered x PT with either phenomenological NNLO
ansatz or NNLO xPT. Lightest Nambu—Goldstone mass is 263 MeV
with a = 0.12 fm and lightest RMS mass is 378 MeV with
a =0.09 fm

RBC/UKQCD 13 [139] 241 170 NLO SU(3) xPT with phenomenological ansatz for higher orders

JLQCD 12 [141] 241 290 NLO SU(3) xPT with phenomenological ansatz for higher orders

JLQCD 11 [142] 241 290 NLO SU(3) xPT with phenomenological ansatz for higher orders

RBC/UKQCD 07,10 [143,144] 241 330 NLO SU(3) xPT with phenomenological ansatz for higher orders

ETM 10D [145] 2 2100 (260,+) NLO heavy kaon SU(2) xPT and NLO SU(3) xPT and
phenomenological ansatz for higher orders. Average of f (0) fit and
joint f (0)—fk /fx fit

ETM 09A [146] 2 2100 (260,+) NLO heavy kaon SU(2) xPT and NLO SU(3) xPT and
phenomenological ansatz for higher orders

QCDSF 07 [147] 2 591 Only one value for the pion mass

RBC 06 [148] 2 490 NLO SU(3) xPT and phenomenological ansatz for higher orders

JLQCD 05 [149] 2 550 NLO SU(3) xPT and phenomenological ansatz for higher orders
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Table 56 Finite-volume effects in determinations of f5 (0). The sub-
scripts RMS and 7, 5 in the case of staggered fermions indicate the root-
mean-square mass and the Nambu—Goldstone boson mass, respectively.

In the case of twisted-mass fermions 7° and 7 indicate the neutral
and charged-pion mass where applicable

Collab. Ref. N L (fm) My minL Description

FNAL/MILC 13C [138] 24+1+1 29-58 4.9rMms (3.675) The values correspond to M; rvs = 173 MeV and
My s = 128 MeV, respectively

FNAL/MILC 12 [140] 241 24-34 6.2rMs (3-87.5) The values correspond to M rms = 378 MeV and
My 5 =263 MeV, respectively

RBC/UKQCD 13 [139] 2+1 2.7,4.6 39

JLQCD 12 [141] 2+1 1.8,2.7 4.1

JLQCD 11 [142] 2+1 1.8,2.7 4.1

RBC/UKQCD 07,10 [143,144] 241 1.8,2.7 4.7 Two volumes for all but the lightest pion mass

ETM 10D [145] 2 2.1-2.8 3.0,0(3.7,+)

ETM 09A [146] 2 2.1,2.8 3.0,0(3.7,+) Two volumes at M; = 300MeV and x PT-motivated
estimate of the error due to FSE

QCDSF 07 [147] 2 1.9 54

RBC 06 [148] 2 1.9 4.7

JLQCD 05 [149] 2 1.8 4.9

Table 57 Continuum extrapolations/estimation of lattice artefacts in determinations of fx /fm for Ny =2+ 1 and Ny = 2 + 1 + 1 simulations

Collab. Ref. Nt a (fm) Description

HPQCD 13A [156] 2+1+1 0.09,0.12,0.15 Relative scale through Wilson flow and absolute scale through f

MILC 13A [157] 2+1+1 0.06,0.09,0.12,0.15 Absolute scale though f;

ETM 13F [155] 2+1+1 0.062,0.082,0.080  Scale set through f. Automatic Ow(a) improvement, flavour symmetry
breaking: (Mf?,s)2 — (les)2 ~ 0(a?). Discretisation and volume
effects due to the 70 — 7% mass splitting are taken into account through
x PT for twisted-mass fermions

ETM 10E [158] 24141 0.061,0.078 Scale set through f; /m, . Two lattice spacings but a-dependence ignored
in all fits. Finer lattice spacing from [266]

MILC 11 [24] 24+ 141 0.12,0.09 Relative scale through fps/mps = fixed, absolute scale though f

RBC/UKQCD 12 [25] 2+1 0.09, 0.11, 0.14 Scale set through mq

LAIHO 11 [77] 2+1 0.125, 0.09, 0.06 Scale set through r1 and Y and continuum extrapolation based on MA x PT

JLQCD/TWQCD 10 [160] 241 0.112 Scale set through Mg

RBC/UKQCD 10A [78] 241 0.114, 0.087 Scale set through Mg

MILC 10 [159] 2+1 0.09, 0.06, 0.045 three lattice spacings, continuum extrapolation by means of RS x PT

BMW 10 [161] 241 0.07, 0.08, 0.12 Scale set through Mg z. Perturbative O (a)-improvement

JLQCD/TWQCD 09A [67] 241 0.1184 (3) (21) Scale set through F;. Automatic O (a)-improvement due to chiral
symmetry of action

PACS-CS 09 [20] 2+1 0.0900 (4) Scale set through Mg

MILC 09A [37] 2+1 0.045, 0.06, 0.09 Scale set through r; and Y and continuum extrapolation based on RS x PT

MILC 09 [15] 241 0.045, 0.06, 0.09, Scale set through r; and Y and continuum extrapolation based on RS x PT

0.12

Aubin 08 [163] 241 0.09, 0.12 Scale set through 7| and Y and continuum extrapolation based on MA x PT

PACS-CS 08, 08A [19,164] 2+ 1 0.0907 (13) Scale set through Mg,. Non-perturbatively O (a)-improved

HPQCD/UKQCD 07  [165] 241 0.09, 0.12, 0.15 Scale set through 71 and Y and continuum extrapolation on
continuum- y PT-motivated ansatz. Taste breaking of sea quarks ignored

RBC/UKQCD 08 [79] 241 0.114 (2) Scale set through Mg. Automatic O (a)-improvement due to approximate
chiral symmetry. (AQCDa)2 ~ 4 % systematic error due to lattice
artefacts added

NPLQCD 06 [166] 241 0.125 Scale set through rp and F; . Taste breaking of sea quarks ignored
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Table 58 Continuum extrapolations/estimation of lattice artefacts in determinations of fx /fm for Ny = 2 simulations

Collab. Ref. Nt a (fm) Description

ALPHA 13 [167] 0.05, 0.065, 0.075 Scale set through F;. O (a)-improved Wilson action

BGR 11 [168] 0.135 Scale set through 79 = 0.48 fm. Chirally improved Dirac
operator

ETM 10D [145] 2 0.05, 0.07, 0.09, 0.10 Scale set through F;. Automatic O (a) impr., flavour symmetry
breaking: (M%)> — (Mi£5)? ~ 0(a?)

ETM 09 [169] 2 0.07, 0.09, 0.10 Scale set through F;. Automatic O (a) impr., flavour symmetry
breaking: (M9)> — (M7¢)? ~ 0(a?)

QCDSF/UKQCD 07 [170] 2 0.06, 0.07 Scale set through F;;. Non-perturbative O (a)-improvement

Table 59 Chiral extrapolation/minimum pion mass in determinations
of fx/fm for Nt = 2 + 1 + 1 simulations. The subscripts RMS and
7,5 in the case of staggered fermions indicate the root-mean-square
mass and the Nambu—Goldstone boson mass. In the case of twisted-

mass fermions 7° and 7% indicate the neutral- and charged-pion mass
and, where applicable, “val” and “sea” indicate valence- and sea-pion
masses

Collab. Ref. Ny M5 min (MeV) Description

HPQCD 13A [156] 2+14+1 173rMms (1285,5) NLO xPT supplemented by model for NNLO. Both the lightest
RMS and the lightest Nambu—Goldstone mass are from the
a = 0.09 fm ensemble

MILC 13A [157] 24141 143rMms (1285 5) Linear interpolation to physical point. The lightest RMS mass
is from the @ = 0.06 fm ensemble and the lightest
Nambu—Goldstone mass is from the a = 0.09 fm ensemble

ETM 13F [155] 24141 155,0(220,=) Chiral extrapolation performed through SU(2) xPT or
polynomial fit

ETM 10E [158] 24141 215,0(265,+)

MILC 11 [24] 24141 173rms (1287 5) Quoted result from polynomial interpolation to the physical

point. The lightest RMS mass is from the a = 0.06 fm
ensemble and the lightest Nambu—Goldstone mass is from the
a = 0.09 fm ensemble

Table 60 Chiral extrapolation/minimum pion mass in determinations
of fx/fm for Ny = 2+ 1 simulations. The subscripts RMS and 7, 5 in
the case of staggered fermions indicate the root-mean-square mass and

the Nambu—Goldstone boson mass. In the case of twisted-mass fermions
70 and 7 * indicate the neutral and charged pion mass and where appli-
cable, “val” and “sea” indicate valence- and sea-pion masses

Collab. Ref. Nr My min MeV) Description

RBC/UKQCD 12 [25] 241 17 1gen, 143ya NLO PQ SU(2) xPT as well as analytic ansitze

LAIHO 11 [77] 241 250rMms (220,.5) NLO MAxPT

JLQCD/TWQCD 10 [160] 241 290 NNLO xPT

RBC/UKQCD 10A [78] 241 290 Results are based on heavy kaon NLO SU(2) PQxPT

MILC 10 [159] 2+1 258rms (17755) Lightest Nambu—Goldstone mass is 177MeV (at 0.09 fm)
and lightest RMS mass is 258 MeV (at 0.06fm). NLO
1Sy PT and NNLO xPT

BMW 10 [161] 241 190 Comparison of various fit-ansitze: SU(3) xPT, heavy kaon
SU(2) xPT, polynomial

JLQCD/TWQCD 09A [67] 241 290 NNLO SU(@3) xPT

PACS-CS 09 [20] 241 156 NNLO xPT

MILC 09A [37] 2+1 258rMs (1771,5) NLO SU(3) RS x PT, continuum xPT at NNLO and up to

NNNNLO analytic terms. Heavy kaon SU(2) RS xPT
with NNLO continuum chiral logs on a subset of the
lattices. The lightest Nambu—Goldstone mass is 177 MeV
(at a = 0.09 fm) and the lightest RMS mass is 258 MeV
(ata = 0.06 fm)
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Table 60 continued

Collab.

Ref.

N¢ My min (MeV)

Description

MILC 09

Aubin 08

PACS-CS 08, 08A
HPCD/UKQCD 07

RBC/UKQCD 08

NPLQCD 06

[15]

[163]

[19,164]
[165]

[79]

[166]

2+1

2+1

2+1
2+1

241

2+1

156
375rMs (26355)

300

258rMs (2245 5)

329rMs (2465 5)

330sea, 242ya1

NLO SU(3) RSxPT with continuum x PT NNLO and NNNLO
analytic terms added. According to [37] the lightest sea
Nambu—Goldstone mass is 224 MeV and the lightest RMS
mass is 258 MeV (at a = 0.06 fm)

NLO MA x PT. According to [37] the lightest sea
Nambu—-Goldstone mass is 246 MeV (at a = 0.09 fm) and the
lightest RMS mass is 329 MeV (ata = 0.09 fm)

NLO SU(2) xPT and SU(3) (Wilson) x PT

NLO SU(3) chiral perturbation theory with NNLO and
NNNLO analytic terms. The lightest RMS mass is from the
a = 0.09 fm ensemble and the lightest Nambu—Goldstone
mass is from the a = 0.12 fm ensemble

While SU(3) PQxPT fits were studied, final results are based
on heavy kaon NLO SU(2) PQxPT

NLO SU(3) xPT and some NNLO terms. The sea RMS mass
for the employed lattices is heavier

Table 61 Chiral extrapolation/minimum pion mass in determinations
of fx/fm for Ny = 2 simulations. The subscripts RMS and 7, 5 in the
case of staggered fermions indicate the root-mean-square mass and the

Nambu-Goldstone boson mass. In the case of twisted-mass fermions
70 and 7% indicate the neutral- and charged-pion mass and where
applicable, “val” and “sea” indicate valence- and sea-pion masses

Collab. Ref. Ni My min MeV)  Description

ALPHA 13 [167] 2 190 NLO SU(3) xPT and phenomenological ansatz for higher orders

BGR 11 [168] 2 250 NLO SU(2) xPT. Strange quark mass fixed by reproducing the €2 mass

ETM 10D [145] 2 210,0(260,+)  NLO SU(3) xPT and phenomenological ansatz for higher orders. Joint f1 (0)—fk /fr fit
ETM 09 [169] 2 210,0(260,;+)  NLO heavy-meson SU(2) x PT and NLO SU(3) xPT

QCDSF/UKQCD 07 [170] 2 300 Linear extrapolation of lattice data

Table 62 Finite-volume effects in determinations of fx /fm. The sub-
scripts RMS and 7, 5 in the case of staggered fermions indicate the root-
mean-square mass and the Nambu—Goldstone boson mass. In the case

of twisted-mass fermions 7° and ¥ indicate the neutral- and charged-
pion mass and where applicable, “val” and “sea” indicate valence- and
sea-pion masses

Collab. Ref. Ny L (fm) My minL Description

HPQCD 13A [156] 24141 2.5-5.8 4.9rms(3.7.5)

MILC 13A [157] 24+1+1 2.8-5.8 39rms(3.7x.5)

ETM 13F [155] 24141 2.0-3.0 1.7,0(3.3,%) FSE for the pion is corrected through resummed NNLO
x PT for twisted-mass fermions, which takes into account
the effects due to the 7%—7* mass splitting

ETM 10E [158] 24+1+1 1.9-2.9 3.1,0(3.9,+) Simulation parameters from [266,690]

MILC 11 [24] 24+1+1 5.6,5.7 4.9rMms (3. 77 5)

RBC/UKQCD 12 [25] 241 2.7,4.6 33 For partially quenched M, = 143 MeV, M, L = 3.3 and
for unitary M, = 171 MeV, M, L = 4.0

LAIHO 11 [77] 241 2.5-4.0 4.9rms (4.37.5)

JLQCD/TWQCD 10 [160] 241 1.8,2.7 4.0

RBC/UKQCD 10A [78] 241 2.7 4.0 My L = 4.0 for lightest sea quark mass and M, L = 3.1 for
lightest partially quenched quark mass

MILC 10 [159] 2+1 2.5-3.8 7.0rms (4.075) L>2.9 fm for the lighter masses

BMW 10 [161] 2+1 2.0-5.3 4.0 Various volumes for comparison and correction for FSE
from xPT using [689]

JLQCD/TWQCD 09A [67] 241 1.9 2.8 Estimate of FSE using x PT [689,691]

PACS-CS 09 [20] 2+1 2.9 2.28 After reweighting to the physical point My minL = 1.97
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Table 62 continued

Collab. Ref. Nt L (fm) My minL Description

MILC 09A [37] 241 2.5-5.8 7.0rMms (4.1.5)

MILC 09 [15] 2+1 2.4-5.8 7.0rms (4.87.5) Various volumes for comparison and correction for
FSEs from (RS)x PT [689]

Aubin 08 [163] 241 2.4-3.6 4.0 Correction for FSE from MA x PT

PACS-CS 08, 08A [19,164] 241 2.9 23 Correction for FSE from xPT using [689]

HPCD/UKQCD 07 [165] 241 24-29 4.1rMms (3.85,5) Correction for FSE from xPT using [689]

RBC/UKQCD 08 [79] 241 1.8,2.7 4.64eq, 3.4val Various volumes for comparison and correction for
FSE from xPT [189,190,689]

NPLQCD 06 [166] 241 2.5 3.8 Correction for FSE from S xPT [584,673]

ALPHA 13 [167] 2 2.1,2.4,3.1 4.0

BGR 11 [168] 2 2.1,2.2 2.7

ETM 10D [145] 2 2.1-2.8 3.0,0(3.7,+)

ETM 09 [169] 2 2.0-2.7 3.0,003.7,+) Correction for FSE from xPT [189,190,689]

QCDSF/UKQCD 07 [170] 2 14,...,2.6 4.2 Correction for FSE from xPT

B.3 Notes to Sect. 5 on Low-Energy Constants

See Tables 63, 64, 65, 66, 67, 68, and 69.

Table 63 Continuum extrapolations/estimation of lattice artefacts in Ny =2 + 1 4+ 1 and 2 + 1 determinations of the low-energy constants

Collab. Ref. Nt a (fm) Description

HPQCD 13A [156] 24141 0.09-0.15 Configurations are shared with MILC

ETM 13 [217] 2+ 141 0.0607-0.0863 Configurations are shared with ETM 11

ETM 11 [266] 24141 0.0607-0.0863 Three lattice spacings fixed through F /M

ETM 10 [98] 24+ 141 0.078,0.086 Two lattice spacings fixed through F /M,

BMW 13 [254] 2+1 0.054-0.093 Scale set through Omega baryon mass

RBC/UKQCD 12 [25] 241 0.086, 0.114 and 0.144 for M,Ti“ Scale set through Omega baryon mass

Borsanyi 12 [249] 241 0.097-0.284 Scale fixed through F, /M

NPLQCD 11 [267] 241 0.09, 0.125 Configurations are shared with MILC 09 [15]

MILC 10, 10A [75,159] 241 0.045-0.09 Three lattice spacings, continuum extrapolation by means
of RSy PT

JLQCD/TWQCD 10 [252] 241,3 0.11 One lattice spacing, scale fixed through mgq

RBC/UKQCD 9, 10A  [78,287] 2+1 0.1106 (27), 0.0888 (12) Two lattice spacings. Data combined in global
chiral-continuum fits

JLQCD 09 [251] 2+1 0.1075 (7) Scale fixed through ry

MILC 09, 09A [15,37] 241 0.045-0.18 Total of six lattice spacings, continuum extrapolation by
means of RSy PT

TWQCD 08 [255] 2+1 0.122 (3) Scale fixed through m,,, ro

JLQCD/TWQCD 08B [256] 2+1 0.1075 (7) Scale fixed through rg

PACS-CS 08 [19] 241 0.0907 One lattice spacing

RBC/UKQCD 08 [79] 241 0.114 One lattice spacing, attempt to estimate cutoff effects via
formal argument

RBC/UKQCD 08A [253] 241 0.114 Only one lattice spacing, attempt to estimate size of cutoff
effects via formal argument

NPLQCD 06 [166] 241 0.125 One lattice spacing, continuum x PT used

LHP 04 [275] 241 ~0.12 Only one lattice spacing, mixed discretisation approach
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Table 64 Continuum extrapolations/estimation of lattice artefacts in Ny = 2 determinations of the low-energy constants

Collab. Ref. Nt a (fm) Description

Giilpers 13 [270] 2 0.063 Scale fixed through omega Baryon mass

Brandt 13 [257] 2 0.05-0.08 Configurations are shared with CLS

QCDSF 13 [268] 2 0.06-0.076 Scale fixed through ro = 0.50(1) fm

ETM 13 [217] 2 0.05-0.1 Configurations are shared with ETM 09C

ETM 12 [258] 2 0.05-0.1 Configurations are shared with ETM 09C

Bernardoni 11 [259] 2 0.0649 (10) Configurations are shared with CLS

TWQCD 11 [185] 2 0.1034 (1) (2) Scale fixed through rg

TWQCD 11A [260] 2 0.1032 (2) Scale fixed through rg

Bernardoni 10 [261] 2 0.0784 (10) Scale fixed through Mg . Non-perturbative O (a) improvement.
No estimate of systematic error

JLQCD/TWQCD 09, 10 [252] 0.11 One lattice spacing fixed through r¢

ETM 09B [263] 0.063, 0.073 Automatic O (a) impr. ro = 0.49 fm used

ETM 09C [241] 0.051-0.1 Automatic O (a) impr. Scale fixed through F;;. Four lattice
spacings, continuum extrapolation

ETM 08 [238] 2 0.07-0.09 Automatic O (a) impr. Two lattice spacings. Scale fixed
through Fr

JLQCD/TWQCD 08A [67] 2 0.1184 (3) 21) Automatic O (a) impr., exact chiral symmetry. Scale fixed
through rg

JLQCD 08A [286]

CERN 08 [215] 2 0.0784 (10) Scale fixed through Mk . Non-perturbative O (a) improvement

Hasenfratz 08 [264] 2 0.1153 (5) Tree-level O (a) improvement. Scale fixed through r¢. Estimate
of lattice artefacts via W x PT [692]

JLQCD/TWQCD 07 [265] 2 0.1111 (24) Automatic O (a) impr., exact chiral symmetry. Scale fixed
through ro

JLQCD/TWQCD 07A [262] 2 ~0.12 Automatic O (a) impr., exact chiral symmetry. Scale fixed
through rg

CERN-TOV 06 [272] 2 0.0717 (15), 0.0521 (7), Scale fixed through M. The lattice with a = 0.0784 (10) is

0.0784 (10) obtained with non-perturbative O (a) improvement
QCDSF/UKQCD 06A [276] 2 0.07-0.115 5 lattice spacings. Non-perturbative O (a) improvement. Scale

fixed through rg

Table 65 Chiral extrapolation/minimum pion mass in Ny = 2+ 1 + 1 and 2 + 1 determinations of the low-energy constants

Collab. Ref. N Mz min MeV) Description

HPQCD 13A [156] 24+ 1+1 128 NLO chiral fit

ETM 13 [217] 24141 270 Linear fit in the quark mass

ETM 11 [266] 24+ 1+1 270 NLO SU(2) chiral fit

ETM 10 [98] 24+ 1+1 270 SU(2) NLO and NNLO fits

BMW 13 [254] 241 120 NLO and NNLO SU(2) fits tested with x and &
expansion

RBC/UKQCD 12 [25] 2+1 293 plus run at 171, 246 NLO SU(2) ChPT incl. finite-V and some discr.
effects

Borsanyi 12 [249] 241 135 NNLO SU(2) chiral fit

NPLQCD 11 [267] 241 235 NNLO SU(2) mixed action xPT

MILC 10, 10A [75,159] 2+1 Cf. MILC 09A

JLQCD/TWQCD 09, 10 [252] 2+1,3 100(e-reg.), 290(p-reg.) Ni = 2+ 1 runs both in €- and p-regime; Ny = 3

runs only in p-regime. NLO xPT fit of the spectral
density interpolating the two regimes
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Table 65 continued

Collab. Ref. Nt My min MeV) Description

RBC/UKQCD 9, 10A [78,287] 241 290-420 Valence pions mass is 225-420 MeV. NLO SU(2)
xPT fit

MILC 09, 09A [15,37] 241 258 Lightest Nambu—Goldstone mass is 224 MeV and
lightest RMS mass is 258 MeV (at 0.06 fm)

TWQCD 08 [255] 2+1 Myq = mg/4, mg ~ phys Quark condensate extracted from topological
susceptibility, LO chiral fit

JLQCD/TWQCD 08B [256] 241 Myq > my/6, mg ~ phys Quark condensate extracted from topological
susceptibility, LO chiral fit

PACS-CS 08 [19] 241 156 To date, lightest published quark mass reached in a
direct simulation

RBC/UKQCD 08 [79] 241 330 Lightest valence pion mass is 242 MeV

RBC/UKQCD 08A [253] 241 330 Pion electromagnetic form factor computed at one
pion mass

NPLQCD 06 [166] 241 460 Value refers to lightest RMS mass at a = 0.125fm
as quoted in [37]

LHP 04 [275] 2+1 318 Pion form factor extracted from vector-meson

dominance fit

Table 66 Chiral extrapolation/minimum pion mass in Ny = 2 determinations of the low-energy constants

Collab. Ref. Nt Mz min (MeV) Description
Giilpers 13 [270] 2 280 NLO ChPT fit
Brandt 13 [257] 2 280 Configurations are shared with CLS
QCDSF 13 [268] 2 130 Fit with ChPT + analytic
ETM 13 [217] 2 260 Configurations are shared with ETM 09C
ETM 12 [258] 2 260 Configurations are shared with ETM 09C
Bernardoni 11 [259] 2 312 Overlap valence + O (a) improved Wilson sea, mixed regime xPT
TWQCD 11 [185] 2 230 NLO SU(2) xPT fit
TWQCD 11A [260] 2 220 NLO xPT (infinite V) for topological susceptibility xop
Bernardoni 10 [261] 2 297,377, 426 NLO SU(2) fit of xtop
JLQCD/TWQCD 10 [252] 2 V2mpin s /F = 120 Data both in the p and e-regime. NLO chiral fit of the spectral density
(e-reg.), 290 interpolating the two regimes
(p-reg.)
JLQCD/TWQCD 09 [271] 2 290 LECs extracted from NNLO chiral fit of vector and scalar radii (rz)"ﬁ’ s
ETM 09B [263] 2 2mpin % /F = 85 NLO SU(2) e-regime fit
ETM 09C [241] 2 280 NNLO SU(2) fit
ETM 08 [238] 2 260 From pion form factor using NNLO xPT and exp. value of (rz)’sr
JLQCD/TWQCD 08A [67] 2 290 NNLO SU(2) fit
JLQCD 08A [286]
CERN 08 [215] 2 Mg min = 13 MeV NLO SU(2) fit for the mode number
Hasenfratz 08 [264] 2 2mmin s /F = 220 NLO SU(2) e-regime fit
JLQCD/TWQCD 07 [265] 2 V2mpins /F = 120 NLO SU(2) e-regime fit
JLQCD/TWQCD 07A [262] 2 Myq = My /6 —my Quark condensate from topological susceptibility, LO chiral fit
CERN-TOV 06 [272] 2 403, 381, 377 NLO SU(2) fit
QCDSF/UKQCD 06A [276] 2 400 Several fit functions to extrapolate the pion form factor
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Table 67 Finite-volume effects in Ny =2 + 1 + 1 and 2 4 1 determinations of the low-energy constants

Collab. Ref. Nt L (fm) Mz minL Description

HPQCD 13A [156] 24141 4.8-5.5 33 Three volumes are compared

ETM 13 [217] 24141 1.9-2.8 3.0 Four volumes compared

ETM 11 [266] 24+1+1 1.9-2.8 3.0 See [98]

ETM 10 [98] 24141 1.9-2.8 3.0 FSE estimate using [689]. M+ L 2 4,but M oL ~ 2
BMW 13 [254] 241 2.1 3.0 Three volumes are compared

RBC/UKQCD 12 [25] 2+1 2.7-4.6 >4 FSE seem to be very small

Borsanyi 12 [249] 241 39 33 Expected to be less than 1 %

NPLQCD 11 [267] 241 2.5-3.5 3.6 Expected to be less than 1 %

MILC 10, 10A [75,159] 2+1 2.52 4.11 L > 2.9 fm for lighter masses

JLQCD/TWQCD 09, 10 [252] 2+1,3 1.9,2.7 Two volumes are compared for a fixed quark mass
RBC/UKQCD 9, 10A [78,287] 241 2.7 ~4 FSE estimated using x PT

MILC 09, 09A [15,37] 2+1 2.4/2.9 3.5/4.11 L > 2.9 fm for lighter masses

TWQCD 08 [255] 241 1.95 - No estimate of FSE

JLQCD/TWQCD 08B [256] 2+1 1.72 - Fixing topological charge (to v = 0) gives FSE [693]
PACS-CS 08 [19] 2+1 2.9 2.3 FSE is the main concern of the authors
RBC/UKQCD 08 [79] 2+1 2.74 4.6 FSE by means of xPT

RBC/UKQCD 08A [253] 241 2.74 4.6 FSE estimated to be <1 % using xPT

NPLQCD 06 [166] 241 2.5 3.7 Value refers to lightest valence pion mass

LHP 04 [275] 241 ~2.4 3.97 Value refers to domain-wall valence pion mass

Table 68 Finite-volume effects in Ny = 2 determinations of the low-energy constants

Collab. Ref. Nf L (fm) My minL Description

Giilpers 13 [270] 2 4-6 4.3 Configs. shared with CLS

Brandt 13 [257] 2 ~5 4 Configs. shared with CLS

QCDSF 13 [268] 2 1.8-24 2.7 NLO ChPT is used for FSE

ETM 13 [217] 2 2.0-2.5 34 Configs. shared with ETM 09C

ETM 12 [258] 2 2.0-2.5 34 Configs. shared with ETM 09C

Bernardoni 11 [259] 2 1.56 2.5 Mixed regime x PT for FSE used

TWQCD 11 [185] 2 1.65 1.92 SU(2) xPT is used for FSE

TWQCD 11A [260] 2 1.65 1.8 No estimate of FSE

Bernardoni 10 [261] 2 1.88 2.8 FSE included in the NLO chiral fit

JLQCD/TWQCD 10 [252] 2 1.8-1.9 FSE estimated from different topological sectors
JLQCD/TWQCD 09 [2711 2 1.89 2.9 FSE by NLO xPT, Additional FSE for fixing topology [693]
ETM 09B [263] 2 1.3, 1.5 €-regime Topology: not fixed. 2 volumes

ETM 09C [241] 2 2.0-2.5 3.2-44 Several volumes. Finite-volume effects estimated through [689]
ETM 08 [238] 2 2.1,2.8 34,37 Only data with M L 2> 4 are considered

JLQCD/TWQCD 08A  [67] 2 1.89 29 FSE estimates through [689]. Additional FSE for fixing topology [693]
JLQCD 08A [286]

CERN 08 [215] 2 1.88,2.51 - Two volumes compared

Hasenfratz 08 [264] 2 1.84,2.77 €-regime Topology: not fixed, 2 volumes

JLQCD/TWQCD 07 [265] 2 1.78 €-regime Topology: fixed tov = 0

JLQCD/TWQCD 07A  [262] 2 1.92 - Topology fixed to v = 0 [693]

CERN-TOV 06 [272] 2 1.72,1.67,1.88 3.5,3.2,3.6 No estimate for FSE

QCDSF/UKQCD 06A  [276] 2 1.4-2.0 38 NLO xPT estimate for FSE [694]
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Table 69 Renormalisation in

determinations of the Collab. Ref. Ny Description
low-energy constants
HPQCD 13A [156] 24141 -
ETM 13 [217] 24141 Non-perturbative
ETM 11 [266] 24141 Non-perturbative
ETM 10 [98] 24141 Non-perturbative
BMW 13 [254] 241 Non-perturbative
RBC/UKQCD 12 [25] 2+1 Non-perturbative (RI/SMOM)
Borsanyi 12 [249] 241 Indirectly non-perturbative through [22] for X; no
renormalisation needed for F, since only Fr /F
computed and scale set through F;
NPLQCD 11 [267] 241 Not needed (no result for )
JLQCD/TWQCD 10 [252] 2+4+1,3 Non-perturbative
MILC 10, 10A [75,159] 2+1 2 loop
RBC/UKQCD 10A [78] 241 Non-perturbative
JLQCD 09 [251] 241 Non-perturbative
MILC 09, 09A [15,37] 2+1 2 loop
TWQCD 08 [255] 241 Non-perturbative
JLQCD/TWQCD 08B [256] 241 Non-perturbative
PACS-CS 08 [19] 241 1 loop
RBC/UKQCD 08,08A  [79,253] 2+1 Non-perturbative
NPLQCD 06 [166] 2+1 -
LHP 04 [275] 2+1 -
All collaborations 2 Non-perturbative
B.4 Notes to Sect. 6 on Kaon B-parameter By Nf =2+ 1 and N = 2 runs. We also provide brief descrip-

tions of how systematic errors are estimated by the various
In the following, we summarise the characteristics (lattice authors (Tables 70, 71, 72, 73).
actions, pion masses, lattice spacings, etc.) of the recent

Table 70 Continuum extrapolations/estimation of lattice artefacts in determinations of Bg

Collab. Ref. Nr  a (fm) Description
SWME 13 [316] 241 0.12,0.09, 0.06, Continuum extrapolation with the coarsest lattice spacing omitted; residual combined
0.045 discretisation and sea-quark extrapolationg error of 1.1 % from difference between
linear fit in a2, mge, and a constrained nine-parameter extrapolation
RBC/UKQCD 12 [25] 2+1 0.146,0.114, Coarsest lattice spacing uses different action. Combined continuum and chiral fits
0.087
Laiho 11 [77] 2+1 0.12,0.09,0.06 Combined continuum and chiral extrapolation based on SU(3) mixed-action partially
quenched xPT
SWME 11, 11A [299,300] 2 + 1 0.12,0.09, 0.06, Continuum extrapolation with the coarsest lattice spacing omitted; residual
0.045 discretisation error of 1.9 % from difference between fit to a constant and a
constrained five-parameter extrapolation
BMW 11 [301] 241 0.093,0.077, Combined continuum and chiral extrapolation; discretisation error of 0.1 % from

0.065, 0.054 comparison of O(wsa) and 0(a?) extrapolations
RBC/UKQCD 10B [315] 241 0.114,0.087 Two lattice spacings. Combined chiral and continuum fits

SWME 10 [317] 241 0.12,0.09,0.06 Continuum extrapolation of results obtained at four lattice spacings; residual
discretisation error of 0.21 % from difference to result at smallest lattice spacing

Aubin 09 [298] 2+1 0.12,0.09 Two lattice spacings; quote 0.3 % discretisation error, estimated from various
a?-terms in fit function
RBC/UKQCD 07A, 08 [79,318] 241 0.114(2) Single lattice spacing; quote 4 % discretisation error, estimated from the difference

between computed and experimental values of f;
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Table 70 continued

Collab. Ref. Nt a (fm) Description

HPQCD/UKQCD 06 [319] 241 0.12 Single lattice spacing; 3 % discretisation error quoted without
providing details

ETM 10A [314] 2 0.1, 0.09, 0.07 Three lattice spacings; 1.2 % error quoted

JLQCD 08 [320] 2 0.118 (1) Single lattice spacing; no error quoted

RBC 04 [313] 2 0.117 (4) Single lattice spacing; no error quoted

UKQCD 04 [321] 2 0.10 Single lattice spacing; no error quoted

Table 71 Chiral extrapolation/minimum pion mass in determinations of Bg

Collab. Ref. Ny My min MeV) Description
SWME 13 [316] 2+ 1  442/445, 299/273, Valence/sea RMS M min entries correspond to the four lattice spacings.
237/256, 222/334 Chiral extrapolations based on SU(2) staggered x PT at NNLO (with some
coefficients fixed by Bayesian priors), and also including one analytic
NNNLO term. Residual error of 0.33 % error from doubling the widths of
Bayesian priors
RBC/UKQCD [25] 241 140/170, 240/330, Valence/sea M min entries correspond to the three lattice spacings.
12 220/290 Combined chiral & continuum extrapolation, using M, < 350 MeV
Laiho 11 [77] 2+1 210/280 M min entries correspond to the smallest valence/sea quark masses. Chiral &
continuum fits based on NLO mixed action x PT, including a subset of
NNLO terms. Systematic error estimated from spread arising from
variations in the fit function
SWME 11, [299,300] 2+ 1  442/445, 299/325, Valence/sea RMS M min entries correspond to the four lattice spacings.
11A 237/340, 222/334 Chiral extrapolations based on SU(2) staggered x PT at NNLO (with some
coefficients fixed by Bayesian priors), and also including one analytic
NNNLO term. Residual error of 0.33 % error from doubling the widths of
Bayesian priors
BMW 11 [301] 2+1 219, 182, 120, 131 M min entries correspond to the four lattice spacings used in the final result.
Combined fit to the chiral and continuum behaviour. Systematics
investigated by applying cuts to the maximum pion mass used in fits.
Uncertainty of 0.1 % assigned to chiral fit
RBC/UKQCD [315] 2+1 240/330, 220/290 Valence/sea M min entries correspond to the two lattice spacings. Combined
10B chiral and continuum extrapolations
SWME 10 [317] 2+ 1  442/445, 299/325, Valence/sea My min entries correspond to the three lattice spacings. Chiral
237/340 extrapolations based on SU(2) staggered x PT at NLO, including some
analytic NNLO terms. SU(3) staggered x PT as cross-check. Combined
1.1 % error from various different variations in the fit procedure
Aubin 09 [298] 2+1 240/370 M min entries correspond to the smallest valence/sea quark masses. Chiral
and continuum fits based on NLO mixed-action x PT at NLO, including a
subset of NNLO terms. Systematic error estimated from spread arising from
variations in the fit function
RBC/UKQCD [79,318] 2+1 330 Fits based on SU(2) PQxPT at NLO. Effect of neglecting higher orders
07A, 08 estimated at 6 % via difference between fits based on LO and NLO
expressions
HPQCD/UKQCD [319] 241 360 3 % uncertainty from chiral extrapolation quoted, without giving further
06 details
ETM 10A [314] 2 400, 270, 300 Each M5 min entry corresponds to a different lattice spacing. Simultaneous
chiral & continuum extrapolations, based on x PT at NLO, are carried out.
Systematic error from several sources, including lattice calibration, quark
mass calibration, chiral and continuum extrapolation etc., estimated at 3.1 %
JLQCD 08 [320] 2 290 Fits based on NLO PQx PT. Range of validity investigated. Fit error included
in statistical uncertainty
RBC 04 [313] 2 490 Fits based on NLO PQy PT. Fit error included in statistical uncertainty
UKQCD 04 [321] 2 780 Fits to continuum chiral behaviour at fixed sea quark mass. Separate

extrapolation in sea quark mass. Fit error included in overall uncertainty
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Table 72 Finite-volume effects in determinations of Bk . If partially quenched fits are used, the quoted M min L is for lightest valence (RMS) pion

Collab.

Ref.

N¢

L (fm)

Mn,minL

Description

SWME 13

RBC/UKQCD 12

Laiho 11

SWME 11, 11A

BMW 11

RBC/UKQCD 10B

SWME 10

Aubin 09

RBC/UKQCD 07A, 08

HPQCD/UKQCD 06
ETM 10A

JLQCD 08

RBC 04
UKQCD 04

[316]

[25]

[77]

[299,300]

[301]

[315]

[317]

[298]

[79,318]

[319]
[314]

[320]

[313]
[321]

2+1

2+1

2+1

2+1

2+1

2+1

2+1

2+1

2+1

2+1

2

2.4-3.3,24-5.5,2.8-3.8,2.8

4.6,2.7,2.8

2.4,3.4,3.8

2.4/3.3,2.4,2.8,2.8

6.0,4.9,42,3.5

2.7,2.8

2.4/3.3,2.4,2.8

24,34

1.83/2.74

2.46
2.1,2.2/29,2.2

1.89

1.87
1.6

>32

>32
>335

>32

>3.8,3.0

35

4.60

4.49
5,3.3/43,33

2.75

4.64
6.51

L entries correspond to the four lattice spacings,
with several volumes in most cases. Finite-volume
effects estimated using NLO xPT

L entries correspond to the three lattice spacings.
Finite-volume effects estimated using NLO xPT

L entries correspond to the three lattice spacings.
Finite-volume effects estimated using NLO xPT

L entries correspond to the four lattice spacings,
with two volumes at the coarsest lattice.
Finite-volume effects estimated using NLO xPT

L entries correspond to the four lattice spacings, and
they are the largest of several volumes at each a.
Mz minL =~ 3.0 for the ensemble at a =~ 0.08 fm.
Finite-volume effects estimated in x PT and by
combined fit to multiple volumes

L entries correspond to the three lattice spacings.
Finite-volume effects estimated using NLO xPT

L entries correspond to the three lattice spacings,
with two volumes for the coarsest spacing.
Finite-volume error of 0.9 % estimated from
difference obtained these two volumes

L entries correspond to the two lattice spacings.
Keep m;L = 3.5;no comparison of results from
different volumes; 0.6 % error estimated from
mixed-action x PT correction

Each L entry corresponds to a different volume at
the same lattice spacing; 1 % error from difference
in results on two volumes

Single volume; no error quoted

Each L entry corresponds to a different lattice
spacing, with two volumes at the intermediate
lattice spacing. Results from these two volumes at
My ~ 300 MeV are compatible

Single volume; data points with myy < mgea
excluded; 5 % error quoted as upper bound of
PQxPT estimate of the effect

Single volume; no error quoted

Single volume; no error quoted

Table 73 Running and matching in determinations of Bx

Collab. Ref. Nt Ren. Running match. Description

SWME 13 [316] 241 PT1¢ PT1¢ Uncertainty from neglecting higher orders estimated
at 4.4 % by identifying the unknown two-loop
coefficient with result at the smallest lattice spacing

RBC/UKQCD 12 [25] 241 RI PT1¢ Two different RI-SMOM schemes used Mstimate
2 % systematic error in conversion to MS

Laiho 11 [77] 241 RI PT1¢ Total uncertainty in matching & running of 3 %.
Perturbative truncation error in the conversion to
MS, RGI schemes is dominant uncertainty

SWME 11, 11A [299,300] 241 PT1¢ PT1¢ Uncertainty from neglecting higher orders estimated

at 4.4 % by identifying the unknown two-loop
coefficient with result at the smallest lattice spacing
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Table 73 continued

Collab. Ref. Ns Ren.

Running match.

Description

BMW 11 [301] 241 RI PT1¢

RBC/UKQCD 10B [315] 24+1 RI PT1¢

SWME 10 [317] 24+1 PT1e PTIL

Aubin 09 [298] 2+1 RI PT1¢

RBC/UKQCD 07A,08  [79,318] 241 RI PT1¢

HPQCD/UKQCD 06 [319] 24+1 PTIL PTIL

ETM 10A
JLQCD 08

[314] 2 RI
[320] 2 RI

PT1¢
PT1¢

RBC 04
UKQCD 04

[313] 2 RI
[321] PT1¢

PT1¢
PT1¢

Uncertainty of 0.05 % in the determination of the renormalisation
factor included. 1 % error estimated due to truncation of
perturbative matching to MS and RGI schemes at NLO

Variety of different RI-MOM schemes including non-exceptional
momenta. Residual uncertainty of 2 % uncertainty in running &
matching

Uncertainty from neglecting higher orders estimated at 5.5 % by
identifying the unknown two-loop coefficient with result at the
smallest lattice spacing

Total uncertainty in matching and running of 3.3 %, estimated from
a number of sources, including chiral-extrapolation fit ansatz for
n.p. determination, strange sea quark mass dependence, residual
chiral symmetry breaking, perturbative matching and running

Uncertainty from n.p. determination of ren. factor included in
statistical error; 2 % systematic error from perturbative matching
to MS estimated via size of correction itself

Uncertainty due to neglecting two-loop order in perturbative
matching and running estimated by multiplying result by o

Uncertainty from RI renormalisation estimated at 2.5 %

Uncertainty from n.p. determination of ren. factor included in
statistical error; 2.3 % systematic error from perturbative
matching to MS estimated via size of correction itself

Uncertainty from n.p. determination of ren. factor included

No error quoted

B.5 Notes to Sect. 7 on D-meson decay constants and form
factors

In the following, we summarise the characteristics (lattice
actions, pion masses, lattice spacings, etc.) of the recent
Nt = 2+ 1 and Nt = 2 runs. We also provide brief descrip-
tions of how systematic errors are estimated by the various

authors. We focus on calculations with either preliminary or
published quantitative results.

B.5.1 D) -meson decay constants

See Tables 74, 75, 76,77, 78, 79, 80.

Table 74 Lattice spacings and description of actions used in Ny = 2 + 1 + 1 determinations of the D- and D;-meson decay constants

Collab. Ref. N a (fm) Continuum extrapolation Scale setting
ETM 13F [155] 24+14+1 0.09,0.08,0.06 Chiral and continuum Relative scale set through M./,
extrapolations performed the mass of a fictitious meson
simultaneously by adding an made of valence quarks of mass
O (a?) term to the chiral fit romg = 0.22 and romy = 2.4.
Absolute scale through f5
FNAL/MILC12B  [329,330] 24141 0.15,0.12,0.09,0.06 Chiral and continuum Absolute scale set through fr; the

FNAL/MILC 13

extrapolations performed
simultaneously. Central values
produced using a fit function
quadratic in ® and linear in the
sea quark mass. In
FNAL/MILC 13 terms of O(a*)
are included

uncertainty is propagated into the
final error
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Table 75 Lattice spacings and description of actions used in Ny = 2 4 1 determinations of the D- and Ds-meson decay constants

Collab. Ref. Ny a (fm) Continuum extrapolation Scale setting

HPQCD 12A [331] 241 0.12,0.09 Chiral and continuum extrapolations Relative scale set through r;; absolute
performed simultaneously using scale from f, fx and the Y splitting.
PQHM x PT augmentd by a-dependent Uncertainties from both r| and | /a
terms: cq (amc)2 +c1 (amc)4 propagated

FNAL/MILC 11 [332] 2+ 1 0.15,0.12,0.09  Chiral and continuum extrapolations Relative scale set through
performed simultaneously using r1 = 0.3117(22). The error in r; comes
one-loop HM x PT for rooted staggered from the spread of different absolute
quarks. Effects of hyperfine and flavour scale determinations using fr, fx and
splittings are also included the Y splitting

PACS-CS 11 [333] 2+1 0.09 Cutoff effects from the heavy-quark Scale set through mgq
action estimated by naive power
counting to be at the percent level

HPQCD 10A [94] 2+ 1 0.15,0.12,0.09, Chiral and continuum extrapolations See the discussion for HPQCD 12A

0.06, 0.044 performed simultaneously. Polynomials
up to amf are kept (even powers only)

HPQCD/UKQCD 07 [165] 241 0.15,0.12,0.09  Combined chiral and continuum Scale set through r; obtained from the Y
extrapolations using HM x PT at NLO spectrum using the non-relativistic QCD
augmented by second and third-order action for b quarks. Uncertainty
polynomial terms in m, and terms up to propagated among the systematics
a

FNAL/MILC 05 [334] 2+ 1 0.175,0.121, Most light-quark cutoff effects are Scale set through r; obtained from the Y

0.086 removed through NLO HM x PT for spectrum using the non-relativistic QCD

rooted staggered quarks. Continuum
values are then obtained by averaging
the a ~ 0.12 and a ~ 0.09 fm results

action for b quarks

Table 76 Lattice spacings and description of actions used in Ny = 2 determinations of the D- and Ds-meson decay constants

Collab. Ref. Nt a (fm) Continuum extrapolation Scale setting

ETM 09 [169,335,336] 2  0.10,0.085,0.065,0.054 NLO SU(2) HMx PT supplemented by terms linear in a? Scale set through f5
ETM 11A and in m pa? is used in the combined chiral/continuum

ETM 13B extrapolation

Table 77 Chiral extrapolation/minimum pion mass in determinations of the D- and Ds-meson decay constants. For actions with multiple species
of pions, masses quoted are the RMS pion masses. The different M nin entries correspond to the different lattice spacings

Collab. Ref. Np My min (MeV) Description

ETM 13F [155] 2+1+1 245,238, 211 fp, is extrapolated using both a quadratic and a linear fit in n; plus
O (a?) terms. Then the double ratio (fn, /fp)/(fx/fx) is fitted in
continuum HM x PT, as no lattice spacing dependence is visible
within statistical errors

FNAL/MILC 12B [329,330] 24+1+1 310, 245, 179, 145 Chiral and continuum extrapolations are performed simultaneously.

FNAL/MILC 13 Central values are produced using a fit function quadratic in ¢ and
linear in the sea-quark mass. In FNAL/MILC 13 terms of O (a*) are
included

HPQCD 12A [331] 2+1 460, 329 Chiral and continuum extrapolations are performed simultaneously
using PQHM x PT augmented by a-dependent terms:
colame)* + cy(ame)*

FNAL/MILC 11 [332] 2+1 570, 440, 320 Chiral and continuum extrapolations are performed simultaneously

using HM x PT for rooted staggered quarks. Effects of hyperfine and
flavour splittings are also included
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Table 77 continued

Collab. Ref. N My min (MeV) Description

PACS-CS 11 [333] 241 152 Simulations are reweighted in the light- and strange-quark masses
to the physical point

HPQCD 10A [94] 2+ 1 542,460, 329, 258,334  Chiral and continuum extrapolations are performed
simultaneously. Polynomials up to (W)2 forg =s,1
and up to (am.)® are kept

HPQCD/UKQCD 07  [165] 241 542,460, 329 Combined chiral and continuum extrapolations using HM x PT at
NLO augmented by second and third-order polynomial terms in
mg and terms up to a*

FNAL/MILC 05 [334] 241 >440, 440, 400 Chiral extrapolations are first performed at each lattice spacing
using NLO HMx PT for rooted staggered quarks. Lattice
artefacts are then extrapolated linearly in a?

ETM 09 [169,335,336] 2 410, 270, 310, 270 M min refers to the charged pions. NLO SU(2) HM x PT

ETM 11A supplemented by terms linear in ¢ and in m pa? is used in the

ETM 13B combined chiral/continuum extrapolation. To estimate the

systematic due to chiral extrapolation, once fp, ,/mp, and
fp, /7D, /(fp/mp) and once fp /mp,/fx and

o /7D, [fx X fr/(fp/mp) are fitted. In ETM 13 the
double ratio (fp, /fp)/(fx /fx) is fitted in HMx PT

Table 78 Finite-volume effects in determinations of the D- and Dg-meson decay constants. Each L-entry corresponds to a different lattice spacing,
with multiple spatial volumes at some lattice spacings. For actions with multiple species of pions, the lightest masses are quoted

Collab. Ref. Nt L (fm) Mz minL Description
ETM 13F [155] 24+ 1+1 2.13/2.84,1.96/2.61, 3.5,3.2,3.2  The comparison of two different volumes at the two
2.97 largest lattice spacings indicates that FV effects are
below the statistical errors
FNAL/MILC 12B [329,330] 24+1+1 2.4/4.8,2.88/5.76, 3.3,3.9, FV errors estimated in xPT at NLO and, in
FNAL/MILC 13 2.88/5.76, 2.88/5.76 37,4 FNAL/MILC 12B, by analysing otherwise
identical ensembles with three different spatial
sizes at a = 0.12 fm and m;/mg = 0.1
HPQCD 12A [331] 241 2.4/2.8,2.4/3.4 38,42 FV errors estimated by comparing finite- and
infinite-volume xPT
FNAL/MILC 11 [332] 241 2.4,2.4/2.88,2.52/3.6 39,3.8,4,2  FV errors estimated using finite-volume y PT
PACS-CS 11 [333] 2+1 2.88 2.2 (before No discussion of FSE
reweight-
ing)
HPQCD 10A [94] 241 2.4,2.4/2.88/3.36, 3.9,3.8, FV errors estimated using finite- vs. infinite-volume
2.52,2.88,2.82 4.1,4.5,4.6 xPT
HPQCD/UKQCD 07 [165] 241 2.4,2.4/2.88,2.52 3.9,3.8,4.1 FV errors estimated using finite- vs infinite-volume
xPT
FNAL/MILC 05 [334] 241 2.8,29,25 3.8,3.8,4.1 FV errors estimated to be 1.5 % or less from xPT
ETM 09 [169,335,336] 2 2.4,2.0/2.7,2.1,2.6 5,3.3,3.3,3.5 FV errors are found to be negligible by comparing
ETM 11A results at m, L = 3.3 and m, L = 4.3 for
ETM 13B my >~ 310 MeV
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Table 79 Operator renormalisation in determinations of the D- and Ds-meson decay constants

Collab. Ref. N Ren. Description

ETM 13F [155] 24+1+1 - The axial current is absolutely normalised

FNAL/MILC 12B [329,330] 24+1+1 - The axial current is absolutely normalised

FNAL/MILC 13

HPQCD 12A [331] 2+1 - The axial current is absolutely normalised

FNAL/MILC 11 [332] 241 mNPR Two-loop and higher-order perturbative truncation errors
estimated to be the full size of the one-loop term

PACS-CS 11 [333] 2+1 PT1¢ + NP Mass dependent part of the renormalisation constant of the
axial current computed at one loop; the NP contribution is
added in the chiral limit

HPQCD 10A [94] 241 - The axial current is absolutely normalised

HPQCD/UKQCD 07 [165] 241 - The axial current is absolutely normalised

FNAL/MILC 05 [334] 241 mNPR Errors due to higher-order corrections in the perturbative
part are estimated to be 1.3 %

ETM 09 [169,335,336] 2 - The axial current is absolutely normalised

ETM 11A

ETM 13B

Table 80 Heavy-quark treatment in determinations of the D- and Ds-meson decay constants

Collab. Ref. Nt Action Description

ETM 13F [155] 24+1+1 tmWil 0.15 < am, < 0.20. D(amin) > 2 % also when the
relative scale is set through M/

FNAL/MILC 12B [329,330] 24+1+1 HISQ (on HISQ) 0.29 < am. < 0.7. Discretisation errors estimated

FNAL/MILC 13 using different fit ansétze to be ~ 1.5 % for fp,

HPQCD 12A [331] 241 HISQ 0.41 < am, < 0.62. Heavy-quark discretisation
errors estimated using different fit ansitze to be
~12%

FNAL/MILC 11 [332] 241 Fermilab Discretisation errors from charm quark estimated
through a combination of Heavy Quark and
Symanzik Effective Theories to be around 3 % for
fp,,, and negligible for the ratio

PACS-CS 11 [333] 241 Tsukuba am, =~ 0.57. Heavy-quark discretisation errors
estimated to be at the percent level by power
counting

HPQCD 10A [94] 241 HISQ 0.193 < am, < 0.825. Heavy-quark discretisation
errors estimated by changing the fit-inputs to be
~0.4%

HPQCD/UKQCD 07 [165] 241 HISQ 0.43 < am, < 0.85. Heavy-quark discretisation
errors estimated from the chiral/continuum fits to
be ~0.5 %. § (amin) slightly >1 for fp,

FNAL/MILC 05 [334] 241 Fermilab Discretisation errors from charm quark estimated via
heavy-quark power-counting at 4.2 % for fp,,, and
0.5 % for the ratio

ETM 09 [169,335,336] 2 tmWil 0.16 < am, < 0.23. D(amin) ~ 5 % in ETM 09

ETM 11A

ETM 13B
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B.5.2 D — mwtv and D — KX{v form factors

See Tables 81, 82, 83, 84, 85.

Table 81 Continuum extrapolations/estimation of lattice artefacts in determinations of the D — 7 fv and D — K{v form factors

Collab. Ref. Np a (fm) Continuum extrapolation Scale setting

HPQCD 13C [348] 241 0.09, 0.12 Modified z-expansion fit Relative scale ry /a set from the
combining the continuum and static quark potential. Absolute
chiral extrapolations and the scale rq set from several
momentum-transfer dependence quantities including f, fx and

T 25-1S splitting cf.
HPQCD 09B [186]

HPQCD 10B, 11 [338,342] 241 0.09, 0.12 Modified z-expansion fit Relative scale | /a set from the
combining the continuum and static quark potential. Absolute
chiral extrapolations and the scale r| set from several
momentum-transfer dependence. quantities including f, fx and
Leading discretisation errors T 25-18 splitting cf.
from (am.)" charm-mass effects HPQCD 09B [186]. Scale
(see Table 85). Subleading (a E)" uncertainty estimated to be 0.7 %
discretisation corrections inD—mand0.2%in D — K
estimated to be 1.0 % for both
D—mand D - K

FNAL/MILC 04 [357] 241 0.12 Discretisation effects from Scale set through Y 25-18
light-quark sector estimated to be splitting cf. HPQCD 03 [695].
4 % by power counting. Error in ! estimated to be
Discretisation effects from 1.2 %, but scale error in
final-state pion and kaon energies dimensionless form factor
estimated to be 5 % negligible compared to other

uncertainties

ETM 11B [345] 2 0.068, 0.086, Discretisation errors estimated to Scale set through f5; cf.

0.102 be 5 % for D — 7 and 3 % for ETM 07A [686] and

D — K from comparison of
results in the continuum limit to
those at the finest lattice spacing

ETM 09C [241]

Table 82 Chiral extrapolation/minimum pion mass in determinations of the D — m¢v and D — K/{v form factors. For actions with multiple
species of pions, masses quoted are the RMS pion masses. The different M min entries correspond to the different lattice spacings

Collab.

Ref.

Nt

M T, min (MeV)

Description

HPQCD 13C [348] 241 390, 390 Modified z-expansion fit combining the continuum and chiral

extrapolations and the momentum-transfer dependence

HPQCD 10B, 11 [338,342] 241 390, 390 Modified z-expansion fit combining the continuum and chiral
extrapolations and the momentum-transfer dependence.
Contributions to error budget from light valence and sea-quark mass

dependence estimated to be 2.0 % for D — 7 and 1.0 % for D — K

Fit to Sy PT, combined with the Becirevic—Kaidalov ansatz for the
momentum transfer dependence of form factors. Error estimated to
be 3 % for D — 7 and 2 % for D — K by comparing fits with and
without one extra analytic term

SU(2) tmHM x PT plus Becirevic—Kaidalov ansatz for fits to the
momentum-transfer dependence of form factors. Fit uncertainty
estimated to be 7 % for D — m and 5 % for D — K by considering
fits with and without NNLO corrections of order O(mf,) and/or
higher-order terms through E>, and by excluding data with
E > 1GeV

FNAL/MILC 04 [357] 2+1 510

ETM 11B [345] 2 270

@ Springer



2890 Page 148 of 179 Eur. Phys. J. C (2014) 74:2890

Table 83 Finite-volume effects in determinations of the D — w¢v and D — K /v form factors. Each L-entry corresponds to a different lattice
spacing, with multiple spatial volumes at some lattice spacings. For actions with multiple species of pions, the lightest pion masses are quoted

Collab. Ref. N¢ L (fm) My minL Description

HPQCD 13C [348] 2+1 24,2429 > 3.8 No explicit estimate of FV error, but it is
expected to be small for simulation
masses and volumes

HPQCD 10B, 11 [338,342] 241 2.4,2.4/2.9 > 3.8 Finite-volume effects estimated to be
0.04 % for D — 7 and 0.01 % for
D — K by comparing the
“m,zrlog(mjzz)” term in infinite and finite
volume

FNAL/MILC 04 [357] 2+1 2.4/2.9 238 No explicit estimate of FV error, but it is

expected to be small for simulation
masses and volumes

ETM 11B [345] 2 22,2.1/2.8,2.4 > 3.7 Finite-volume uncertainty estimated to be
at most 2 % by considering fits with and
without the lightest pion mass point at

mq L =~ 3.7
Table 84 Operator renormalisation in determinations of the D — 7 fv and D — K{v form factors
Collab. Ref. N¢ Ren. Description
HPQCD 13C [348] 241 - Scalar form factor extracted from absolutely

normalised scalar current. Vector form factor
extracted from both point-split spatial (normalised
by requiring Zf (0) = 1 for flavourless currents
and checking mass independence) and local
temporal vector currents (normalised by matching
to the scalar case using kinematic constraint at zero
momentum transfer f (0) = f(0))

HPQCD 10B, 11 [338,342] 241 - Form factor extracted from absolutely normalised
scalar-current matrix element then using kinematic
constraint at zero momentum-transfer

f+0) = fo(0)
FNAL/MILC 04 [357] 241 mNPR Size of two-loop correction to current
renormalisation factor assumed to be negligible

ETM 11B [345] 2 - Form factors extracted from double ratios insensitive
to current normalisation

Table 85 Heavy quark treatment in determinations of the D — 7 €v and D — K{v form factors

Collab. Ref. Nt Action Description

HPQCD 13C [348] 241 HISQ Bare charm-quark mass am, ~ 0.41-0.63. No
explicit estimate of (am.)" errors

HPQCD 10B, 11 [338,342] 241 HISQ Bare charm-quark mass am,. ~ 0.41-0.63. Errors of

(am¢)" estimated within modified z-expansion to
be 1.4 % for D — K and 2.0 % for D — 7.
Consistent with expected size of dominant
one-loop cutoff effects on the finest lattice spacing,
O(as(ame)*(v/c)) ~ 1.6 %

FNAL/MILC 04 [357] 2+1 Fermilab Discretisation errors from charm quark estimated via
heavy-quark power-counting to be 7 %
ETM 11B [345] 2 tmWil Bare charm-quark mass am,. ~ 0.17-0.30. Expected

size of O((am¢)?) cutoff effects on the finest
lattice spacing consistent with quoted 5 %
continuum-extrapolation uncertainty

@ Springer



Eur. Phys. J. C (2014) 74:2890

Page 149 of 179 2890

B.6 Notes to Sect. 8 on B-meson decay constants, mixing
parameters, and form factors

In the following, we summarise the characteristics (lattice
actions, pion masses, lattice spacings, etc.) of the recent Ny =
2+ 1 and N = 2 runs. We also provide brief descriptions of

We focus on calculations with either preliminary or published
quantitative results.

B.6.1 B(s)-meson decay constants

See Tables 86, 87, 88, 89, 90, 91, 92, and 93.

how systematic errors are estimated by the various authors.

Table 86 Continuum extrapolations/estimation of lattice artefacts in determinations of the B- and B-meson decay constants for Ny = 2 simulations

Collab. Ref. Nt a (fm) Continuum extrapolation Scale setting
ALPHA 13 [365,370,404] 2 0.075,0.065, Combined continuum and chiral Relative scale set from ry. Absolute
ALPHA 12A 0.048 extrapolation with linear in a? term. scale set from fx . Scale-setting
ALPHA 11 Continuum extrapolation errors uncertainty included in combined
estimated to be 5 MeV in ALPHA 11 statistical and extrapolation error
ETM 13B, 13C [335,336,393,405] 2  0.098, 0.085, Combined continuum and chiral Scale set from f;. Scale-setting
ETM 12B 0.067, 0.054 extrapolation, with a term linear in a. uncertainty included in combined
ETM 11A ETM 12 and 13 include a heavier statistical and systematic error
masses than ETM 11A. Discretisation
error included in combined statistical
and systematic error, estimated by
dropping the data at the coarsest lattice
spacing as ~0.5-1 %
ETM 09D [392] 2 0.098, 0.085, Combined continuum and chiral Scale set from f; . Scale-setting
0.067 extrapolation with a term linear in a> uncertainty included in combined

statistical and systematic error

Table 87 Continuum extrapolations/estimation of lattice artefacts in determinations of the B- and Bs-meson decay constants for Ny =2 + 1 + 1

and Ny = 2 + 1| simulations

Collab. Ref. N¢ a (fm) Continuum extrapolation Scale setting
ETM 13E [399] 24+ 1+1 0.89,0.82,0.62 Combined continuum and chiral Scale set from f; . Scale-setting uncertainty
extrapolation, linear in a? included in combined statistical and
systematic error
HPQCD 13 [400] 2+ 1+ 1 0.15,0.12,0.09 Combined continuum and chiral Scale set from Y'(2S5-15) splitting; see

extrapolation. Continuum extrapolation
errors estimated to be 0.7 %

RBC/UKQCD 13A [401] 2+1 0.11, 0.086 Combined continuum and chiral
extrapolation with linear in a® term. No

systematic error estimate

HPQCD 12 [402] 2+1 0.12, 0.09 Combined continuum and chiral

extrapolation. Continuum extrapolation
errors estimated to be 0.9 %

HPQCD 11A [366] 2+ 1 0.15, 0.12, 0.09,

0.06, 0.045

amg =~ 0.2-0.85. Combined continuum
and HQET fit. Continuum extrapolation
error estimated by varying the fit ansatz
and the included data points to be
0.63 %. Discretisation errors appear to
decrease with increasing heavy-meson
mass

FNAL/MILC 11 0.15,0.12,0.09 Combined continuum and chiral
extrapolation. Continuum-extrapolation

errors estimated to be 1.3 %

[332] 241

Ref. [383]. Scale uncertainty included in
statistical error

Scale set by the €2 baryon mass

Relative scale ry /a from the static quark
potential. Absolute scale r| from fr, fk,
and Y (2S8-1S5) splitting. Scale uncertainty
estimated to be 1.1 %

Relative scale r| /a from the static quark
potential. Absolute scale r| from f, fx
and Y(2S5-15) splitting. Scale uncertainty
estimated to be 0.74 %

Relative scale r| /a from the static quark
potential. Absolute scale r; from fr, fx,
and Y'(2S5-15) splitting. Scale uncertainty
estimated to be 1 MeV

@ Springer



2890 Page 150 of 179

Eur. Phys. J. C (2014) 74:2890

Table 87 continued

Collab. Ref. Ny a (fm) Continuum extrapolation Scale setting

RBC/UKQCD 10C [406] 2+ 1 0.11 One lattice spacing with discretisation Scale set by the 2 baryon mass. Combined
errors estimated by power counting as scale and mass tuning uncertainties on
3% fB,/fB estimated as 1 %

HPQCD 09 [403] 241 0.12,0.09 Combined continuum and chiral Relative scale | /a from the static quark

extrapolation. Continuum extrapolation
errors estimated to be 3 %

potential. Absolute scale r; from the
T (25-1S5) splitting. Scale uncertainty
estimated to be 2.3 %

Table 88 Chiral extrapolation/minimum pion mass in determinations
of the B- and Bg-meson decay constants for Ny = 2 simulations. For
actions with multiple species of pions, masses quoted are the RMS pion

masses. The different My min entries correspond to the different lattice
spacings

Collab. Ref. Nt Mz min (MeV) Description

ETM 13B, 13C [335,336,393,405] 2 410, 275, 300, 270 M min refers to the charged pions. Linear and NLO (full QCD)

ETM 12B HM x PT supplemented by an a? term is used. The chiral fit error is

ETM 11A estimated from the difference between the NLO HM x PT and linear
fits with half the difference used as estimate of the systematic error.
For the static limit calculation in ETM 11A, &3 is extrapolated
assuming a constant in light quark mass. The ratio ®§*/ @3 is fit
using three different chiral fit forms (NLO HM x PT, linear, and
quadratic) to estimate the chiral fir error

ETM 09D [392] 2 410, 275, 300 M min refers to the charged pions. Linear and NLO (full QCD)
HMyPT is used. The final result given by the average of NLO
HMChiPT and linear Ansditze & half the difference)

ALPHA 13 [370,404] 2 270, 190, 270 LO and NLO HMChPT supplemented by a term linear in a? are used.

ALPHA 12A The final result is an average between LO and NLO with half the
difference used as estimate of the systematic error

ALPHA 11 [365] 2 331, 268, 267 Linear and NLO (full QCD) HMChPT supplemented by a term linear

in a? are used. The final result is an average between linear and NLO

fits with half the difference used as estimate of the systematic error

Table 89 Chiral extrapolation/minimum pion mass in determinations
of the B- and B;-meson decay constants for Ny = 24+ 14 1 and
Ni = 2 + 1 simulations. For actions with multiple species of pions,

masses quoted are the RMS pion masses. The different My iy entries
correspond to the different lattice spacings

Collab. Ref. N Mz min (MeV)

Description

ETM 13E [399] 2+ 1+1 245,239,211

M min refers to the charged pions. Linear and NLO (full QCD) HM x PT

supplemented by an a? term is used for the SU(3)-breaking ratios. The chiral fit
error is estimated from the difference between the NLO HM x PT and linear fits
with half the difference used as estimate of the systematic error. The ratio z is
fit using linear light quark mass dependence supplemented by an a? term

HPQCD 13 [400] 24+1+1 310,294,173

Two or three pion masses at each lattice spacing, one each with a physical-mass

GB pion. NLO (full QCD) HM x PT supplemented by generic a* and a* terms
is used to interpolate to the physical pion mass

RBC/UKQCD 13A  [401] 2+1 329, 289

Three (two) light quark masses per lattice spacing. NLO SU(2) HM x PT is used.

No systematic error estimate
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Table 89 continued

Collab. Ref. N Mz min (MeV) Description

HPQCD 12 [402] 241 390, 390 Two or three pion masses at each lattice spacing. NLO (full QCD)

HPQCD 11A

FNAL/MILC 11

RBC/UKQCD 10C

HPQCD 09

[366]

[332]

[406]

[403]

2+1

2+1

2+1

2+1

570, 450, 390, 330, 330

570, 440, 320

430

440, 400

HM y PT supplemented by NNLO analytic terms and generic a” and a*
terms is used. The systematic error is estimated by varying the fit
Ansatz, in particular for the NNLO analytic terms and the a>" terms

One light sea quark mass only at each lattice spacing. The sea-quark mass

dependence is assumed to be negligible, based on the calculation of fp,
in Ref. [94], where the sea quark extrapolation error is estimated as
0.34 %

Three to five sea-quark masses per lattice spacing, and 9—12 valence light

quark masses per ensemble. NLO partially quenched HMrS x PT
including 1/m terms and supplemented by NNLO analytic and afaz
terms is used. The systematic error is estimated by varying the fit
Ansatz, in particular the NNLO analytic terms and the chiral scale

Three light quark masses at one lattice spacing. NLO SU(2) xPT is used.
The systematic error is estimated from the difference between NLO
xPT and linear fits as ~7 %

Four or two pion masses per lattice spacing. NLO (full QCD) HMrS x PT

supplemented by NNLO analytic terms and asa

2 a* terms is used. The

chiral fit error is estimated by varying the fit Ansatz, in particular, by
adding or removing NNLO and discretisation terms

Table 90 Finite-volume effects in determinations of the B- and B,-meson decay constants. Each L-entry corresponds to a different lattice spacing,

with multiple spatial volumes at some lattice spacings

Collab. Ref. Nt L (fm) M5 minL Description
ETM 13E [399] 24+ 141 2.84/2.13,2.61/1.96, 3.53,3.16,3.19 FV error estimated how?
2.97
HPQCD 13 [400] 24+1+1 24/3.5/4.7, 3.30, 3.88, 3.66 The analysis uses finite-volume y PT
2.9/3.8/5.8, 2.8/5.6
RBC/UKQCD 13A [401] 241 2.6,2.75 4.54, 4.05 No FV error estimate
HPQCD 12 [402] 241 2.4/2.9,2.5/3.6 3.84,4.21 FV error is taken from Ref. [165] for
HPQCD’s D-meson analysis, where it was
estimated using finite volume xPT
HPQCD 11A [366] 241 24,24,25,29,29 3.93,4.48,4.14, FV error is assumed to negligible
4.49,4.54
FNAL/MILC 11 [332] 241 2.4,2.4/2.9,2.5/3.6 3.93,3.78,4.14 FV error is estimated using finite-volume
xPT
RBC/UKQCD 10C [406] 2+1 1.8 3.9 FV error estimated using finite-volume y PT
to be 1 % for SU(3) breaking ratios
HPQCD 09 [403] 241 2.4/2.9,2.5 3.78,4.14 FV error is assumed to negligible
ETM 13B, 13C [335,405] 2 2.4,2.0/2.7,2.1, 5,3.7,3.3,3.5 FV errors are found to be negligible by
ETM 12B [393] 1.7/2.6 comparing results at m, L = 3.3 and
ETM 11A [336] my L = 4.3 for m; >~ 310 MeV
ALPHA 13 [404] 2 2.4,2.1/4.2 [3.1], 52,4.1,4.2 No explicit estimate of FV errors, but it is
ALPHA 12A [370] 2.3/3.1 expected to be much smaller than other
ALPHA 11 [365] uncertainties
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Table 91 Description of the renormalisation/matching procedure adopted in the determinations of the B- and Bs-meson decay constants for
Nf = 2 + 1 simulations

Collab. Ref. Nt Ren. Description

ETM 13E [399] 24+1+1 - PT1¢ The current used for the relativistic decay constants is absolutely
normalised. The ratio is constructed from the relativistic decay
constant data and the heavy-quark pole masses. Ratios of pole-to-MS
mass conversion factors are included at NLO in continuum
perturbation theory

HPQCD 13 [400] 24+1+1 PT1¢ The NRQD effective current is matched through O(1/m) and
renormalised using one-loop PT. Included are all terms though
O(as), O(as a), O(Aqep/M), O(as/aM), O(as Aqep/M). The
dominant error is due unknown 0(0:52) contributions to the current
renormalisation. The perturbation theory used in this work is the
same as in HPQCD 09 and 12, but it is rearranged to match the
mNPR method. Using the fact that the heavy—heavy temporal vector
current is normalised, and that the light-light HISQ vector current
receives a small one-loop correction, the error is estimated as ~1.4 %

RBC/UKQCD 13A [401] 241 mNPR No systematic error estimate

HPQCD 12/09 [402,403] 2+1 PT1¢ The NRQD effective current is matched through O(1/m) and
renormalised using one-loop PT. Included are all terms though
O(as), O(as a), O(Aqep/M), O(as/aM), O(as Aqep/M). The
dominant error is due unknown O(asz) contributions to the current
renormalisation. The authors take the perturbative error as ~ 2o ozsz,
where py is the coefficient of the one-loop correction to the leading
term, which yields an error of ~4 %

HPQCD 11A [366] 241 - This work uses PCAC together with an absolutely normalised current

FNAL/MILC 11 [332] 241 mNPR The authors’ estimate of the perturbative errors is comparable in size
to the actual one-loop corrections

RBC/UKQCD 10C [406] 2+1 PT1¢ The static-light current is matched through O(wsa, o) and

renormalised using one-loop tadpole-improved PT. For massless
light quarks, the renormalisation factors cancel in the ratio of decay
constants

Table 92 Description of the renormalisation/matching procedure adopted in the determinations of the B- and B;-meson decay constants for Ny = 2
simulations

Collab. Ref. Nt Ren. Description

ALPHA 13 [404] 2 NPR The authors use the Schrdingier functional for the NP matching
ALPHA 12A [370]

ALPHA 11 [365]

ETM 13B, 13C [335,405] 2 - PT1¢ The current used for the relativistic decay constants is absolutely
ETM 12B [393] normalised. Interpolation method: The static limit current
ETM 11A [336] renormalisation is calculated in one-loop mean-field improved

perturbation theory, there half the correction is used to estimate the
error. Ratio method: The ratio is constructed from the relativistic
decay constant data and the heavy-quark pole masses. Ratios of
pole-to-MS mass conversion factors are included at NLO in
continuum perturbation theory
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Table 93 Heavy quark treatment in determinations of the B- and Bs-meson decay constants

Collab. Ref. N¢ Action Description

ETM 13E [399] 24141 tmWil The estimate of the discretisation effects is described in the continuum table.
The relativistic data are matched to HQET using NLO continuum PT in an
intermediate step, and converted back to QCD at the end. The error due to
HQET matching (estimated by replacing the NLO expressions with LO) is a
very small contribution to the systematic error due to the heavy quark mass
dependence

HPQCD 13 [400] 2+14+1 NRQCD HQ truncation effects estimated as in HPQCD 09 to be 1.0 %

RBC/UKQCD 13A  [401] 2+1 RHQ No estimate of HQ discretisation errors

HPQCD 12 [402] 241 NRQCD  HQ truncation effects estimated as in HPQCD 09 to be 1.0 %

HPQCD 11A [366] 2+1 HISQ The analysis uses a combined continuum and 1/m extrapolation

FNAL/MILC 11 [332] 241 Fermilab  HQ discretisation effects are included in the combined chiral and continuum
fits, and they are estimated by varying the fit Ansatz and excluding the data
at the coarsest lattice spacing to be ~2 %, consistent with simple power
counting estimates but larger than the residual discretisation errors observed
in the data

RBC/UKQCD 10C [406] 2+1 Static Truncation effects of O(1/my,) on the SU(3)-breaking ratios are estimated by
power counting to be 2 %

HPQCD 09 [403] 2+1 NRQCD  The leading HQ truncation effects are of O(as Agep/my,) due to the
tree-level coefficient of the o - B term. The error is estimated by calculating
the B*—B hyperfine splitting and comparing with experiment as 1 %

ALPHA 13 [404] 2 HQET NP improved through O(1/my,). Truncation errors of O(Aqcp/m ,1)2 are not

ALPHA 12A [370] included

ALPHA 11 [365]

ETM 13B, 13C [335,405] 2 tmWil The estimate of the discretisation effects is described in the continuum table.

ETM 12B [393] In both methods the relativistic data are matched to HQET using NLO

ETM 11A [336] continuum PT in an intermediate step, and converted back to QCD at the

end. The error due to HQET matching (estimated by replacing the NLO
expressions with LO) is a very small contribution to the systematic error due
to the heavy quark mass dependence. The variation observed from adding
heavier masses to their data and/or including 1 /mf, terms is 0.4-1.3 %

B.6.2 B(y)-meson mixing matrix elements

See Tables 94, 95, 96, 97, 98, 99.

Table 94 Continuum extrapolations/estimation of lattice artefacts in determinations of the neutral B-meson mixing matrix elements for Ny = 241

simulations

Collab. Ref. Nt a (fm) Continuum extrapolation Scale setting

FNAL/MILC 12 4151 2+1 0.12,0.09 Combined continuum and chiral Relative scale r /a is set via static quark
extrapolation with NLO rHMS x PT, potential. Absolute scale
NNLO analytic and generic r1 = 0.3117(22) fm is determined [332]
O(asaz, a*) terms. Combined through averaging the f input and the
statistical, chiral and light-quark estimate of HPQCD collaboration [186].
discretisation error is estimated, by The scale uncertainty on £ is estimated
examining the variation with different fit as 0.2 %
Ansitze to be 3.7 % on &

FNAL/MILC 11A  [412] 241 0.12,0.09,0.06 Combined continuum and chiral See above. The error in ry yields a 3 %

extrapolation with NLO rHMS x PT,
NNLO analytic and generic
O(afaz, a4) terms

uncertainty on f é Bp
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Table 94 continued

Collab. Ref. Ny a (fm) Continuum extrapolation Scale setting

RBC/UKQCD 10C  [406] 241 0.11 Only one lattice spacing is used. Scale is set using the 2~ mass as input
Discretisation error is estimated to be [79]. The error on & due to the combined
4 % on & by power counting scale and light quark mass uncertainties

is estimated as 1 %

HPQCD 09 [403] 2+1 0.12, 0.09 Combined continuum and chiral Relative scale r /a is set via static quark
extrapolation with NLO rHMS x PT and potential. Absolute scale r; = 0.321(5)
NNLO analytic terms. Light-quark fm is determined through Y mass [380].
discretisation error is estimated as 3, 2 The error on fp+/Bp due to the scale
and 0.3 % for fp+/Bg, fB,+/Bp, and &, uncertainty is estimated as 2.3 %
respectively

HPQCD 06A [413] 241 0.12 Only one lattice spacing is used. Scale is set using the Y 25—1S splitting as

Light-quark discretisation error on

input [380]. The error on fl% Bp due to

f éy Bp, is estimated as 4 % by power the scale uncertainty is estimated as 5 %

counting

Table 95 Continuum extrapolations/estimation of lattice artefacts in determinations of the neutral B-meson mixing matrix elements for Ny = 2
simulations

Collab. Ref. Nt a (fm) Continuum extrapolation Scale setting
ETM 13B [335] 2 0.098, 0.085, Combined chiral and continuum See below
0.067, 0.054 extrapolation, with a term linear in az.
Discretisation error is estimated by
omitting the coarsest lattice as 0.5, 1.7,
1.3 and 1.0 % for Bp, Bp, Bp,/Bp and
&, respectively. The heavy-quark masses
vary in the range 0.13 < am;, < 0.85
ETM 12A,12B  [393,414] 2 0.098, 0.085, Combined chiral and continuum Relative scale ry/a set from the static
0.067 extrapolation, with a term linear in a?. quark potential. Absolute scale set from

Discretisation error included in
combined statistical, chiral and
continuum-extrapolation error and
estimated as 4.5 %. The heavy-quark
masses vary in the range

0.25 <amy <0.6

[ . Scale-setting uncertainty included in
combined statistical and systematic error

Table 96 Chiral extrapolation/minimum pion mass in determinations of the neutral B-meson mixing matrix elements. For actions with multiple
species of pions, masses quoted are the RMS pion masses. The different M min entries correspond to the different lattice spacings

Collab. Ref. Ny My min (MeV) Description

FNAL/MILC 12 [415] 2+1 440, 320 Combined continuum and chiral extrapolation with NLO rtHMS x PT
and NNLO analytic terms. See the entry in Table 94. The omission
of wrong-spin contributions [416] in the HMrS x PT is treated as a

systematic error and estimated to be 3.2 % for &

FNAL/MILC 11A [412] 2+1 440, 320, 250 Combined continuum and chiral extrapolation with NLO rHMS x PT

and NNLO analytic terms
Linear fit matched with SU(2) NLO HM x PT at the lightest ud mass
point is used as the preferred fit. Many different fit Ansitze are
considered. The systematic error is estimated from the difference
between the SU(2) HM x PT fit described above and a linear fit
Combined continuum and chiral extrapolation with NLO rHMS x PT
and NNLO analytic terms

RBC/UKQCD 10C [406] 2+1 430

HPQCD 09 [403] 2+1 440, 400
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Table 96 continued

Collab. Ref. Nt Mz min (MeV) Description

HPQCD 06A [413] 241 510 Two sea ud quark masses m, 4 /mgs; = 0.25 and 0.5 are used to
calculate the matrix element for By;-meson at the predetermined
value of the strange quark mass. No significant sea quark mass
dependence is observed and the value at the lighter sea ud mass is
taken as the result

ETM 13B [335] 2 410, 275, 300, 270 M min refers to the charged pions, where 270 MeV on the finest lattice

ETM 12A,12B [393,414] only included in ETM 13. Linear and NLO (full QCD) HMx PT

supplemented by an a? term is used. The chiral fit error is estimated
from the difference between the NLO HM x PT and linear fits

Table 97 Finite-volume effects in determinations of the neutral B-meson mixing matrix elements. Each L-entry corresponds to a different lattice
spacing, with multiple spatial volumes at some lattice spacings. For actions with multiple species of pions, the lightest masses are quoted

Collab. Ref. N¢ L (fm) My minL  Description

FNAL/MILC 12 [415] 2+1 24/29,2.5 >3.8 FV error is estimated to be less than 0.1 % for
SU(3)-breaking ratios from FV HMrS x PT

FNAL/MILC 11A [412] 2+1 24/29,25/29/3.6,3.8 =>3.8 FV error on fp+/Bp is estimated to be less than 1 %,
which is inferred from the study of the B-meson
decay constant using FV HM x PT [332]

RBC/UKQCD 10C  [406] 2+1 1.8 239 FV error estimated through FV HM xPT as 1 % for
SU(3) breaking ratios

HPQCD 09 [403] 241 24/29,25 >3.8 No explicit estimate of FV error, but it is expected to
be much smaller than other uncertainties

HPQCD 06A [413] 2+1 24 24.5 No explicit estimate of FV error, but it is expected to
be much smaller than other uncertainties

ETM 13B [335] 2 24,2.0/2.7,2.1,1.72.6 =32 L = 1.7/2.6 fm only included in ETM 13. FV error

ETM 12A,12B [393,414] is assumed to be negligible based on the study of

D-meson decay constants in Ref. [169]

Table 98 Operator renormalisation in determinations of the neutral B-meson mixing matrix elements

Collab.

Ref.

Nt

Ren.

Description

FNAL/MILC 12

FNAL/MILC 11A

RBC/UKQCD 10C

HPQCD 09

HPQCD 06A

ETM 13B, 12A, 12B

[415]

[412]

[406]

[403]

[413]

[335,393,414]

2+1

2+1

2+1

2+1

2+1

PT1I

PT1I

PT1I

PT1I

PT1I

NPR

One-loop mean-field improved PT is used to renormalise the four-quark
operators with heavy quarks rotated to eliminate tree-level O (a) errors. The
error from neglecting higher-order corrections is estimated to be 0.5 % on &

One-loop mean-field improved PT is used to renormalise the four-quark operators
with heavy quarks rotated to eliminate tree-level O (a) errors. The error from
neglected higher-order corrections is estimated to be 4 % on fp+/Bp

Static-light four-quark operators are renormalised with one-loop mean-field
improved PT. The error due to neglected higher-order effects is estimated to be
2.2 % on &

Four-quark operators in lattice NRQCD are matched to QCD through order «,
Aqcp/M and o /(aM) [696] using one-loop PT. The error due to neglected
higher-order effects is estimated to be 4 % on fp+/Bp and 0.7 % on &

Four-quark operators in lattice NRQCD are matched to full QCD through order
a5, Aqep/M and ag/(aM) [696]. The error is estimated as ~ 1 - af tobe 9 %
on fé: B By

The bag parameters are non-perturbatively renormalised in the RI’-MOM
scheme. They are calculated as functions of the (MS) heavy-quark mass
(renormalised non-perturbatively in RI/MOM)
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Table 99 Heavy-quark treatment in determinations of the neutral B-meson mixing matrix elements

Collab. Ref.

N¢ Action Description

FNAL/MILC 12 [415]

FNAL/MILC 11A [412]

RBC/UKQCD 10C [406]

HPQCD 09 [403]
HPQCD 06A [413]
ETM 13B [335]
ETM [393,414]
12A,12B

2+1 Fermilab The heavy-quark discretisation error on & is estimated to be 0.3 %. The error
on & due to the uncertainty in the b-quark mass is are estimated to be 0.4 %

241 Fermilab The heavy-quark discretisation error on fp+/Bp is estimated as 4 % using
power-counting

241 Static Two different static quark actions with Ape and HYP smearings are used. The
discretisation error on £ is estimated as ~4 % and the error due to the
missing 1/my corrections as ~2 %, both using power-counting

241 NRQCD Heavy-quark truncation errors due to relativistic corrections are estimated to
be 2.5,2.5 and 0.4 % for fg~/Bp, fp,/Bs, and &, respectively

2+1 NRQCD Heavy-quark truncation errors due to relativistic corrections are estimated to
be 3 % for f3 B,

2 tmWilson The ratio method is used to perform an interpolation to the physical b quark

mass from the simulated heavy mass and the known static limit. In an
intermediate step, the ratios include HQET matching factors calculated to
tree level, leading-log, and next-to-leading-log (ETM 13 only) in continuum
PT. The interpolation uses a polynomial up to quadratic in the inverse
quark-mass. The systematic errors added together with those of the chiral fit
are estimated as 1.3-1.6 % for bag parameters for ETM 13, while they are
estimated from changing the interpolating polynomial as 2 % and from
changing the order of HQET matching factors as 3 % for ETM 12A and 12B

B.6.3 B — mtv form factor

See Tables 100, 101, 102, 103, and 104.

Table 100 Continuum extrapolations/estimation of lattice artefacts in determinations of the B — m£v form factor

Collab. Ref. Nt a (fm) Continuum extrapolation Scale setting

FNAL/MILC 08A [351] 2+1 0.09, 0.12 Fit to rHMS x PT to remove light-quark Relative scale r /a set from the static
discretisation errors. Residual quark potential. Absolute scale | set
heavy-quark discretisation errors through f cf. MILC 07 [687]; error in
estimated with power-counting to be scale taken to be difference from scale
3.4 % set through Y 25-185 splitting

HPQCD 06 [427]  2+1

cf. HPQCD 05B [380]. Scale
uncertainty estimated at between 1 and
1.5 % in the range of g2 explored

0.09, 0.12 Central values obtained from data at Relative scale 1 /a set from the static
a = 0.12 fm. Discretisation errors quark potential. Absolute scale r| set
observed to be within the statistical error through Y 2S5-1S8 splitting cf. HPQCD
by comparison with data at a = 0.09 fm 05B [380]

Table 101 Chiral extrapolation/minimum pion mass in determinations of the B — m{v form factor. For actions with multiple species of pions,
masses quoted are the RMS pion masses. The different M min entries correspond to the different lattice spacings

Collab. Ref. N¢

M5 min (MeV) Description

FNAL/MILC 08A  [351] 241

HPQCD 06 [4271 241

400, 440 Simultaneous chiral-continuum extrapolation and ¢ interpolation using SU(3)
rHMS x PT. Systematic error estimated by adding higher-order analytic terms and
varying the B*~B—m coupling

400, 440 First interpolate data at fixed quark mass to fiducial values of E, using the
Becirevic—Kaidalov and Ball-Zwicky ansitze, then extrapolate data at fixed E; to
physical quark masses using SU(3) rHMS x PT. Systematic error estimated by
varying interpolation and extrapolation fit functions
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Table 102 Finite-volume effects in determinations of the B — mfv form factor. Each L-entry corresponds to a different lattice spacing, with
multiple spatial volumes at some lattice spacings. For actions with multiple species of pions, the lightest masses are quoted

Collab. Ref. Ny L (fm) My minL  Description
FNAL/MILC 08A  [351] 241 24,2429 2338 Estimate FV error to be 0.5 % using one-loop rHMS x PT
HPQCD 06 [427] 241 24729 > 3.8 No explicit estimate of FV error, but it is expected to be much smaller than

other uncertainties

Table 103 Operator renormalisation in determinations of the B — m£v form factor

Collab. Ref. Nt Ren. Description

FNAL/MILC 08A [351] 241 mNPR Perturbative truncation error estimated at 3 % with size of one-loop correction
on finer ensemble

HPQCD 06 [427] 241 PT1¢ Currents included through O(asAqcp/M, as/(aM), as aAqcp).

Perturbative truncation error estimated from power-counting

Table 104 Heavy quark treatment in determinations of the B — m¢v form factor

Collab. Ref. Ny Action Description

FNAL/MILC 08A [351] 241 Fermilab Discretisation errors in f 4 (¢2) from heavy-quark action estimated to be 3.4 % by
heavy-quark power-counting

HPQCD 06 [427] 241 NRQCD Discretisation errors in f (qz) estimated to be O(a (aAQCD)2) ~ 3 %. Relativistic

errors estimated to be O((AQCD/M)z) ~1%

B.6.4 B — D{v and B — D*{v form factors and R(D)

See Tables 105, 106, 107, 108, 109, and 110.

Table 105 Continuum extrapolations/estimation of lattice artefacts in determinations of the B — Dfv, B — D*{v, By — Dg{v form factors and

of R(D)
Collab. Ref. Ny a (fm) Continuum extrapolation Scale setting
FNAL/MILC [447] 241 0.045,0.06, See FNAL/MILC 10 See below
13B 0.09, 0.12,
B — D* 0.15
FNAL/MILC [447] 2+ 1 0.045,0.06, Continuum extrapolation using rHMS x PT to Relative scale ry /a set from the static quark
13B 0.09, 0.12 remove light-quark discretisation errors. potential. Absolute scale r; set through
B — D Residual discretisation errors estimated from combination of f;; from MILC 09B [697] and
power-counting to be 2 % in A4 (the dominant  several quantities including Y splittings from
contributor to f)and 10 % in h_ HPQCD [186], as described in [332]
FNAL/MILC [453] 2+ 1 0.09,0.12 Continuum extrapolation using rHMS x PT to See below
12A remove light-quark discretisation errors.
Residual discretisation errors estimated to be
very small for the ratio of branching fractions
R(D) at0.2 %
FNAL/MILC [444] 2+ 1 0.06,0.09, Continuum extrapolation using rHMS x PT to Relative scale r| /a set from the static quark
10 0.12,0.15 remove light-quark discretisation errors. potential. Absolute scale r; set through fr
Residual discretisation errors estimated to be cf. MILC 09B [697]. Comparison with r; set
1.0 % from power-counting. Further, the data via other quantities by HPQCD [186] shows
display no observable trend with lattice spacing  negligible change
FNAL/MILC [445] 2+ 1 0.09,0.12, Continuum extrapolation using rHMS x PT to Relative scale ry /a set from the static quark
08 0.15 remove light-quark discretisation errors. potential. Absolute scale r; set through f

Residual discretisation errors estimated to be

1.5 % from power-counting and by comparison

of data at 0.12 and 0.09 fm

cf. MILC 07 [687]. Comparison with scale set
through Y 25 — 1S shows negligible change
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Table 106 Continuum extrapolations/estimation of lattice artefacts in determinations of the B — Dfv, B — D*{v, By — D {v form factors and

of R(D)

Collab. Ref.  Np a (fm) Continuum extrapolation Scale setting

FNAL/MILC 04A [446] 2+1 0.12 Central value obtained from data at a single Relative scale r /a set from the static
lattice spacing. Comparison with quenched quark potential. Absolute scale r set
simulations at different lattice spacings through Y 25-1S splitting cf.
interpreted as indication of small HPQCD 03 [695]
discretisation effects

Atoui 13 [449] 2 0.054, 0.067, Combined continuum and chiral Scale set through F;

0.085, 0.098 extrapolation, with linear terms in a? and

Mgea. NO dependence on a or mge, observed
within errors. Stability of results vs. fits
with no mge, dependence checked

Table 107 Chiral extrapolation/minimum pion mass in determinations
of the B — D{v, B — D*{v, By — Dg{v form factors and of R(D).
For actions with multiple species of pions, masses quoted are the RMS

pion masses. The different My iy entries correspond to the different
lattice spacings

Collab. Ref. Ny My min (MeV) Description

FNAL/MILC 13B B — D* [447] 2+1 330, 260, 280, 470,590 Simultaneous chiral-continuum extrapolation using SU(3) rHMS x PT.
Systematic error estimated by adding higher-order analytic terms,
varying the D*~D-7 coupling, and comparison with continuum
HMxPT

FNAL/MILC 13B B — D [4471 2+1 330,260, 280, 470 Simultaneous chiral-continuum extrapolation using SU(3) rHMS x PT
supplemented by terms analytic in (w — 1) to interpolate at non-zero
recoil. Systematic error included in statistical errors via inclusion of
NNLO analytic terms and D*~D-7 coupling with Bayesian priors

FNAL/MILC 12A [453] 241 400,440 See below

FNAL/MILC 10 [444] 241 340, 320, 440, 570 See below

FNAL/MILC 08 [445] 2+1 320,440,570 Simultaneous chiral-continuum extrapolation using SU(3) rHMS x PT.
Systematic errors estimated by adding higher-order analytic terms
and varying the D*~D-m coupling

FNAL/MILC 04A [446] 241 510 Linear extrapolation in the light-quark mass

Atoui 13 [449] 2 270, 300, 270, 410 Combined continuum and chiral extrapolation, with linear terms in a?

and mge,. No dependence on a or mge, observed within errors.
Stability of results vs. fits with no mge, dependence checked

Table 108 Finite-volume effects in determinations of the B — D{v,
B — D*tv, By — Dg{v form factors and of R(D). Each L-entry
corresponds to a different lattice spacing, with multiple spatial volumes

at some lattice spacings. For actions with multiple species of pions, the
lightest pion masses are quoted

Collab. Ref. Nt L (fm) My minL Description

FNAL/MILC 13B B — D* [447] 241 2.9,2.9/3.4/3.8, =38 Estimate FV error to be negligible using one-loop
2.4/2.7/3.4/5.5, rHMS x PT
2.4/2.9,2.4

FNAL/MILC 13B B — D [447] 241 2.9,2.9/3.4/3.8, > 3.8 FV error estimated to be negligible
2.4/2.7/3.4/5.5,
2.4/2.9

FNAL/MILC 12A [453] 241 25,24 >3.8 FV error estimated to be negligible in [454]

FNAL/MILC 10 [444] 241 2.8,2.4/3.4, See below
2.4/2.9,2.4

FNAL/MILC 08 [445] 241 2.4/3.4,2.4/2.9, > 3.8 Estimate FV error to be negligible using one-loop
24 rHMS x PT

FNAL/MILC 04A [446] 2+1 2.4/2.9 > 4.5 No estimate of FV error quoted

Atoui 13 [449] 2 1.7/2.6, 2.1, P No volume dependence observed within errors
2.02.7,2.4
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Table 109 Operator renormalisation in determinations of the B — D{v, B — D*{v, B — D,£v form factors and of R(D)

Collab. Ref. N¢ Ren. Description

FNAL/MILC 13B B — D* [447] 241 mNPR See error estimate for /14 below

FNAL/MILC 13B B — D [447] 241 mNPR See FNAL/MILC 08A. A 0.4 % perturbative truncation error for i
(the dominant contributor to f. ) is estimated from asz times the
largest one-loop coefficient observed in the relevant mass range for
all similar currents, while a conservative 20 % error is taken for _

FNAL/MILC 12A [453] 241 mNPR Only the relative matching of the spatial and temporal components of
currents is relevant for the ratio R(D). Uncertainty for this is
estimated to be 0.4 %

FNAL/MILC 10 [444] 241 mNPR See below. A 0.3 % perturbative truncation error is estimated

FNAL/MILC 08 [445] 241 mNPR Majority of current renormalisation factor cancels in double ratio of
lattice correlation functions. Remaining correction calculated with
one-loop tadpole-improved lattice perturbation theory. 0.3 %
perturbative truncation error estimated from size of one-loop
correction on finest ensemble

FNAL/MILC 04A [446] 241 mNPR No explicit estimate of perturbative truncation error

Atoui 13 [449] 2 - Observables obtained from ratios that do not require renormalisation.

Checks performed by comparing with results coming from currents
that are renormalised separately with non-perturbative Zy

Table 110 Heavy quark treatment in determinations of the B — Dfv, B — D*{v, B; — D, {v form factors and of R(D)

Collab. Ref. N Action Description

FNAL/MILC 13B B — D* [447] 2+1 Fermilab See FNAL/MILC 10

FNAL/MILC 13B B — D [447] 2+1 Fermilab Heavy-quark discretisation errors estimated from power-counting
to be 2 % in h4 (the dominant contributor to f)and 10 % in h_

FNAL/MILC 12A [453] 241 Fermilab Discretisation errors of form factors estimated via power counting
which leads to negligible (~0.2 %) errors in the ratio R(D)

FNAL/MILC 10 [444] 2+1 Fermilab Discretisation errors from heavy quark action estimated to be 1.1 %
from power counting and a more detailed theory of cutoff effects

FNAL/MILC 08 [445] 2+1 Fermilab Heavy-quark discretisation errors estimated to be 1.5 % from power
counting and comparisons of data at different lattice spacings

FNAL/MILC 04A [446] 241 Fermilab No explicit estimate of heavy-quark discretisation errors

Atoui 13 [449] 2 tmWil Results obtained from step-scaling in heavy quark mass via the

ratio method. Separate continuum limit extrapolations with mild
a? dependence carried out for each mass point separately. Result
at physical value of m;, obtained by interpolation between data
region and known exact HQET limit

B.7 Notes to Sect. 9 on the strong coupling o

B.7.1 Renormalisation scale and perturbative behaviour

See Tables 111, 112, 113, and 114.

Table 111 Renormalisation scale and perturbative behaviour of g determinations for Ny = 0

Description

Collab. Ref. N Oeff
Sternbeck 12 [548] 0  0.11-0.18
Ilgenfritz 10 [551] O  0.07-0.9
Sternbeck 10  [549] 0  0.07-0.32

at(p) for p = 5-40 GeV. Fitted with four-loop formulae without power corrections (8 = 6.0, 6.4,

6.7,6.92)

ar(p) for p = 1-240 GeV (B = 5.8, 6.0, 6.2, 6.4, 9.0)
aT for p = 2.5-140 GeV, fitted with four-loop formula partially on very small lattices
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Table 111 continued

Collab. Ref. N oeff Description
Brambilla 10 [506] O 0.22-0.47 agq(1/r) for the range r/ry = 0.15-0.5. Fit of V (r) with three-loop formula
(NNNLO) with renormalon subtraction and resummation reproduces the
static potential for r/rp = 0.15-0.45 well
Boucaud 08 [544] O 0.18-0.35 at(p) with p = 3-6 GeV. Fitted to four-loop perturbation formula with 1/ P>
correction
Boucaud 05 [541] O 0.22-0.55 Agion, . using gluon and ghost propagators with 2 < u < 6 GeV. Fitted to
g.c
four-loop perturbation theory
QCDSF- UKQCD 05 [519] O 0.10-0.15 ays(2.63/a) computed from the boosted coupling
CP-PACS 04 [483] O 0.08-0.28 asp(1/L) step-scaling functions at aerr = 0.08, 0.19, study of continuum
limit. Agreement of continuum limit with ALPHA 98
Boucaud 01A [553] O 0.18-0.45 amoMm With p = 2.5-10 GeV. Consistency check of three-loop perturbation
formula with gluon condensate. (A?) from aom and gluon propagator are
consistent
Soto 01 [552] O 0.25-0.36, 0.3-0.36, agiom for p = 3-10 GeV. Fit with three-loop formula with gluon condensate.
0.19-0.24 Three-loop formula without condensate does not fit the lattice data
(B =06.0,62,6.8)
Boucaud 00A [555] O 0.35-0.55, 0.25-0.45, Agiom With p = 2-10 GeV. Fitted to three-loop perturbation theory with
0.22-0.28, 0.18-0.22 power correction. Four-loop coefficient is strongly correlated to the power
correction coefficient (8 = 6.0, 6.2, 6.4, 6.8)
Boucaud 00B [554] O 0.35-0.55, 0.25-0.45, A OM. FOM with 2 < p < 10 GeV. Consistency check of three-loop
0.22-0.28, 0.18-0.22 o . MOM MOM :
perturbation formula with gluon condensate. 8, =1.5x B, is
needed (8 =6.0, 6.2, 6.4, 6.8)
Becirevic 99A [557] O 0.25-0.4 AoM with p = 2.5-5.5 GeV
Becirevic 99B [556] O 0.18-0.25 ooy from a single lattice spacing with p = 5.6-9.5 GeV
SESAM 99 [520] O 0.15 ay(3.41/a) computed from the boosted coupling
ALPHA 98 [490] O 0.07-0.28 asp(1/L) step scaling, agreement with three-loop running for aefr < 0.15
Boucaud 98A [559] O 0.35-0.5 amom, With 2.1 < u < 3.9GeV. Fitted to three-loop perturbation theory
without power correction
Boucaud 98B [558] O 0.27-0.50 ooy With u = 2.2-4.5 GeV
Alles 96 [539] O 0.35-0.71 oo (p) with p = 1.8-3.0 GeV
Wingate 95 [521] O 0.15 ay(3.41/a) computed from the boosted coupling
Davies 94 [522] O 0.15 ay(3.41/a) computed from the boosted coupling
Liischer 93 [480] O 0.09-0.28 asp(1/L) step scaling, agreement with three-loop running for aefr < 0.17
UKQCD 92 [494] 0 0.17-0.40 agq(1/r) for a single lattice spacing. Fit of agq(1/7) to a NLO formula
Bali 92 [507] 0O 0.15-0.35 agq(1/r) for the lattice spacing used in the analysis. Box size L ~ 1.05fm.
Fit of agq(1/7) to a NLO formula. Agjg is found to depend on the fit range
El-Khadra 92 [524] O 0.15,0.13,0.12 a5 (7 /a) from one-loop boosted perturbation theory

Table 112 Renormalisation scale and perturbative behaviour of g determinations for Ny = 2

Collab. Ref. Ni  eff Description

ALPHA 12 [59] 2 See ALPHA 04  Determination of Agzs/fk using ALPHA 04

Sternbeck 12 [548] 2 0.17-0.23 aT for (rg p)2 = 200-2000. Fit with four-loop formula without condensate. Deviation at higher
energy is observed

ETM 11C [505] 2 0.26-0.96 agq(1/r) as computed by us from Agg = 315 MeV

Fit of V (r) with three-loop formula (NNNLO) with renormalon subtraction and resummation
reproduces the static potential for r/ro = 0.2-0.6 well. One fit range, using r/a = 2 — 4 at
the smallest lattice spacing corresponds to aeff = 0.26-0.40. In the MS scheme one has
ayg(1/r) = 0.24-0.63 and for the restricted fit agzg(1/7) = 0.24-0.36. Central values taken
from a = 0.042 fm lattice with L = 1.3 fm and m,; = 350MeV
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Table 112 continued

Collab. Ref. N  oeff Description

ETM 10F [550] 2 0.24-045 o7 for momentum up to 2.6-5.6 GeV. Fitted with four-loop formula with gluon condensate

Sternbeck 10 [549] 2 0.19-0.38 arforl < (ap)2 < 10. Fitted with four-loop formula

JLQCD 08 [513] 2 0.25-0.30 agi(Q) for 0.65 < (a 0)? < 1.32. Fit with the perturbative formula with power corrections

QCDSF-UKQCD 05 [519] 2 0.20-0.18  ofgs(1.4/a) computed from the boosted coupling

ALPHA 04 [488] 2  0.078-0.44 «sp(1/L) step scaling, agreement with three-loop running for a5 < 0.2

ALPHA 01 [489] 2  0.078-0.44 «sp(1/L) step scaling, agreement with three-loop running for ag < 0.2

Boucaud 01B [540] 2 0.25-05 ooy for momentum up to 7 GeV. Fitted with four-loop formula with and without power
correction, leading to different results for A%. Extrapolation of (1.3 GeV) in Nt from
Nt =0, 2 to Ny = 3 is made

SESAM 99 [520] 2 0.17 The boosted coupling ap (3.41/a)

Wingate 95 [521] 2 0.18 ay(3.41/a) computed from the boosted coupling

Aoki 94 [523] 2 0.14 ags (7 /a) computed from the boosted coupling

Davies 94 [522] 2 0.18 ay(3.41/a) computed from the boosted coupling

Table 113 Renormalisation scale for Ny = 3

Collab. Ref. N¢ Oleff Description

Bazavov 12 [504] 2+1 0.23-0.57 agq computed by us from Agzgro = 0.70. Fit of V (r) with three-loop formula (NNNLO)
with renormalon subtraction and resummation reproduces the static potential for
r/ro = 0.135-0.5 well

Sternbeck 12 [548] 2+1 0.19-0.25 a for ( pr0)2 = 200 — 2000. Comparison with four-loop formula

JLQCD 10 [512] 241 0.29-0.35 ays(Q) for 0.4 < (a 0)? < 1.0. Fit with the perturbative formula with power corrections

HPQCD 10 [73] 241 Update of r| and r| /a in HPQCD 08A

HPQCD 10 [73] 2+1 0.12-0.42 Combined range given for cefr from R4 and Re/Rg. Fit of R,, n =4...10 to NNNLO of
the ratios (meaning NNLO for «y) including (am)® terms with i < 10; coefficients
constrained by priors

PACS-CS 09A [487] 241 0.08-0.27 asg(1/L) step scaling, agreement with three-loop running for ag < 0.27

HPQCD 08B [85] 2+1 0.378 Fit to NNNLO of the ratios (meaning NNLO for «y) at the charm mass including (am)*
terms with i < 2...4; coefficients constrained by priors

HPQCD 08A [515] 241 0.15-0.4 ay(g*) for a variety of short-distance quantities, using same method as in HPQCD 05A

Maltman 08 [518] 2+1 Reanalysis of HPQCD 05A for a restricted set of short-distance quantities with similar
results

HPQCD 05A [514] 241 0.2-0.4 ay(g*) for a variety of short-distance quantities

Table 114 Renormalisation scale of « determinations for Ny = 4

Collab. Ref. Ny Oleff Description

ETM 13D [545] 241+1 0.26-0.7 at(p) = for p = 1.6-6.5 GeV. Update of [546] with improved power law determination

ETM 12C [546] 24141 0.24-0.38 ar(p) for p = 1.7-6.8 GeV. Fit with four-loop formula with gluon condensate or higher
power

ALPHA 10A [485] 4 0.07-0.28 asg(1/L). Comparison with two-, three-loop B function

ETM 11D [547] 24141 0.24-0.4 ar(p) for p = 3.8 — 7.1 GeV with H(4)-procedure. Fit with four-loop formula with
gluon condensate

Perez 10 [486] 4 0.06-0.28 asp(1/L). Comparison with one-, two-, three-loop B function

B.7.2 Continuum limit

See Tables 115, 116, 117, and 118.
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Table 115 Continuum limit for «g determinations with Ny = 0

Collab. Ref. N apu Description
Sternbeck 12 [548] 0 Four lattice spacings a < 0.1fm Atoag=0.18,ap =2.7, 1.5 for § = 6.0, 6.4
Brambilla 10 [506] 0 At least three lattice spacings with Extrapolation of potential differences V (r) — V (0.51r¢)
02<2a/r <1.1 linear in a2 performed in [484] with several lattice spacings
Ilgenfritz 10 [551] 0 a =0.136, 0.093, 0.068, 0.051 fm Atas =0.3,ap =2.0,14,1.0,0.8 (8=5.8,6.0,6.2,6.4).
(B =5.8,6.0,6.2, 6.4), while no For g =9.0atap = 1.4, oy = 0.082
value of a is given for § = 9.0
Sternbeck 10 [549] 0 Eight lattice spacings a = V3 <ap <12
0.004-0.087 fm (ro = 0.467 fm)
Boucaud 08 [544] 0 a =0.1,0.07,0.05fm At g = 0.3 the data have ap = 2.6, 1.9, 1.5
QCDSF/UKQCD 05 [519] 0 Seven lattice spacings with ro/a, together with ro = 0.467 fm
a = 0.10-0.028 fm
Boucaud 05 [541] 0 a =0.1,0.07,0.05 fm Atas <03ap=19,14,1.0
CP-PACS 04 [483] 0 Four spacings, a/L = 1/12 — 1/4 Iwasaki and Liischer Weisz tree-level improved bulk actions;
boundary improvement at tree level, one loop and with two
different choices of implementation
Soto 01 [552] 0 a =0.07,0.05,0.03fm At og < 0.3, the data have ap = 1.4, 1.0, 0.6
Boucaud 01A [553] 0 a =0.1,0.07,0.05, 0.03 fm Atas <03ap=1.9,14,1.0,0.6
Boucaud 00A [555] 0 a =0.1,0.07,0.05, 0.03 fm Atas <03ap=1.9,1.4,1.0,0.6
Boucaud 00B [554] 0 a =0.1,0.07,0.05, 0.03 fm Atas <03ap=1.9,14,1.0,0.6
SESAM 99 [520] 0 One lattice spacing with a = 0.086 Y spectrum splitting
fm
Becirevic 99A [557] 0 a =0.07,0.05fm Atags <03ap=14,1.0
Becirevic 99B [556] 0 a =0.1,0.07,0.03fm Only a = 0.03 fm used to extract og. At g < 0.3,
ap=0.6-1.5
ALPHA 98 [490] 0 Four to six spacings, One-loop O(a) boundary improvement, linear extrapolation
a/L=1/12—-1/5in ina/L
step-scaling functions (SSF)
a/L =1/8—1/5foras <0.11 SSE,
a/L=1/12—-1/5for0.12 < a5 < 0.20 SSF,
Lmax/ro from [698], where several lattice spacings were used
Boucaud 98A [559] 0 a =0.1,0.07,0.05 fm Atag <03,ap=1.9,14,1.0
Boucaud 98B [558] 0 a =0.1,0.07,0.05fm Atag <03,ap=1.9,14,1.0
Alles 96 [539] 0 a <0.1fm Atag =0.35ap=1.5
Wingate 95 [521] 0 One lattice spacing with Charmonium 15-1P splitting
a=0.11fm
Davies 94 [522] 0 One lattice spacing with Y spectrum splitting
a = 0.077fm
Liischer 93 [480] 0 Four or five lattice spacings, One-loop O(a) boundary improvement, linear extrapolation
a/L=1/12—-1/5in ina/L
step-scaling functions
a/L=1/8—1/5foras <0.11 SSE,
a/L=1/10—1/5for0.11 < s < 0.22 SSF,
a/L =1/12—1/6for 0.22 < o < 0.28 SSF,
a/L =1/8.5 — 1/4.5 for continuum extrapolation of
Lmax/\/?
UKQCD 92 [494] 0 One lattice spacing with No continuum limit
0.44 <2a/r <1.6
Bali 92 [507] 0 One lattice spacing with No continuum limit
04 <2a/r <1.6
El-Khadra 92 [524] 0 Three lattice spacings with Charmonium 15-1P splitting

a =0.17, 0.11, 0.08 fm
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Table 116 Continuum limit for «g determinations with Ny = 2

Collab. Ref. Nt ap Description
ALPHA 12 [59] 2 a=0.049,0.066,0.076 fm from fx Two-loop O(a) boundary improvement, linear extrapolation
of Lmax fk in a®
Sternbeck 12 [548] a =0.073,0.07, 0.06 fm Atas =0.23,ap =2.1,2.0,1.7
ETM 11C [505] 0.30 <2a/r <1.00.67 <2a/r <1.26 Four lattice spacings; continuum limit studied with a
when oy = 0.3 particular range in r; central result from the smallest
lattice spacing, a = 0.042 fm
ETM 10F [550] 2 a =0.05,0.07,0.08 fm. Different lattice Atas =0.3,ap =1.6,1.3,1.1
spacings are patched together
Sternbeck 10 [549] a = 0.068, 0.076, 0.082 fm Atas <0.3,ap > 1.7
JLQCD 08 [513] a = 0.12 fm from rog = 0.49fm Single lattice spacing, 0.64 < (a Q)2 < 1.32. Atag = 0.3,
ap = 0.81
QCDSF- UKQCD 05 [519] Four lattice spacings with a = 0.10-0.066 fm  rg, together with ro = 0.467 fm
ALPHA 04 [488] a/L=1/8,1/6,1/5,1/4 One-loop (at weak coupling) and two-loop O(a) boundary
improvement, linear extrapolation of SSF in (a/L)>
ALPHA 01A [489] 2 a/L=1/6,1/51/4 One-loop (at weak coupling) and two-loop O(a) boundary
improvement, weighted average of SSF with
a/L=1/51/6
Boucaud 01B [540] 2 a = 0.05,0.07, 0.09 fm. Data at different Atas = 0.3, ap = 1.6, 1.3, 0.9; plain Wilson action with
lattice spacings are patched together O (a) errors
SESAM 99 [520] 2  One lattice spacing with @ = 0.079 fm Y spectrum splitting
Wingate 95 [521] 2  One lattice spacing witha = 0.11 fm Charmonium 1S-1P splitting
Aoki 94 [523] 2  One lattice spacing with a = 0.10 fm Charmonium 1 P-18 splitting
Davies 94 [522] 2 One lattice spacing with a = 0.08 fm Y spectrum splitting

Table 117 Continuum limit for «g determinations with Ny = 3

Collab. Ref. Np ap Description

Bazavov 12 [504] 241 2a/r = 0.6-2.0 Seven lattice spacings; four lattice spacings with
1.14 <2a/r < 1.5 when ag(1/r) = 0.3. 2a/r = 2 when
aos(1/r) = 0.23 (on the finest lattice)

Sternbeck 12 [548] 2+1 a =0.07fm Atas =0.23,ap =2.1

HPQCD 10 [73] 241 ap = 2amy = 0.61-1.75 Five lattice spacings; three lattice spacings with
1.0 <ap < 1.5 when ag, (u) < 0.3; three lattice spacings
with 1.0 < ap < 1.5 when ag,/rs (1) < 0.33

JLQCD 10 [512] 2+1 a = 0.11fm from rog = 0.49fm Single lattice spacing, 0.4 < (a Q)2 < 1.0 for the momentum
fit range. At ag = 0.3, ap = 0.89

HPQCD 10 [73] 2+1 Update of r; and r1 /a in HPQCD 08A

PACS-CS 09A [487] 241 a/L=1/8,1/6,1/4 Tree-level O(a) boundary improvement, which has been seen to
behave better than one loop in simulations [483]; weighted
average of a/L = 1/8, 1/6 for step-scaling function which
agrees with a linear extrapolation in a/L of all data points of
the SSF. Linear extrapolation in a/L of Lyaxm, with
a/Lmax =1/8,1/6,1/4

HPQCD 08B [85] 2+1 ap =2am, =08, 1.2, 1.7, 2.1 Four lattice spacings with heavy quark mass approximately the
charm mass, where ag, (1) = 0.38

HPQCD 08A [515] 241 Six lattice spacings with r1 using Y spectrum splitting

a = 0.18-0.045 fm
Maltman 08 [518] 2+1 Five lattice spacings with Reanalysis of HPQCD 05A with additional lattice spacings
a = 0.18-0.06 fm a =0.06, 0.15 fm
HPQCD 05A [514] 2+1 Three lattice spacings with r1 using Y spectrum splitting

a = 0.18-0.09 fm
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Table 118 Continuum limit for «g determinations with Ny = 4

Collab. Ref. N apu Description

ETM 13B [545] 24141 a=0.060,0.068 fm from f;  Foroas < 0.3,ap = 1.5, 1.7. Update of [546]

ETM 12C [546] 24+ 1+1 a = 0.061,0.078 from f Global fit with (ap)2 discretisation effects. For g < 0.3, ap = 1.5,2.2

ETM 11D [5471 2+1+1 a=0.061,0,078fm Foras <0.3,ap = 1.5,2.0

ALPHA 10A  [485] 4 a/L=1/4,1/6,1/8 Constant or global linear fit in (a/L)?

Perez 10 [486] 4 a/L=1/4,1/6,1/8 Linear extrapolation in (a/L)?. One-loop improvement at the boundary
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