000185897 001__ 185897
000185897 005__ 20230310131354.0
000185897 020__ $$a978-3-319-10704-2 (print)
000185897 020__ $$a978-3-319-10705-9 (electronic)
000185897 0247_ $$2doi$$a10.1007/978-3-319-10705-9_19
000185897 0247_ $$2altmetric$$aaltmetric:4733115
000185897 037__ $$aFZJ-2015-00034
000185897 1001_ $$0P:(DE-HGF)0$$aSteiner, Johannes$$b0$$eCorresponding Author
000185897 1112_ $$aEuropean Numerical Mathematics and Advanced Applications$$cLausanne$$d2013-08-26 - 2013-08-30$$gENUMATH$$wSwitzerland
000185897 245__ $$aConvergence of Parareal for the Navier-Stokes Equations Depending on the Reynolds Number
000185897 260__ $$aCham$$bSpringer International Publishing$$c2015
000185897 29510 $$aNumerical Mathematics and Advanced Applications - ENUMATH 2013
000185897 300__ $$a195 - 202
000185897 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1420525436_23890
000185897 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000185897 3367_ $$033$$2EndNote$$aConference Paper
000185897 3367_ $$2ORCID$$aCONFERENCE_PAPER
000185897 3367_ $$2DataCite$$aOutput Types/Conference Paper
000185897 3367_ $$2DRIVER$$aconferenceObject
000185897 3367_ $$2BibTeX$$aINPROCEEDINGS
000185897 4900_ $$aLecture Notes in Computational Science and Engineering$$v103
000185897 520__ $$aThe paper presents first a linear stability analysis for the time-parallel Parareal method, using an IMEX Euler as coarse and a Runge-Kutta-3 method as fine propagator, confirming that dominant imaginary eigenvalues negatively affect Parareal’s convergence. This suggests that when Parareal is applied to the nonlinear Navier-Stokes equations, problems for small viscosities could arise. Numerical results for a driven cavity benchmark are presented, confirming that Parareal’s convergence can indeed deteriorate as viscosity decreases and the flow becomes increasingly dominated by convection. The effect is found to strongly depend on the spatial resolution.
000185897 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000185897 536__ $$0G:(GEPRIS)450829162$$aDFG project 450829162 - Raum-Zeit-parallele Simulation multimodale Energiesystemen (450829162)$$c450829162$$x1
000185897 588__ $$aDataset connected to CrossRef Book, juser.fz-juelich.de
000185897 7001_ $$0P:(DE-HGF)0$$aRuprecht, Daniel$$b1
000185897 7001_ $$0P:(DE-Juel1)132268$$aSpeck, Robert$$b2$$ufzj
000185897 7001_ $$0P:(DE-HGF)0$$aKrause, Rolf$$b3
000185897 773__ $$a10.1007/978-3-319-10705-9_19
000185897 909CO $$ooai:juser.fz-juelich.de:185897$$pVDB
000185897 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132268$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000185897 9130_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000185897 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000185897 9141_ $$y2015
000185897 920__ $$lyes
000185897 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000185897 980__ $$acontrib
000185897 980__ $$aVDB
000185897 980__ $$acontb
000185897 980__ $$aI:(DE-Juel1)JSC-20090406
000185897 980__ $$aUNRESTRICTED