000185916 001__ 185916
000185916 005__ 20240711085603.0
000185916 0247_ $$2doi$$a10.1016/j.matlet.2014.11.083
000185916 0247_ $$2ISSN$$a0167-577X
000185916 0247_ $$2ISSN$$a1873-4979
000185916 0247_ $$2WOS$$aWOS:000348263300050
000185916 037__ $$aFZJ-2015-00040
000185916 041__ $$aEnglish
000185916 082__ $$a530
000185916 1001_ $$0P:(DE-HGF)0$$aDaudt, N. F.$$b0$$eCorresponding Author
000185916 245__ $$aSurface modification of highly porous titanium by plasma treatment
000185916 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2015
000185916 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1421759770_13286
000185916 3367_ $$2DataCite$$aOutput Types/Journal article
000185916 3367_ $$00$$2EndNote$$aJournal Article
000185916 3367_ $$2BibTeX$$aARTICLE
000185916 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000185916 3367_ $$2DRIVER$$aarticle
000185916 520__ $$aFor titanium implants, a final porosity in the range of 60–65 vol% is required to achieve a network of interconnected macropores, which enables adequate fixation of the implant to the bone tissue and suitable mechanical properties. In addition, an open porosity at the implant surface is crucial for the success of the implant. In the present study, highly porous titanium foams were produced by warm compaction of MIM feedstock with the addition of space holder in a heatable die. Plasma treatment was performed on the Ti foams before the final sintering step aiming to increase the open pores at the surface. The results obtained so far demonstrate that plasma treatment is a promising technique for increasing open porosity at the surface. It even improved the dimensional accuracy of highly porous samples.
000185916 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000185916 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000185916 7001_ $$0P:(DE-Juel1)129591$$aBram, M.$$b1$$ufzj
000185916 7001_ $$0P:(DE-HGF)0$$aCysne Barbosa, A. P.$$b2
000185916 7001_ $$0P:(DE-HGF)0$$aAlves, C.$$b3
000185916 773__ $$0PERI:(DE-600)1491964-3$$a10.1016/j.matlet.2014.11.083$$gVol. 141, p. 194 - 197$$p194 - 197$$tMaterials letters$$v141$$x0167-577X$$y2015
000185916 8564_ $$uhttps://juser.fz-juelich.de/record/185916/files/FZJ-2015-00040.pdf$$yRestricted
000185916 909CO $$ooai:juser.fz-juelich.de:185916$$pVDB
000185916 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000185916 9130_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000185916 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000185916 9141_ $$y2015
000185916 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000185916 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000185916 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000185916 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000185916 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000185916 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000185916 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000185916 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000185916 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000185916 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000185916 920__ $$lyes
000185916 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000185916 980__ $$ajournal
000185916 980__ $$aVDB
000185916 980__ $$aI:(DE-Juel1)IEK-1-20101013
000185916 980__ $$aUNRESTRICTED
000185916 981__ $$aI:(DE-Juel1)IMD-2-20101013