000185938 001__ 185938 000185938 005__ 20210129214753.0 000185938 0247_ $$2doi$$a10.1007/s00340-014-5948-1 000185938 0247_ $$2ISSN$$a0946-2171 000185938 0247_ $$2ISSN$$a1432-0649 000185938 0247_ $$2WOS$$aWOS:000347247700003 000185938 037__ $$aFZJ-2015-00062 000185938 041__ $$aEnglish 000185938 082__ $$a530 000185938 1001_ $$0P:(DE-HGF)0$$aWunderle, K.$$b0$$eCorresponding Author 000185938 245__ $$aA new spatially scanning 2.7 µm laser hygrometer and new small-scale wind tunnel for direct analysis of the H$_{2}$O boundary layer structure at single plant leaves 000185938 260__ $$aBerlin$$bSpringer$$c2015 000185938 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1420611828_23892 000185938 3367_ $$2DataCite$$aOutput Types/Journal article 000185938 3367_ $$00$$2EndNote$$aJournal Article 000185938 3367_ $$2BibTeX$$aARTICLE 000185938 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000185938 3367_ $$2DRIVER$$aarticle 000185938 520__ $$aA new spatially scanning TDLAS in situ hygrometer based on a 2.7-µm DFB diode laser was constructed and used to analyse the water vapour concentration boundary layer structure at the surface of a single plant leaf. Using an absorption length of only 5.4 cm, the TDLAS hygrometer permits a H2O vapour concentration resolution of 31 ppmv. This corresponds to a normalized precision of 1.7 ppm m. In order to preserve and control the H2O boundary layer on an individual leaf and to study the boundary layer dependence on the wind speed to which the leaf might be exposed in nature, we also constructed a new, application specific, small-scale, wind tunnel for individual plant leaves. The rectangular, closed-loop tunnel has overall dimensions of 1.2 × 0.6 m and a measurement chamber dimension of 40 × 54 mm (H × W). It allows to generate a laminar flow with a precisely controlled wind speed at the plant leaf surface. Combining honeycombs and a miniaturized compression orifice, we could generate and control stable wind speeds from 0.1 to 0.9 m/s, and a highly laminar and homogeneous flow with an excellent relative spatial homogeneity of 0.969 ± 0.03. Combining the spectrometer and the wind tunnel, we analysed (for the first time) non-invasively the wind speed-dependent vertical structure of the H2O vapour distribution within the boundary layer of a single plant leaf. Using our time-lag-free data acquisition procedure for phase locked signal averaging, we achieved a temporal resolution of 0.2 s for an individual spatial point, while a complete vertical spatial scan at a spatial resolution of 0.18 mm took 77 s. The boundary layer thickness was found to decrease from 6.7 to 3.6 mm at increasing wind speeds of 0.1–0.9 m/s. According to our knowledge, this is the first experimental quantification of wind speed-dependent H2O vapour boundary layer concentration profiles of single plant leaves. 000185938 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0 000185938 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000185938 7001_ $$0P:(DE-Juel1)129388$$aRascher, U.$$b1$$ufzj 000185938 7001_ $$0P:(DE-Juel1)129379$$aPieruschka, R.$$b2$$ufzj 000185938 7001_ $$0P:(DE-Juel1)129402$$aSchurr, U.$$b3$$ufzj 000185938 7001_ $$0P:(DE-HGF)0$$aEbert, V.$$b4 000185938 773__ $$0PERI:(DE-600)1458437-2$$a10.1007/s00340-014-5948-1$$gVol. 118, no. 1, p. 11 - 21$$n1$$p11 - 21$$tApplied physics / B$$v118$$x1432-0649$$y2015 000185938 8564_ $$uhttp://link.springer.com/article/10.1007%2Fs00340-014-5948-1 000185938 8564_ $$uhttps://juser.fz-juelich.de/record/185938/files/FZJ-2015-00062.pdf$$yRestricted 000185938 909CO $$ooai:juser.fz-juelich.de:185938$$pVDB 000185938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000185938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129379$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000185938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129402$$aForschungszentrum Jülich GmbH$$b3$$kFZJ 000185938 9130_ $$0G:(DE-HGF)POF2-89582$$1G:(DE-HGF)POF2-89580$$2G:(DE-HGF)POF3-890$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0 000185938 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0 000185938 9141_ $$y2015 000185938 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000185938 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000185938 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000185938 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000185938 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000185938 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000185938 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000185938 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000185938 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000185938 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000185938 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0 000185938 980__ $$ajournal 000185938 980__ $$aVDB 000185938 980__ $$aI:(DE-Juel1)IBG-2-20101118 000185938 980__ $$aUNRESTRICTED