000185938 001__ 185938
000185938 005__ 20210129214753.0
000185938 0247_ $$2doi$$a10.1007/s00340-014-5948-1
000185938 0247_ $$2ISSN$$a0946-2171
000185938 0247_ $$2ISSN$$a1432-0649
000185938 0247_ $$2WOS$$aWOS:000347247700003
000185938 037__ $$aFZJ-2015-00062
000185938 041__ $$aEnglish
000185938 082__ $$a530
000185938 1001_ $$0P:(DE-HGF)0$$aWunderle, K.$$b0$$eCorresponding Author
000185938 245__ $$aA new spatially scanning 2.7 µm laser hygrometer and new small-scale wind tunnel for direct analysis of the H$_{2}$O boundary layer structure at single plant leaves
000185938 260__ $$aBerlin$$bSpringer$$c2015
000185938 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1420611828_23892
000185938 3367_ $$2DataCite$$aOutput Types/Journal article
000185938 3367_ $$00$$2EndNote$$aJournal Article
000185938 3367_ $$2BibTeX$$aARTICLE
000185938 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000185938 3367_ $$2DRIVER$$aarticle
000185938 520__ $$aA new spatially scanning TDLAS in situ hygrometer based on a 2.7-µm DFB diode laser was constructed and used to analyse the water vapour concentration boundary layer structure at the surface of a single plant leaf. Using an absorption length of only 5.4 cm, the TDLAS hygrometer permits a H2O vapour concentration resolution of 31 ppmv. This corresponds to a normalized precision of 1.7 ppm m. In order to preserve and control the H2O boundary layer on an individual leaf and to study the boundary layer dependence on the wind speed to which the leaf might be exposed in nature, we also constructed a new, application specific, small-scale, wind tunnel for individual plant leaves. The rectangular, closed-loop tunnel has overall dimensions of 1.2 × 0.6 m and a measurement chamber dimension of 40  × 54 mm (H × W). It allows to generate a laminar flow with a precisely controlled wind speed at the plant leaf surface. Combining honeycombs and a miniaturized compression orifice, we could generate and control stable wind speeds from 0.1 to 0.9 m/s, and a highly laminar and homogeneous flow with an excellent relative spatial homogeneity of 0.969 ± 0.03. Combining the spectrometer and the wind tunnel, we analysed (for the first time) non-invasively the wind speed-dependent vertical structure of the H2O vapour distribution within the boundary layer of a single plant leaf. Using our time-lag-free data acquisition procedure for phase locked signal averaging, we achieved a temporal resolution of 0.2 s for an individual spatial point, while a complete vertical spatial scan at a spatial resolution of 0.18 mm took 77 s. The boundary layer thickness was found to decrease from 6.7  to 3.6 mm at increasing wind speeds of 0.1–0.9 m/s. According to our knowledge, this is the first experimental quantification of wind speed-dependent H2O vapour boundary layer concentration profiles of single plant leaves.
000185938 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000185938 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000185938 7001_ $$0P:(DE-Juel1)129388$$aRascher, U.$$b1$$ufzj
000185938 7001_ $$0P:(DE-Juel1)129379$$aPieruschka, R.$$b2$$ufzj
000185938 7001_ $$0P:(DE-Juel1)129402$$aSchurr, U.$$b3$$ufzj
000185938 7001_ $$0P:(DE-HGF)0$$aEbert, V.$$b4
000185938 773__ $$0PERI:(DE-600)1458437-2$$a10.1007/s00340-014-5948-1$$gVol. 118, no. 1, p. 11 - 21$$n1$$p11 - 21$$tApplied physics / B$$v118$$x1432-0649$$y2015
000185938 8564_ $$uhttp://link.springer.com/article/10.1007%2Fs00340-014-5948-1
000185938 8564_ $$uhttps://juser.fz-juelich.de/record/185938/files/FZJ-2015-00062.pdf$$yRestricted
000185938 909CO $$ooai:juser.fz-juelich.de:185938$$pVDB
000185938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000185938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129379$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000185938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129402$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000185938 9130_ $$0G:(DE-HGF)POF2-89582$$1G:(DE-HGF)POF2-89580$$2G:(DE-HGF)POF3-890$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000185938 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000185938 9141_ $$y2015
000185938 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000185938 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000185938 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000185938 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000185938 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000185938 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000185938 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000185938 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000185938 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000185938 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000185938 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000185938 980__ $$ajournal
000185938 980__ $$aVDB
000185938 980__ $$aI:(DE-Juel1)IBG-2-20101118
000185938 980__ $$aUNRESTRICTED