000186000 001__ 186000
000186000 005__ 20210129214800.0
000186000 0247_ $$2doi$$a10.1093/bioinformatics/btu625
000186000 0247_ $$2ISSN$$a0266-7061
000186000 0247_ $$2ISSN$$a1367-4803
000186000 0247_ $$2ISSN$$a1367-4811
000186000 0247_ $$2ISSN$$a1460-2059
000186000 0247_ $$2WOS$$aWOS:000347832300008
000186000 0247_ $$2altmetric$$aaltmetric:2723454
000186000 0247_ $$2pmid$$apmid:25246432
000186000 037__ $$aFZJ-2015-00109
000186000 041__ $$aEnglish
000186000 082__ $$a004
000186000 1001_ $$0P:(DE-HGF)0$$aWalsh, I.$$b0
000186000 245__ $$aComprehensive large-scale assessment of intrinsic protein disorder
000186000 260__ $$aOxford$$bOxford Univ. Press$$c2015
000186000 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1422273827_24687
000186000 3367_ $$2DataCite$$aOutput Types/Journal article
000186000 3367_ $$00$$2EndNote$$aJournal Article
000186000 3367_ $$2BibTeX$$aARTICLE
000186000 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000186000 3367_ $$2DRIVER$$aarticle
000186000 520__ $$aMotivation: Intrinsically disordered regions are key for the function of numerous proteins. Due to the difficulties in experimental disorder characterization, many computational predictors have been developed with various disorder flavors. Their performance is generally measured on small sets mainly from experimentally solved structures, e.g. Protein Data Bank (PDB) chains. MobiDB has only recently started to collect disorder annotations from multiple experimental structures.Results: MobiDB annotates disorder for UniProt sequences, allowing us to conduct the first large-scale assessment of fast disorder predictors on 25 833 different sequences with X-ray crystallographic structures. In addition to a comprehensive ranking of predictors, this analysis produced the following interesting observations. (i) The predictors cluster according to their disorder definition, with a consensus giving more confidence. (ii) Previous assessments appear over-reliant on data annotated at the PDB chain level and performance is lower on entire UniProt sequences. (iii) Long disordered regions are harder to predict. (iv) Depending on the structural and functional types of the proteins, differences in prediction performance of up to 10% are observed.
000186000 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000186000 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000186000 7001_ $$0P:(DE-HGF)0$$aGiollo, M.$$b1
000186000 7001_ $$0P:(DE-HGF)0$$aDi Domenico, T.$$b2
000186000 7001_ $$0P:(DE-HGF)0$$aFerrari, C.$$b3
000186000 7001_ $$0P:(DE-Juel1)132307$$aZimmermann, O.$$b4
000186000 7001_ $$0P:(DE-HGF)0$$aTosatto, S. C. E.$$b5$$eCorresponding Author
000186000 773__ $$0PERI:(DE-600)1468345-3$$a10.1093/bioinformatics/btu625$$gp. btu625$$n2$$p201-208$$tBioinformatics$$v31$$x0266-7061$$y2015
000186000 8564_ $$uhttp://bioinformatics.oxfordjournals.org/content/early/2014/10/13/bioinformatics.btu625.full.pdf+html
000186000 8564_ $$uhttps://juser.fz-juelich.de/record/186000/files/FZJ-2015-00109.pdf$$yRestricted
000186000 909CO $$ooai:juser.fz-juelich.de:186000$$pVDB
000186000 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132307$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000186000 9130_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000186000 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000186000 9141_ $$y2015
000186000 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000186000 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000186000 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000186000 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000186000 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000186000 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000186000 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000186000 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000186000 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000186000 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000186000 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000186000 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000186000 920__ $$lno
000186000 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000186000 980__ $$ajournal
000186000 980__ $$aVDB
000186000 980__ $$aI:(DE-Juel1)JSC-20090406
000186000 980__ $$aUNRESTRICTED