000186049 001__ 186049 000186049 005__ 20240625095118.0 000186049 0247_ $$2doi$$a10.1021/ja507812v 000186049 0247_ $$2ISSN$$a0002-7863 000186049 0247_ $$2ISSN$$a1520-5126 000186049 0247_ $$2WOS$$aWOS:000344516600033 000186049 0247_ $$2altmetric$$aaltmetric:21824697 000186049 0247_ $$2pmid$$apmid:25313638 000186049 037__ $$aFZJ-2015-00150 000186049 082__ $$a540 000186049 1001_ $$0P:(DE-HGF)0$$aMusiani, Francesco$$b0$$eCorresponding Author 000186049 245__ $$aMolecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV-1 Transactivation Responsive RNA 000186049 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2014 000186049 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435742611_5524 000186049 3367_ $$2DataCite$$aOutput Types/Journal article 000186049 3367_ $$00$$2EndNote$$aJournal Article 000186049 3367_ $$2BibTeX$$aARTICLE 000186049 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000186049 3367_ $$2DRIVER$$aarticle 000186049 520__ $$aThe HIV-1 Tat protein and several small molecules bind to HIV-1 transactivation responsive RNA (TAR) by selecting sparsely populated but pre-existing conformations. Thus, a complete characterization of TAR conformational ensemble and dynamics is crucial to understand this paradigmatic system and could facilitate the discovery of new antivirals targeting this essential regulatory element. We show here that molecular dynamics simulations can be effectively used toward this goal by bridging the gap between functionally relevant time scales that are inaccessible to current experimental techniques. Specifically, we have performed several independent microsecond long molecular simulations of TAR based on one of the most advanced force fields available for RNA, the parmbsc0 AMBER. Our simulations are first validated against available experimental data, yielding an excellent agreement with measured residual dipolar couplings and order parameter S2. This contrast with previous molecular dynamics simulations (Salmon et al., J. Am. Chem. Soc. 2013 135, 5457–5466) based on the CHARMM36 force field, which could achieve only modest accord with the experimental RDC values. Next, we direct the computation toward characterizing the internal dynamics of TAR over the microsecond time scale. We show that the conformational fluctuations observed over this previously elusive time scale have a strong functionally oriented character in that they are primed to sustain and assist ligand binding. 000186049 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0 000186049 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000186049 7001_ $$0P:(DE-Juel1)145921$$aRossetti, Giulia$$b1$$ufzj 000186049 7001_ $$0P:(DE-HGF)0$$aCapece, Luciana$$b2 000186049 7001_ $$0P:(DE-HGF)0$$aGerger, Thomas Martin$$b3 000186049 7001_ $$0P:(DE-HGF)0$$aMicheletti, Cristian$$b4 000186049 7001_ $$0P:(DE-HGF)0$$aVarani, Gabriele$$b5 000186049 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b6$$ufzj 000186049 773__ $$0PERI:(DE-600)1472210-0$$a10.1021/ja507812v$$gVol. 136, no. 44, p. 15631 - 15637$$n44$$p15631 - 15637$$tJournal of the American Chemical Society$$v136$$x1520-5126$$y2014 000186049 8564_ $$uhttps://juser.fz-juelich.de/record/186049/files/FZJ-2015-00150.pdf$$yRestricted 000186049 909CO $$ooai:juser.fz-juelich.de:186049$$pVDB 000186049 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000186049 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000186049 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000186049 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000186049 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000186049 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000186049 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000186049 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000186049 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000186049 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000186049 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000186049 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000186049 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10 000186049 9141_ $$y2014 000186049 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145921$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000186049 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich GmbH$$b6$$kFZJ 000186049 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000186049 9132_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x1 000186049 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0 000186049 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000186049 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x1 000186049 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x2 000186049 980__ $$ajournal 000186049 980__ $$aVDB 000186049 980__ $$aI:(DE-Juel1)JSC-20090406 000186049 980__ $$aI:(DE-Juel1)IAS-5-20120330 000186049 980__ $$aI:(DE-Juel1)INM-9-20140121 000186049 980__ $$aUNRESTRICTED 000186049 981__ $$aI:(DE-Juel1)IAS-5-20120330 000186049 981__ $$aI:(DE-Juel1)INM-9-20140121