000186049 001__ 186049
000186049 005__ 20240625095118.0
000186049 0247_ $$2doi$$a10.1021/ja507812v
000186049 0247_ $$2ISSN$$a0002-7863
000186049 0247_ $$2ISSN$$a1520-5126
000186049 0247_ $$2WOS$$aWOS:000344516600033
000186049 0247_ $$2altmetric$$aaltmetric:21824697
000186049 0247_ $$2pmid$$apmid:25313638
000186049 037__ $$aFZJ-2015-00150
000186049 082__ $$a540
000186049 1001_ $$0P:(DE-HGF)0$$aMusiani, Francesco$$b0$$eCorresponding Author
000186049 245__ $$aMolecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV-1 Transactivation Responsive RNA
000186049 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2014
000186049 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435742611_5524
000186049 3367_ $$2DataCite$$aOutput Types/Journal article
000186049 3367_ $$00$$2EndNote$$aJournal Article
000186049 3367_ $$2BibTeX$$aARTICLE
000186049 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000186049 3367_ $$2DRIVER$$aarticle
000186049 520__ $$aThe HIV-1 Tat protein and several small molecules bind to HIV-1 transactivation responsive RNA (TAR) by selecting sparsely populated but pre-existing conformations. Thus, a complete characterization of TAR conformational ensemble and dynamics is crucial to understand this paradigmatic system and could facilitate the discovery of new antivirals targeting this essential regulatory element. We show here that molecular dynamics simulations can be effectively used toward this goal by bridging the gap between functionally relevant time scales that are inaccessible to current experimental techniques. Specifically, we have performed several independent microsecond long molecular simulations of TAR based on one of the most advanced force fields available for RNA, the parmbsc0 AMBER. Our simulations are first validated against available experimental data, yielding an excellent agreement with measured residual dipolar couplings and order parameter S2. This contrast with previous molecular dynamics simulations (Salmon et al., J. Am. Chem. Soc. 2013 135, 5457–5466) based on the CHARMM36 force field, which could achieve only modest accord with the experimental RDC values. Next, we direct the computation toward characterizing the internal dynamics of TAR over the microsecond time scale. We show that the conformational fluctuations observed over this previously elusive time scale have a strong functionally oriented character in that they are primed to sustain and assist ligand binding.
000186049 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000186049 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000186049 7001_ $$0P:(DE-Juel1)145921$$aRossetti, Giulia$$b1$$ufzj
000186049 7001_ $$0P:(DE-HGF)0$$aCapece, Luciana$$b2
000186049 7001_ $$0P:(DE-HGF)0$$aGerger, Thomas Martin$$b3
000186049 7001_ $$0P:(DE-HGF)0$$aMicheletti, Cristian$$b4
000186049 7001_ $$0P:(DE-HGF)0$$aVarani, Gabriele$$b5
000186049 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b6$$ufzj
000186049 773__ $$0PERI:(DE-600)1472210-0$$a10.1021/ja507812v$$gVol. 136, no. 44, p. 15631 - 15637$$n44$$p15631 - 15637$$tJournal of the American Chemical Society$$v136$$x1520-5126$$y2014
000186049 8564_ $$uhttps://juser.fz-juelich.de/record/186049/files/FZJ-2015-00150.pdf$$yRestricted
000186049 909CO $$ooai:juser.fz-juelich.de:186049$$pVDB
000186049 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000186049 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000186049 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000186049 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000186049 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000186049 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000186049 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000186049 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000186049 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000186049 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000186049 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000186049 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000186049 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10
000186049 9141_ $$y2014
000186049 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145921$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000186049 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000186049 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000186049 9132_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x1
000186049 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000186049 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000186049 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x1
000186049 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x2
000186049 980__ $$ajournal
000186049 980__ $$aVDB
000186049 980__ $$aI:(DE-Juel1)JSC-20090406
000186049 980__ $$aI:(DE-Juel1)IAS-5-20120330
000186049 980__ $$aI:(DE-Juel1)INM-9-20140121
000186049 980__ $$aUNRESTRICTED
000186049 981__ $$aI:(DE-Juel1)IAS-5-20120330
000186049 981__ $$aI:(DE-Juel1)INM-9-20140121