001     186049
005     20240625095118.0
024 7 _ |a 10.1021/ja507812v
|2 doi
024 7 _ |a 0002-7863
|2 ISSN
024 7 _ |a 1520-5126
|2 ISSN
024 7 _ |a WOS:000344516600033
|2 WOS
024 7 _ |a altmetric:21824697
|2 altmetric
024 7 _ |a pmid:25313638
|2 pmid
037 _ _ |a FZJ-2015-00150
082 _ _ |a 540
100 1 _ |0 P:(DE-HGF)0
|a Musiani, Francesco
|b 0
|e Corresponding Author
245 _ _ |a Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV-1 Transactivation Responsive RNA
260 _ _ |a Washington, DC
|b American Chemical Society
|c 2014
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1435742611_5524
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a The HIV-1 Tat protein and several small molecules bind to HIV-1 transactivation responsive RNA (TAR) by selecting sparsely populated but pre-existing conformations. Thus, a complete characterization of TAR conformational ensemble and dynamics is crucial to understand this paradigmatic system and could facilitate the discovery of new antivirals targeting this essential regulatory element. We show here that molecular dynamics simulations can be effectively used toward this goal by bridging the gap between functionally relevant time scales that are inaccessible to current experimental techniques. Specifically, we have performed several independent microsecond long molecular simulations of TAR based on one of the most advanced force fields available for RNA, the parmbsc0 AMBER. Our simulations are first validated against available experimental data, yielding an excellent agreement with measured residual dipolar couplings and order parameter S2. This contrast with previous molecular dynamics simulations (Salmon et al., J. Am. Chem. Soc. 2013 135, 5457–5466) based on the CHARMM36 force field, which could achieve only modest accord with the experimental RDC values. Next, we direct the computation toward characterizing the internal dynamics of TAR over the microsecond time scale. We show that the conformational fluctuations observed over this previously elusive time scale have a strong functionally oriented character in that they are primed to sustain and assist ligand binding.
536 _ _ |0 G:(DE-HGF)POF2-411
|a 411 - Computational Science and Mathematical Methods (POF2-411)
|c POF2-411
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-Juel1)145921
|a Rossetti, Giulia
|b 1
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Capece, Luciana
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Gerger, Thomas Martin
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Micheletti, Cristian
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Varani, Gabriele
|b 5
700 1 _ |0 P:(DE-Juel1)145614
|a Carloni, Paolo
|b 6
|u fzj
773 _ _ |0 PERI:(DE-600)1472210-0
|a 10.1021/ja507812v
|g Vol. 136, no. 44, p. 15631 - 15637
|n 44
|p 15631 - 15637
|t Journal of the American Chemical Society
|v 136
|x 1520-5126
|y 2014
856 4 _ |u https://juser.fz-juelich.de/record/186049/files/FZJ-2015-00150.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:186049
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145921
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145614
|a Forschungszentrum Jülich GmbH
|b 6
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|v Computational Science and Mathematical Methods
|x 0
913 2 _ |0 G:(DE-HGF)POF3-574
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Theory, modelling and simulation
|x 1
913 1 _ |0 G:(DE-HGF)POF2-411
|1 G:(DE-HGF)POF2-410
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)9910
|2 StatID
|a IF >= 10
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 1
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-5-20120330
981 _ _ |a I:(DE-Juel1)INM-9-20140121


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21