001 | 186049 | ||
005 | 20240625095118.0 | ||
024 | 7 | _ | |a 10.1021/ja507812v |2 doi |
024 | 7 | _ | |a 0002-7863 |2 ISSN |
024 | 7 | _ | |a 1520-5126 |2 ISSN |
024 | 7 | _ | |a WOS:000344516600033 |2 WOS |
024 | 7 | _ | |a altmetric:21824697 |2 altmetric |
024 | 7 | _ | |a pmid:25313638 |2 pmid |
037 | _ | _ | |a FZJ-2015-00150 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |0 P:(DE-HGF)0 |a Musiani, Francesco |b 0 |e Corresponding Author |
245 | _ | _ | |a Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV-1 Transactivation Responsive RNA |
260 | _ | _ | |a Washington, DC |b American Chemical Society |c 2014 |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1435742611_5524 |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |2 DRIVER |a article |
520 | _ | _ | |a The HIV-1 Tat protein and several small molecules bind to HIV-1 transactivation responsive RNA (TAR) by selecting sparsely populated but pre-existing conformations. Thus, a complete characterization of TAR conformational ensemble and dynamics is crucial to understand this paradigmatic system and could facilitate the discovery of new antivirals targeting this essential regulatory element. We show here that molecular dynamics simulations can be effectively used toward this goal by bridging the gap between functionally relevant time scales that are inaccessible to current experimental techniques. Specifically, we have performed several independent microsecond long molecular simulations of TAR based on one of the most advanced force fields available for RNA, the parmbsc0 AMBER. Our simulations are first validated against available experimental data, yielding an excellent agreement with measured residual dipolar couplings and order parameter S2. This contrast with previous molecular dynamics simulations (Salmon et al., J. Am. Chem. Soc. 2013 135, 5457–5466) based on the CHARMM36 force field, which could achieve only modest accord with the experimental RDC values. Next, we direct the computation toward characterizing the internal dynamics of TAR over the microsecond time scale. We show that the conformational fluctuations observed over this previously elusive time scale have a strong functionally oriented character in that they are primed to sustain and assist ligand binding. |
536 | _ | _ | |0 G:(DE-HGF)POF2-411 |a 411 - Computational Science and Mathematical Methods (POF2-411) |c POF2-411 |f POF II |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, juser.fz-juelich.de |
700 | 1 | _ | |0 P:(DE-Juel1)145921 |a Rossetti, Giulia |b 1 |u fzj |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Capece, Luciana |b 2 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Gerger, Thomas Martin |b 3 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Micheletti, Cristian |b 4 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Varani, Gabriele |b 5 |
700 | 1 | _ | |0 P:(DE-Juel1)145614 |a Carloni, Paolo |b 6 |u fzj |
773 | _ | _ | |0 PERI:(DE-600)1472210-0 |a 10.1021/ja507812v |g Vol. 136, no. 44, p. 15631 - 15637 |n 44 |p 15631 - 15637 |t Journal of the American Chemical Society |v 136 |x 1520-5126 |y 2014 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/186049/files/FZJ-2015-00150.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:186049 |p VDB |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)145921 |a Forschungszentrum Jülich GmbH |b 1 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)145614 |a Forschungszentrum Jülich GmbH |b 6 |k FZJ |
913 | 2 | _ | |0 G:(DE-HGF)POF3-511 |1 G:(DE-HGF)POF3-510 |2 G:(DE-HGF)POF3-500 |a DE-HGF |b Key Technologies |l Supercomputing & Big Data |v Computational Science and Mathematical Methods |x 0 |
913 | 2 | _ | |0 G:(DE-HGF)POF3-574 |1 G:(DE-HGF)POF3-570 |2 G:(DE-HGF)POF3-500 |a DE-HGF |b Key Technologies |l Decoding the Human Brain |v Theory, modelling and simulation |x 1 |
913 | 1 | _ | |0 G:(DE-HGF)POF2-411 |1 G:(DE-HGF)POF2-410 |2 G:(DE-HGF)POF2-400 |a DE-HGF |b Schlüsseltechnologien |l Supercomputing |v Computational Science and Mathematical Methods |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |
914 | 1 | _ | |y 2014 |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |
915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |
915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Thomson Reuters Master Journal List |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |
915 | _ | _ | |0 StatID:(DE-HGF)0310 |2 StatID |a DBCoverage |b NCBI Molecular Biology Database |
915 | _ | _ | |0 StatID:(DE-HGF)0420 |2 StatID |a Nationallizenz |
915 | _ | _ | |0 StatID:(DE-HGF)1030 |2 StatID |a DBCoverage |b Current Contents - Life Sciences |
915 | _ | _ | |0 StatID:(DE-HGF)1050 |2 StatID |a DBCoverage |b BIOSIS Previews |
915 | _ | _ | |0 StatID:(DE-HGF)1150 |2 StatID |a DBCoverage |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |0 StatID:(DE-HGF)9910 |2 StatID |a IF >= 10 |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-5-20120330 |k IAS-5 |l Computational Biomedicine |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-9-20140121 |k INM-9 |l Computational Biomedicine |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a I:(DE-Juel1)IAS-5-20120330 |
980 | _ | _ | |a I:(DE-Juel1)INM-9-20140121 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IAS-5-20120330 |
981 | _ | _ | |a I:(DE-Juel1)INM-9-20140121 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|