000186057 001__ 186057
000186057 005__ 20210129214811.0
000186057 0247_ $$2doi$$a10.2967/jnumed.114.148734
000186057 0247_ $$2WOS$$aWOS:000347233700034
000186057 0247_ $$2altmetric$$aaltmetric:3002916
000186057 0247_ $$2pmid$$apmid:25525183
000186057 037__ $$aFZJ-2015-00158
000186057 082__ $$a610
000186057 1001_ $$0P:(DE-Juel1)156211$$aDunkl, V.$$b0$$eCorresponding Author$$ufzj
000186057 245__ $$aThe usefulness of dynamic O-(2-18F-Fluoroethyl)-L-Tyrosine PET in the clinical evaluation of brain tumors in childrenand adolescents.
000186057 260__ $$aReston, Va.$$bSNM$$c2015
000186057 264_1 $$2Crossref$$3online$$bSociety of Nuclear Medicine$$c2014-12-18
000186057 264_1 $$2Crossref$$3print$$bSociety of Nuclear Medicine$$c2015-01-01
000186057 264_1 $$2Crossref$$3print$$bSociety of Nuclear Medicine$$c2015-01-01
000186057 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1420725764_9916
000186057 3367_ $$2DataCite$$aOutput Types/Journal article
000186057 3367_ $$00$$2EndNote$$aJournal Article
000186057 3367_ $$2BibTeX$$aARTICLE
000186057 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000186057 3367_ $$2DRIVER$$aarticle
000186057 520__ $$aExperience regarding O-(2-18F-fluoroethyl)-l-tyrosine (18F-FET) PET in children and adolescents with brain tumors is limited. Methods: Sixty-nine 18F-FET PET scans of 48 children and adolescents (median age, 13 y; range, 1–18 y) were analyzed retrospectively. Twenty-six scans to assess newly diagnosed cerebral lesions, 24 scans for diagnosing tumor progression or recurrence, 8 scans for monitoring of chemotherapy effects, and 11 scans for the detection of residual tumor after resection were obtained. Maximum and mean tumor-to-brain ratios (TBRs) were determined at 20–40 min after injection, and time–activity curves of 18F-FET uptake were assigned to 3 different patterns: constant increase; peak at greater than 20–40 min after injection, followed by a plateau; and early peak (≤20 min), followed by a constant descent. The diagnostic accuracy of 18F-FET PET was assessed by receiver-operating-characteristic curve analyses using histology or clinical course as a reference. Results: In patients with newly diagnosed cerebral lesions, the highest accuracy (77%) to detect neoplastic tissue (19/26 patients) was obtained when the maximum TBR was 1.7 or greater (area under the curve, 0.80 ± 0.09; sensitivity, 79%; specificity, 71%; positive predictive value, 88%; P = 0.02). For diagnosing tumor progression or recurrence, the highest accuracy (82%) was obtained when curve patterns 2 or 3 were present (area under the curve, 0.80 ± 0.11; sensitivity, 75%; specificity, 90%; positive predictive value, 90%; P = 0.02). During chemotherapy, a decrease of TBRs was associated with a stable clinical course, and in 2 patients PET detected residual tumor after presumably complete tumor resection. Conclusion: Our findings suggest that 18F-FET PET can add valuable information for clinical decision making in pediatric brain tumor patients. 
000186057 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000186057 7001_ $$0P:(DE-HGF)0$$aCleff, C.$$b1
000186057 7001_ $$0P:(DE-Juel1)131627$$aStoffels, G.$$b2$$ufzj
000186057 7001_ $$0P:(DE-Juel1)143958$$aJudov, N.$$b3$$ufzj
000186057 7001_ $$0P:(DE-HGF)0$$aSarikaya-Seiwert, S.$$b4
000186057 7001_ $$0P:(DE-HGF)0$$aLaw, I.$$b5
000186057 7001_ $$0P:(DE-HGF)0$$aBogeskov, L.$$b6
000186057 7001_ $$0P:(DE-HGF)0$$aNysom, K.$$b7
000186057 7001_ $$0P:(DE-HGF)0$$aAndersen, S. B.$$b8
000186057 7001_ $$0P:(DE-HGF)0$$aSteiger, H.-J.$$b9
000186057 7001_ $$0P:(DE-Juel1)131720$$aFink, G. R.$$b10$$ufzj
000186057 7001_ $$0P:(DE-HGF)0$$aReifenberger, G.$$b11
000186057 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b12$$ufzj
000186057 7001_ $$0P:(DE-Juel1)131816$$aCoenen, H. H.$$b13$$ufzj
000186057 7001_ $$0P:(DE-Juel1)131777$$aLangen, K.-J.$$b14$$ufzj
000186057 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, N.$$b15$$ufzj
000186057 77318 $$2Crossref$$3journal-article$$a10.2967/jnumed.114.148734$$b : Society of Nuclear Medicine, 2014-12-18$$n1$$p88-92$$tJournal of Nuclear Medicine$$v56$$x0161-5505$$y2014
000186057 773__ $$0PERI:(DE-600)2040222-3$$a10.2967/jnumed.114.148734$$n1$$p88-92$$tJournal of nuclear medicine$$v56$$x0161-5505$$y2014
000186057 909CO $$ooai:juser.fz-juelich.de:186057$$pVDB
000186057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156211$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000186057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131627$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000186057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143958$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000186057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000186057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich GmbH$$b12$$kFZJ
000186057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131816$$aForschungszentrum Jülich GmbH$$b13$$kFZJ
000186057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich GmbH$$b14$$kFZJ
000186057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich GmbH$$b15$$kFZJ
000186057 9130_ $$0G:(DE-HGF)POF2-333$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vPathophysiological Mechanisms of Neurological and Psychiatric Diseases$$x0
000186057 9130_ $$0G:(DE-HGF)POF2-89572$$1G:(DE-HGF)POF2-89570$$2G:(DE-HGF)POF3-890$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x1
000186057 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000186057 9141_ $$y2015
000186057 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000186057 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000186057 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000186057 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000186057 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000186057 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000186057 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000186057 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000186057 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000186057 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000186057 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000186057 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000186057 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000186057 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000186057 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x2
000186057 980__ $$ajournal
000186057 980__ $$aVDB
000186057 980__ $$aI:(DE-Juel1)INM-3-20090406
000186057 980__ $$aI:(DE-Juel1)INM-4-20090406
000186057 980__ $$aI:(DE-Juel1)INM-5-20090406
000186057 980__ $$aUNRESTRICTED
000186057 981__ $$aI:(DE-Juel1)INM-4-20090406
000186057 981__ $$aI:(DE-Juel1)INM-5-20090406