| Home > Publications database > The usefulness of dynamic O-(2-18F-Fluoroethyl)-L-Tyrosine PET in the clinical evaluation of brain tumors in childrenand adolescents. > print |
| 001 | 186057 | ||
| 005 | 20210129214811.0 | ||
| 024 | 7 | _ | |a 10.2967/jnumed.114.148734 |2 doi |
| 024 | 7 | _ | |a WOS:000347233700034 |2 WOS |
| 024 | 7 | _ | |a altmetric:3002916 |2 altmetric |
| 024 | 7 | _ | |a pmid:25525183 |2 pmid |
| 037 | _ | _ | |a FZJ-2015-00158 |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Dunkl, V. |0 P:(DE-Juel1)156211 |b 0 |e Corresponding Author |u fzj |
| 245 | _ | _ | |a The usefulness of dynamic O-(2-18F-Fluoroethyl)-L-Tyrosine PET in the clinical evaluation of brain tumors in childrenand adolescents. |
| 260 | _ | _ | |a Reston, Va. |c 2015 |b SNM |
| 264 | _ | 1 | |3 online |2 Crossref |b Society of Nuclear Medicine |c 2014-12-18 |
| 264 | _ | 1 | |3 print |2 Crossref |b Society of Nuclear Medicine |c 2015-01-01 |
| 264 | _ | 1 | |3 print |2 Crossref |b Society of Nuclear Medicine |c 2015-01-01 |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1420725764_9916 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a article |2 DRIVER |
| 520 | _ | _ | |a Experience regarding O-(2-18F-fluoroethyl)-l-tyrosine (18F-FET) PET in children and adolescents with brain tumors is limited. Methods: Sixty-nine 18F-FET PET scans of 48 children and adolescents (median age, 13 y; range, 1–18 y) were analyzed retrospectively. Twenty-six scans to assess newly diagnosed cerebral lesions, 24 scans for diagnosing tumor progression or recurrence, 8 scans for monitoring of chemotherapy effects, and 11 scans for the detection of residual tumor after resection were obtained. Maximum and mean tumor-to-brain ratios (TBRs) were determined at 20–40 min after injection, and time–activity curves of 18F-FET uptake were assigned to 3 different patterns: constant increase; peak at greater than 20–40 min after injection, followed by a plateau; and early peak (≤20 min), followed by a constant descent. The diagnostic accuracy of 18F-FET PET was assessed by receiver-operating-characteristic curve analyses using histology or clinical course as a reference. Results: In patients with newly diagnosed cerebral lesions, the highest accuracy (77%) to detect neoplastic tissue (19/26 patients) was obtained when the maximum TBR was 1.7 or greater (area under the curve, 0.80 ± 0.09; sensitivity, 79%; specificity, 71%; positive predictive value, 88%; P = 0.02). For diagnosing tumor progression or recurrence, the highest accuracy (82%) was obtained when curve patterns 2 or 3 were present (area under the curve, 0.80 ± 0.11; sensitivity, 75%; specificity, 90%; positive predictive value, 90%; P = 0.02). During chemotherapy, a decrease of TBRs was associated with a stable clinical course, and in 2 patients PET detected residual tumor after presumably complete tumor resection. Conclusion: Our findings suggest that 18F-FET PET can add valuable information for clinical decision making in pediatric brain tumor patients. |
| 536 | _ | _ | |a 572 - (Dys-)function and Plasticity (POF3-572) |0 G:(DE-HGF)POF3-572 |c POF3-572 |x 0 |f POF III |
| 700 | 1 | _ | |a Cleff, C. |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Stoffels, G. |0 P:(DE-Juel1)131627 |b 2 |u fzj |
| 700 | 1 | _ | |a Judov, N. |0 P:(DE-Juel1)143958 |b 3 |u fzj |
| 700 | 1 | _ | |a Sarikaya-Seiwert, S. |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Law, I. |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Bogeskov, L. |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Nysom, K. |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Andersen, S. B. |0 P:(DE-HGF)0 |b 8 |
| 700 | 1 | _ | |a Steiger, H.-J. |0 P:(DE-HGF)0 |b 9 |
| 700 | 1 | _ | |a Fink, G. R. |0 P:(DE-Juel1)131720 |b 10 |u fzj |
| 700 | 1 | _ | |a Reifenberger, G. |0 P:(DE-HGF)0 |b 11 |
| 700 | 1 | _ | |a Shah, N. J. |0 P:(DE-Juel1)131794 |b 12 |u fzj |
| 700 | 1 | _ | |a Coenen, H. H. |0 P:(DE-Juel1)131816 |b 13 |u fzj |
| 700 | 1 | _ | |a Langen, K.-J. |0 P:(DE-Juel1)131777 |b 14 |u fzj |
| 700 | 1 | _ | |a Galldiks, N. |0 P:(DE-Juel1)143792 |b 15 |u fzj |
| 773 | 1 | 8 | |a 10.2967/jnumed.114.148734 |b : Society of Nuclear Medicine, 2014-12-18 |n 1 |p 88-92 |3 journal-article |2 Crossref |t Journal of Nuclear Medicine |v 56 |y 2014 |x 0161-5505 |
| 773 | _ | _ | |a 10.2967/jnumed.114.148734 |0 PERI:(DE-600)2040222-3 |n 1 |p 88-92 |t Journal of nuclear medicine |v 56 |y 2014 |x 0161-5505 |
| 909 | C | O | |o oai:juser.fz-juelich.de:186057 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)156211 |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)131627 |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)143958 |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)131720 |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)131794 |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)131816 |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 14 |6 P:(DE-Juel1)131777 |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 15 |6 P:(DE-Juel1)143792 |
| 913 | 0 | _ | |a DE-HGF |b Gesundheit |l Funktion und Dysfunktion des Nervensystems |1 G:(DE-HGF)POF2-330 |0 G:(DE-HGF)POF2-333 |2 G:(DE-HGF)POF2-300 |v Pathophysiological Mechanisms of Neurological and Psychiatric Diseases |x 0 |
| 913 | 0 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF2-89570 |0 G:(DE-HGF)POF2-89572 |2 G:(DE-HGF)POF3-890 |v (Dys-)function and Plasticity |x 1 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-572 |2 G:(DE-HGF)POF3-500 |v (Dys-)function and Plasticity |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 914 | 1 | _ | |y 2015 |
| 915 | _ | _ | |a JCR/ISI refereed |0 StatID:(DE-HGF)0010 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-3-20090406 |k INM-3 |l Kognitive Neurowissenschaften |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-4-20090406 |k INM-4 |l Physik der Medizinischen Bildgebung |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-5-20090406 |k INM-5 |l Nuklearchemie |x 2 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)INM-3-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)INM-4-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)INM-5-20090406 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)INM-4-20090406 |
| 981 | _ | _ | |a I:(DE-Juel1)INM-5-20090406 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|