000186065 001__ 186065
000186065 005__ 20220930130037.0
000186065 0247_ $$2doi$$a10.5194/cp-10-2153-2014
000186065 0247_ $$2ISSN$$a1814-9324
000186065 0247_ $$2ISSN$$a1814-9332
000186065 0247_ $$2Handle$$a2128/8238
000186065 0247_ $$2WOS$$aWOS:000347569500012
000186065 037__ $$aFZJ-2015-00166
000186065 082__ $$a550
000186065 1001_ $$0P:(DE-Juel1)142452$$aZhu, J.$$b0
000186065 245__ $$aClimate history of the Southern Hemisphere Westerlies belt during the last glacial-interglacial transition revealed from lake water oxygen isotope reconstruction of Laguna Potrok Aike (52° S, Argentina)
000186065 260__ $$aKatlenburg-Lindau$$bCopernicus Ges.$$c2014
000186065 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s186065
000186065 3367_ $$2DataCite$$aOutput Types/Journal article
000186065 3367_ $$00$$2EndNote$$aJournal Article
000186065 3367_ $$2BibTeX$$aARTICLE
000186065 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000186065 3367_ $$2DRIVER$$aarticle
000186065 520__ $$aThe Southern Hemisphere Westerlies (SHW) play a crucial role in large-scale ocean circulation and global carbon cycling. Accordingly, the reconstruction of how the latitudinal position and intensity of the SHW belt changed during the last glacial termination is essential for understanding global climatic fluctuations. The southernmost part of the South American continent is the only continental mass intersecting a large part of the SHW belt. However, due to the scarcity of suitable palaeoclimate archives continuous proxy records back to the last glacial are rare in southern Patagonia. Here, we show an oxygen isotope record from cellulose and purified bulk organic matter of submerged aquatic moss shoots from Laguna Potrok Aike (52° S, 70° W), a deep maar lake located in semi-arid, extra-Andean Patagonia, covering the last glacial–interglacial transition (26 000 to 8500 cal BP). Based on the highly significant correlation between oxygen isotope values of modern aquatic mosses and their host waters and abundant well-preserved moss remains in the sediment record a high-resolution reconstruction of the lake water oxygen isotope (δ18Olw-corr) composition is presented. The reconstructed δ18Olw-corr values for the last glacial are ca. 3‰ lower than modern values, which can best be explained by generally cooler air temperatures and changes in the moisture source area, together with the occurrence of permafrost leading to a prolonged lake water residence time. Thus, the overall glacial δ18Olw-corr level until 21 000 cal BP is consistent with a scenario of weakened or absent SHW at 52° S compared to the present. During the last deglaciation, reconstructed δ18Olw-corr values reveal a significant two-step rise describing the detailed response of the lake's hydrological balance to this fundamental climatic shift. Rapid warming is seen as the cause of the first rise of ca. 2&permil, in δ18Olw-corr during the first two millennia of deglaciation (17 600 to 15 600 cal BP) owing to more 18O enriched precipitation and increasing temperature-induced evaporation. Following this interpretation, an early strengthening of the SHW would not be necessary. The subsequent decrease in δ18Olw-corr by up to 0.7‰ marks a millennial-scale transition period between 15 600 and 14 600 cal BP interpreted as the transition from a system driven by temperature-induced evaporation to a system more dominated by wind-induced evaporation. The δ18Olw-corr record resumes its pronounced increase around 14 600 cal BP. This further cumulative enrichment in 18O of lake water could be interpreted as response to strengthened wind-driven evaporation as induced by the intensification and establishment of the SHW at the latitude of Laguna Potrok Aike (52° S) since 14 600 cal BP. δ18Olw-corr approaching modern values around 8500 cal BP reflect that the SHW exerted their full influence on the lake water balance at that time provoking a prevailing more arid steppe climate in the Laguna Potrok Aike region.
000186065 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000186065 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x1
000186065 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000186065 7001_ $$0P:(DE-Juel1)129567$$aLücke, A.$$b1$$eCorresponding Author
000186065 7001_ $$0P:(DE-Juel1)129557$$aWissel, H.$$b2$$ufzj
000186065 7001_ $$0P:(DE-HGF)0$$aMayr, C.$$b3
000186065 7001_ $$0P:(DE-HGF)0$$aEnters, D.$$b4
000186065 7001_ $$0P:(DE-HGF)0$$aJa Kim, K.$$b5
000186065 7001_ $$0P:(DE-HGF)0$$aOhlendorf, C.$$b6
000186065 7001_ $$0P:(DE-HGF)0$$aSchäbitz, F.$$b7
000186065 7001_ $$0P:(DE-HGF)0$$aZolitschka, B.$$b8
000186065 773__ $$0PERI:(DE-600)2217985-9$$a10.5194/cp-10-2153-2014$$gVol. 10, no. 6, p. 2153 - 2169$$n6$$p2153 - 2169$$tClimate of the past$$v10$$x1814-9332$$y2014
000186065 8564_ $$uhttps://juser.fz-juelich.de/record/186065/files/FZJ-2015-00166.pdf$$yOpenAccess
000186065 8564_ $$uhttps://juser.fz-juelich.de/record/186065/files/FZJ-2015-00166.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000186065 8564_ $$uhttps://juser.fz-juelich.de/record/186065/files/FZJ-2015-00166.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000186065 8564_ $$uhttps://juser.fz-juelich.de/record/186065/files/FZJ-2015-00166.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000186065 8767_ $$92014-07-02$$d2014-07-08$$eAPC$$jZahlung erfolgt
000186065 909CO $$ooai:juser.fz-juelich.de:186065$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000186065 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142452$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000186065 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129567$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000186065 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129557$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000186065 9132_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000186065 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000186065 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x1
000186065 9141_ $$y2014
000186065 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000186065 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000186065 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000186065 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000186065 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000186065 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000186065 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000186065 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000186065 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000186065 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000186065 920__ $$lyes
000186065 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000186065 9801_ $$aFullTexts
000186065 980__ $$ajournal
000186065 980__ $$aVDB
000186065 980__ $$aUNRESTRICTED
000186065 980__ $$aFullTexts
000186065 980__ $$aI:(DE-Juel1)IBG-3-20101118
000186065 980__ $$aAPC