001     186107
005     20210129214815.0
024 7 _ |a 10.1109/TMAG.2014.2321632
|2 doi
024 7 _ |a 0018-9464
|2 ISSN
024 7 _ |a 1941-0069
|2 ISSN
024 7 _ |a WOS:000349465900083
|2 WOS
037 _ _ |a FZJ-2015-00195
082 _ _ |a 620
100 1 _ |a Mertins, Hans-Christoph
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Detection of the Magnetocrystalline Anisotropy in X-Ray Magnetic Linear Dichroism Reflection Spectra Across the Fe 3p and 2p Edges
260 _ _ |a New York, NY
|c 2014
|b IEEE
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1421066276_25611
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The magnetocrystalline anisotropy of X-ray magnetic linear dichroism (XMLD) reflection spectra measured on single-crystalline bcc Fe films across the 3p and 2p edges are presented. The XMLD spectra were obtained from a series of reflection spectra by aligning the electric field vector of linearly polarized undulator radiation with respect to the crystal axes. Our results show the presence of a huge magnetocrystalline anisotropy in the XMLD reflection spectra. The XMLD signal is further investigated as a function of the Fe film thickness in Au/Fe/Ag/GaAs layered systems. Simulations of the reflection spectra reveal the influences of interference effects, which can enhance or diminish the XMLD signals. The measured spectra are in good agreement with ab initio calculated spectra.
536 _ _ |a 422 - Spin-based and quantum information (POF2-422)
|0 G:(DE-HGF)POF2-422
|c POF2-422
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Legut, Dominik
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Tesch, Marc
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Jansing, Christine
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gilbert, Markus
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Gaupp, Andreas
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Oppeneer, Peter M.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Burgler, Daniel E.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Schneider, Claus M.
|0 P:(DE-Juel1)130948
|b 8
|u fzj
700 1 _ |a Berges, Ulf
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1109/TMAG.2014.2321632
|g Vol. 50, no. 11, p. 1 - 4
|0 PERI:(DE-600)2025397-7
|n 11
|p 1 - 4
|t IEEE transactions on magnetics
|v 50
|y 2014
|x 1941-0069
856 4 _ |u https://juser.fz-juelich.de/record/186107/files/FZJ-2015-00195.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:186107
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130948
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-422
|2 G:(DE-HGF)POF2-400
|v Spin-based and quantum information
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21