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The morphology and the quantitative composition of the Fe-Si interface layer forming at each Fe
layer of a (Fe/Si); multilayer have been determined by means of conversion electron Mossbauer
spectroscopy (CEMS) and high-resolution transmission electron microscopy (HRTEM). For the
CEMS measurements, each layer was selected by depositing the Mdssbauer active °’Fe isotope
with 95% enrichment. Samples with Fe layers of nominal thickness dr, =2.6 nm and Si spacers of
ds;=1.5nm were prepared by thermal evaporation onto a GaAs(001) substrate with an intermediate
Ag(001) buffer layer. HRTEM images showed that Si layers grow amorphous and the epitaxial
growth of the Fe is good only for the first deposited layer. The CEMS spectra show that at all Fe/Si
and Si/Fe interfaces a paramagnetic c-Fe; _,Si phase is formed, which contains 16% of the nominal
Fe deposited in the Fe layer. The bottom Fe layer, which is in contact with the Ag buffer, also
contains o-Fe and an Fe;_,Si, alloy that cannot be attributed to a single phase. In contrast, the
other two layers only comprise an Fe,_,Si, alloy with a Si concentration of ~0.15, but no «-Fe.

© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4887522]

I. INTRODUCTION

In multilayers, atomic diffusion at the interfaces plays a
paramount role in controlling their physical properties and
therefore their potential applications. While atomic diffusion
in bulk solids has been extensively studied and is quite well
understood, a reasonable understanding of the interfacial dif-
fusion in multilayers is yet desirable. Several factors such as
a steep concentration gradient at the interfaces, interfacial
stress, and disorder may significantly modify the diffusion in
multilayers.

Especially, in ferromagnetic metal/semiconductor multi-
layers, as in the (Fe/Si), multilayered structures, the Fe and
Si atomic interdiffusion and subsequent reaction give rise to
non-abrupt interfaces formed by one or several iron silicide
phases. The formation of such new compounds can affect the
physical properties of the multilayers in a positive or nega-
tive way."? For example, the presence of non-magnetic sili-
cides decreases the current spin polarization in the silicon
spacer layer and modifies the interlayer exchange coupling
(IEC) mechanism. It is, therefore, of utmost importance to
assess the interlayer composition.

The Fe/Si system is complex and includes a number of
stable and metastable compounds produced during the layer
growth process. Gomoyunova et al.® reported experimental
results which support the existence of three stages in the Fe
deposition on Si(100) at room temperature (RT):*° forma-
tion of an Fe(Si) alloy, followed by its transformation into
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the stoichiometric Fe;Si phase, and the growth of an Fe film.
The critical Fe thickness necessary for that transformation
was found to be 5 Fe monolayers.

Extensive work on the determination of the iron silicide
constituents at the interfaces has been reported,‘g_15 but the
characterization of its dependence on the layer position in a
multilayered stack has not been studied yet. This will be
tackled in the present work on an (Fe/Si); multilayer by *"Fe
conversion electron Mossbauer spectroscopy (CEMS), which
allows studying Fe layers at selected depth. To this end we
prepared a series of samples consisting of three sequentially
deposited Fe/Si bilayers, where only one Fe layer consisted
completely of highly enriched (95%) >’Fe, while the other
two were made of natural Fe, which contains ~2.7% SPe.

Il. EXPERIMENTAL DETAILS

Multilayers with the full layer sequence GaAs/Fe(1 nm)/
Ag(150 nm)/Fe(2.6 nm)/Si(1.5 nm)/Fe(2.6 nm)/Si(1.5 nm)/
Fe(2.6 nm)/Si(10 nm) were prepared by thermal evaporation
in a molecular-beam epitaxy system.'® First, a buffer layer of
Fe (1nm)/Ag (150nm) on a GaAs(001) substrate was pre-
pared in situ, since this substrate has been reported to
improve the crystalline quality of the Fe films and reduce
roughness.'” Then, three Fe layers with a nominal thickness
of dr, =2.6nm separated by Si spacers of dg; = 1.5 nm were
deposited, where the last Si layer of 10nm thickness serves
as capping to avoid the oxidation of Fe. A series of three
samples was prepared, each one containing only one out of
the three Fe layers formed by *’Fe. The samples will be

© 2014 AIP Publishing LLC
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denoted Ci, where i =1, 2, 3 indicates the place of the STFe
layer in the multilayer stack. For instance, C1 makes refer-
ence to the sample with the first deposited Fe layer made of
*’Fe and the other two of natural Fe. An Fe foil of 95%
enriched °"Fe was used as target. The background pressure
was better than 10~ '° mbar. The thicknesses and the deposi-
tion rates, of about 0.6 nm/min for both Si and Fe (natural Fe
and ’Fe), were controlled by a calibrated quartz crystal
monitor, and the layers were characterized by Auger electron
spectroscopy and low-energy electron diffraction (LEED).
All Fe and Si layers were deposited at RT. A well-defined
LEED pattern observed throughout the Ag buffer and the
first deposited Fe film indicated the starting point for a good
epitaxial growth.'®

High-resolution transmission electron microscopy
(HRTEM) images were obtained in a FEI Titan Cube micro-
scope operated at 300kV and equipped with an image aber-
ration corrector from CEOS. The HRTEM specimens were
cross sectional lamellae of about 50 nm thickness fabricated
in a FEI Helios 600 Nanolab. The single crystal substrate
zone axis of the lamella was used to orient it to insure that
the interfaces were perpendicular to the image plane; i.e.,
parallel to the direction of the electron beam.

The CEMS spectra were acquired at room temperature
using a constant acceleration spectrometer with symmetrical
waveform and a >’Co (25mCi) in Rh matrix source. A Rikon-5
detector with a 96%He-4%N, mixture gas was used.

lll. RESULTS AND DISCUSSION
A. Morphology study by HRTEM

HRTEM images were collected on the as-deposited C1
sample to characterize the morphology of the films and inter-
faces. Fig. 1 shows a good epitaxial growth of the first Fe
layer on the crystalline Ag(001) buffer, with thickness close
to the nominal value and a sharp interface. In the alternation
of layers of the subsequent deposition of Si and Fe the crys-
tallinity of the second deposited Fe layer is still observed,
while that of the third layer is hardly visible, both with

FIG. 1. HRTEM image of the C1 pristine sample.
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increased interface roughness. In contrast, no crystal planes
of the Si layers are observed, which indicates that the Si
spacers have grown in an amorphous way, and therefore, the
second and third deposited Fe layers have grown on amor-
phous Si spacers.

B. Compositional study by CEMS

CEMS is a powerful tool to investigate the presence
of Fe compounds in monolayers'®** and in multilayered
systems.”! 11223 This spectroscopy is a local probe for *'Fe
nuclei. The RT CEMS spectra from the present samples are
depicted in Fig. 2. The spectrum of the first deposited Fe
layer (sample C1) is clearly different from those of the sub-
sequently deposited Fe layers (samples C2 and C3), which
reflects that this °'Fe layer was deposited directly on the
crystalline Ag buffer, while in the other two samples the
57Fe layers were grown on amorphous Si spacers.

Although the Mossbauer spectra of Fe;_,Si, bulk alloys
for concentrations up to almost x=0.27 have been very
well described in terms of a set of sextets related to Fe
environments,”*>° more recent works on Fe-Si multilayers™' "'
have used a nearly continuous distribution of sextets to
account for the spectral intensity attributed to a ferromag-
netic Fe;_,Si, alloy. In the case of nanometric thin films the
ratio of surface to volume number of Fe atoms is large.
Therefore, the contribution of the interfacial Fe to the CEMS
spectra is significant.

In the present work, we have chosen to fit the spectral
intensity attributed to the Fe,_,Si, alloy and the possible
presence of a-Fe with a combination of several sextets in

Y
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FIG. 2. RT CEMS spectra of the as-deposited Ci (i =1, 2, 3) samples, where
i indicates the 3’Fe layer position in the multilayer deposition sequence. The
o-Fe sextet on the bottom spectrum is shown as filled area (green). Inset:
schematic representation of the multilayer, red indicates the >’Fe layer
position.
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order to get deeper insight into the silicide phases distribution
and to estimate the Si atomic concentration in the Fe,_ Si, alloy.

To our knowledge this is the first assignment of
Mossbauer components to specific Fe site environments in
multilayer interfaces, with nanometric thin Fe layers. The ex-
perimental spectra were modelled including a doublet and
the minimum number of sextets, which produced good fits
with sensible hyperfine parameters. In particular, the crite-
rium that an increasing isomer shift correlates with a
decreasing hyperfine field is fulfilled, since it reflects the
decreasing electronic charge density as the number of nearest
neighbour (n.n.) Si atoms increases.”* Hyperfine parameters
and relative intensities are collected in Table I. Additionally,
refinements with a doublet and a sextet distribution, as used
in previous reports,'"'> were performed to check that the set
of fitted sextets accounted for all alloy contributions. In fact,
both type of fits, i.e., with the set of sextets or the sextet dis-
tribution with hyperfine fields from 15 to 34 T, produced the
same proportion of doublet area in the spectra.

The presence of several components in the CEMS spec-
tra shows that during the deposition process, the >’Fe atoms
have diffused and reacted with the Si spacer, giving rise to
the formation of intermediate silicide phases. According to
previous works on the Fe-Si interfaces,3’5’11’12’15’27*31 these
compounds would have a magnetic Fe,_,Si, alloy, and a par-
amagnetic silicide. The non-stoichiometric c-Fe,_,Si phase
(0<x<0.5) has been proposed as that paramagnetic
compound, !1:27:29:30.32-35

We focus our attention on the analysis of the paramag-
netic component given by the doublets. The c-FeSi phase
with the cubic CsCl structure should show a singlet.
However, Fe defective non-stoichiometric Fe;_,Si, or strain
at the interface, give rise to a distribution of locally non-
cubic site symmetry, which is reflected in CEMS spectra as a
doublet of large linewidth.'"*

In the present spectra, the fitted doublets show quadru-
polar splittings ranging from QS =0.65(2) to 0.67(1) mm/s,
isomer shifts from ¢6=0.223(3) to 0.25(1)mm/s (with
respect to «-Fe) and large linewidths LW = 0.55(1) to 0.62(3)
mm/s. This is consistent with the defective/strained paramag-
netic c-Fe;_,Si phase.

J. Appl. Phys. 116, 023907 (2014)

Assuming identical recoilless fraction for every Fe site,
the amount of the different Fe phases and, in particular, the
occupation probability of *’Fe atoms at various sites in an
Fe,_.Si, alloy can be obtained from the relative intensities
of the spectral components. Specifically, the relative inten-
sity (/) of the doublet yields the amount of the c-Fe;_,Si
compound, which within the experimental errors is the same
in the middle and top layers (/ =0.33(2) and 0.30(3), respec-
tively), and one half in the bottom layer (/=0.16(1)) (see
Table I). Therefore, the experiment on sample C1, which
probes the bottom layer, allows us to identify the c-Fe,_,Si
phase content of the Si on Fe interface. On the other hand,
the spectra of samples C2 and C3 probe the middle and top
layers, respectively. Since these layers contain both an Fe on
Si and a Si on Fe interface, we can conclude by comparison
with the doublet area in the C1 spectrum that the Si on Fe
interface contains the same amount of c-Fe;_,Si as in the Fe
on Si interface; i.e., the interfaces are symmetric regarding
the paramagnetic c-Fe;_,Si phase. The relative intensity of
the paramagnetic doublet can be correlated to the reduction
of magnetization upon deposition of the nominal Fe layer
thickness. It amounts to a reduction of the effective Fe layer
thickness Adr,=0.42nm per Fe/Si interface, over a total
nominal value dp, =2.6 nm. This is in agreement with previ-
ously reported values on Fe-Si multilayers.''?273436-37

The analysis of the remaining sextet components is not
straightforward and requires a comparison with the possible
structures of the Fe;_,Si, alloys. These have been long time
ago studied in bulk samples®***** and in homogenous thin
films prepared by co-deposition.'* For x up to ~0.12 Si ran-
domly substitutes Fe in the bee structure of o—Fe, forming a
disordered alloy. A transition from the disordered phase to an
ordered one has been claimed to take place in a concentration
range from 10% to 13% at. Si.*****° At x=0.25, the stoichi-
ometric compound Fe;Si is formed (Fig. 3) with the DO; type
structure; this is an ordered structure, where Si substitutes Fe
only at the D sites under the steric constraint of a minimum
Si-Si distance v/2a (be a the Fe-Fe interatomic distance).>*
Besides, Higgstrom er al.>> have concluded that for concen-
trations between 8.6% and 23% at. Si, no homogeneous phase
exists; instead, two phases, one disordered and the other with

TABLE I. Fitted hyperfine parameters obtained from the Ci (i =1, 2, 3) CEMS spectra. [ refers to the relative intensity of each component with respect to the
total area of the spectrum, and /; indicates the relative intensity with respect to the sum of sextet areas assigned to non-surface Fe atoms in Fe; _,Si,. The line-
width (LW) parameters of the sextets are correlated for each sample: LW = 0.30(1), 0.45(1), and 0.49(1) mm/S for samples C1, C2, and C3, respectively. For
the doublets, LW =0.62(3), 0.57(1), and 0.55(1) mm/s for sample Ci (i =1, 2, 3), respectively.

Cl1 Cc2 C3

0S (mm/s)  J (mm/s) 1 0S (mm/s) 0 (mm/s) 1 0S (mm/s) 0 (mm/s) 1
Doublet  0.65(2) 0.25(1) 0.16(1) 0.672 (3) 0.225(2)  0.33(2) 0.67(1) 0.223(3)  0.30(3)

By (T) d (mm/s) 1 I By (T) o (mm/s) [ I By (T) o (mm/s) [ I
Sextet 33.28(6) 0.005(5) 0.23(4)
Sextet 1 32.33(5) 0.014(4) 0.42(4) 0.69(5) 32.20(3) 0.019(3)  0.25(1)  0.40(2) 32.15(6) 0.02(1) 0.24(3) 0.38(4)
Sextet 2 30.30(6) 0.116(7) 0.12(1) 0.19(2) 29.48(4) 0.057(3)  0.19(1) 0.31(2) 29.48(9) 0.052(7)  0.19(2)  0.30(4)
Sextet 3  26.98(11)  0.211(14)  0.052(5)  0.09(1) 26.32(6) 0.100(5)  0.12(1) 0.192)  26.21(11) 0.08(1) 0.132) 0.21(4)
Sextet 4 20.2(3) 0.46(3) 0.023(4)  0.038(5) 18.21(11) 0.58(1) 0.06(1)  0.10(1) 18.34(20) 0.11(5) 0.07(2) 0.11(2)
Sextet 5 15.62(12) 0.588(2)  0.06(1) 15.53(20) 0.56(3) 0.07(1)
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FIG. 3. Unit cell of an FeSi alloy structure. In Fe;Si, the Fe atoms on D sites
have 8 Fe-atoms as nearest neighbours, while Fe atoms on A sites have 4 Si
atoms and 4 Fe atoms as nearest neighbours.

the DO; ordered structure would coexist. In contrast to bulk,
sputtered Fe, _Si, silicide thin films have been reported to be
amorphous for concentrations above 20% at. Si.*!

The Fe site occupation probability in the disordered
phase is described by a binomial distribution P(n,m, &),
where an Fe atom can be surrounded by m substituting Si
atoms up to n =38, the total number of n.n. sites in the bcc
s'[ruc'[ure,24 and

n!

P(n,m, i) = 'ém(l - i)"7ma (1)

ml(n —m)!

with ¢ = x. In contrast, in the ordered structure, Si atoms are
assumed to enter only D sites and will be surrounded by 8 Fe
atoms at A sites, while each Fe atom at an A site can have a
variable number of n.n. Si atoms at D sites (Fig. 3). For a
Si concentration x, the occupancy of Fe at D sites is
pp=1—0.5/(1 — x), while that of an Fe atom at an A site sur-
rounded by k Fe atoms placed at the n.n. D sites (environment
AK) is par = (1 — pp)P(8,8 — k, &) with ¢ =2x if no steric
constraint between Si atoms is applied, or P4y = (1 — pp)
P(4,4 — k, &) with £ =4x if Si atoms are constrained to be
separated a distance v/2a. Such a constraint can be fulfilled
for up to x =0.25, i.e., the Fe;Si alloy. More complex atomic
substitution schemes have been proposed, where Si atoms are
allowed to use both A and D sites, and the next n.n. effects are
taken into account.>>*°

1. Bottom ®”Fe layer

The CEMS spectrum of sample C1 provides information
about the bottom layer in the (Fe/Si); multilayered structure.
In contrast to the middle and top Fe layers, it was deposited
on the Ag buffer and it has only one Fe/Si interface; then Fe
silicides can be formed only from one side. All sextets have
been fitted with a common linewidth (LW =0.30(1) mm/s),
which is similar to those reported on bulk Fe,_ ,Si,
alloys.”>?® Five sextets with hyperfine fields from 33.3 to
20.2T are found in the spectrum (Table I). The sextet with
the highest hyperfine field (B,=33.3T) is consistent with
either «—Fe or a silicide in the disordered phase of low Si

J. Appl. Phys. 116, 023907 (2014)

concentration. However, in the silicide hypothesis that sextet
should have the highest relative intensity according to the
probability distribution of Fe n.n. environments (Table II),
and a very low contribution of sextets with B, below 27 T.**
This is in contradiction with the observed value in Table I
(C1, column I). Therefore, that sextet will be assigned to
o—Fe deposited on the Ag buffer and the remaining four sex-
tets to a silicide in the ordered phase.

The sextet with B;,=32.33T corresponds to Fe atoms
with all Fe n.n. and is indicative of a silicide in the ordered
phase, where the reduction of the hyperfine field with respect
to that of o—Fe is produced by second and third Fe n.n.***?
However, its relative intensity of 0.69 in the four sextets set
is too high for such a phase, and points to a disordered
silicide.

The reduction in the hyperfine field of the subsequent
sextets, Byr=30.30(6) T, 26.98(11) T, and 20.23(6) T reflects
the increasing number of n.n. substitution. The assignment
of these sextets to specific Fe environment should be based
on the field reduction and the environment probabilities.
However, the spectral contribution from Fe atoms at low
probability environments is difficult to resolve as separated
sextets and is included in that of high probability environ-
ments with a close number of n.n. The Mossbauer sextets
have been previously assigned to several environment proba-
bility groupings.?*~® Since for x > 0.15, the A8 and A7 envi-
ronments have much lower probabilities than those of D and
A6 (Table II), the aforementioned field sequence can be
assigned to A6, A5, and A4 environments, while A8 and A7
can be added to the spectral intensity of environment D, as in
Ref. 24. However, no agreement between experimental sex-
tet areas and environment probabilities is found for any par-
ticular Si concentration neither in the disordered nor ordered
phase.

As suggested by Higgstrom er al.,*> a two phase system
could have been produced in this Fe layer between the
c-Fe;_,Si layer and o—Fe, one with x<0.1 (disordered
phase, where Fe environments with more than 3 substituted
n.n. atoms have very low probability), and another with
x> 0.15 (ordered phase with highest probabilities of D sites
and 3 or more substituted n.n. atoms). We propose that in
this layer, there are three sublayers, the a—Fe, the c-Fe,_,Si

TABLE II. Calculated probabilities of different Fe site occupancy and envi-
ronments for Fe; ,Si, alloys of selected Si atomic concentrations.

Number of n.n. Fe atoms

X 8 7 6 5

0.04 0.721 0.240 0.035 0.003
0.05 0.663 0.279 0.051 0.005

Type of site
D A8 A7 A6 AS A4 A3
0.15 0.412 0.015 0.090 0.203 0.203 0.076
0.16 0.405 0.010 0.071 0.190 0.225 0.100
0.18 0.390 0.004 0.039 0.149 0.255 0.164
0.25 0.333 0.667
0.26 0.324 0.574 0.096
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and in between, the Fe-Si alloyed layer composed of an or-
dered and a disordered silicide phase.

2. Middle and top ®°”Fe layers

The spectra of samples C2 and C3 are produced by the
middle and top Fe layers, respectively. A set of up to five
sextets were included in the fit. In contrast to the bottom
layer, there is no sextet with By ~ 33T, which is consistent
with the presence of Fe;_,Si, alloys in the ordered phase
with high Si concentration and no «-Fe. The sequence of
hyperfine fields is similar to that of the bottom layer, but the
distribution of relative areas is completely different.
Moreover, a low hyperfine field sextet of B,=15.6T con-
tributes to both spectra, which should be related to Fe atoms
surrounded by more than four n.n. Si atoms, as previously
observed in bulk alloys.>*® This sextet was found in alloys
with x > 0.25, where only two other sextets were present at
~31 and ~20-22T. In the present case of layers of 2.6 nm
thickness, fitting the spectra requires four sextets with hyper-
fine fields in the range 32 to 18 T, which discards a silicide
with x > 0.25. Therefore, the sextet with B;,,=15.6 T will be
assigned to Fe atoms at the interface between the c-Fe,_,Si
phase and the Fe;_,Si, alloy layer. Indeed, the Fe atoms at
this interface have a larger number of Si n.n. than within the
Fe,_,Si, bulk.

The remaining four sextets can now be assigned to an
Fe,_,Si, phase with Fe atoms in environments similar to
those in the bulk alloys. The full sextet-environment assign-
ment requires that all possible environments are resolved as
spectral components. The calculated environment probabil-
ities can be grouped to relate fitted sextets to corresponding
Fe environments.”* Within the experimental spectrum sta-
tistics and considering that, (a) for a given Si concentration,
X, certain environments have low probability, (b) the hyper-
fine fields depend on both the number of n.n. and next n.n.
Si atoms, we put forward the following interpretation: The
four sextets of the spectra of the middle and top Fe layers
can be assigned to an alloy with a concentration x ~ 0.15
with the following site environment groupings: D + AS,
A7+ A6, AS, and A4. The D + A8 grouping corresponds to
environments with all Fe atoms as n.n., whose only differ-
ence stems from next n.n., but the D site probability domi-
nates by a factor ~30 (Table II). The sextet from Fe atoms
with the low probability A7 environment is not resolved
and its intensity is accounted for by the large A6 sextet.
Both A6 and AS sextets have similar and high intensities
and can be clearly resolved. Finally, the low intensity A4
sextet is also resolved since its hyperfine field is well sepa-
rated from the others.

The phases and their relative amounts in each Fe layer
are collected in Table III. The saturation magnetization of
the full multilayer can be estimated from that distribution.
Since c-Fe; _,Si is paramagnetic and considering: (a) that the
average Si concentration for the inhomogeneous Fe-Si alloy
at the bottom layer is the same than that of the other
two layers (x=0.15), and (b) the saturation magnetization
values are 1740emu/cm® and 1230emu/cm® for «-Fe
and Fe(gsSig 15, respectively, one obtains an estimated
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TABLE III. Proportion, in %, of the different silicide phases present in each
Ci sample. In samples C2 and C3, the proportion includes Fe atoms at the
FeSi to Fe;_Si, interface.

Silicide phase C1 Cc2 C3
c-Fey_,Si 16% 33% 30%
o-Fe 23%
Fe,_,Si, 61% 67% 70%
with x: Two phases ~0.15 ~0.15

magnetization M, =7.37 x 10”* emu/cm?” at RT. The experi-
mental magnetization measured at RT with a SQUID magne-
tometer, after subtracting the magnetic contribution of the
1 nm Fe buffer layer, is 6.84 x 10~*emu/cm?. The estimated
magnetization is only 8% above the experimental value,
which strongly supports the phase distribution derived from
the CEMS spectra.

IV. CONCLUSIONS

The morphology and phase distribution in GaAs/Fe(1 nm)/
Ag(150 nm)/Fe(2.6 nm)/Si(1.5 nm)/Fe(2.6 nm)/Si(1.5 nm)/
Fe(2.6nm)/ Si(10nm) multilayers have been studied by
HRTEM and CEMS. The HRTEM images show that the Si
spacers grow in an amorphous way, while the first deposited
Fe layer (bottom layer) shows a good epitaxial growth on the
crystalline Ag buffer. In contrast, the middle and top Fe
layers crystallize on amorphous Si spacers.

The CEMS spectrum of each Fe layer has been analysed
using a discrete set of sextets, instead of a quasi-continuous
distribution of sextets previously used in similar samples,'""'
and a doublet. The fitted intensities and hyperfine fields have
been related to the occupation and next neighbour environ-
ments of crystallographic sites of Fe atoms.

The contribution to the CEMS spectra of one of the Si/
Fe interfaces (that on top of the first deposited Fe layer) is
identified, and singled out from the contributions due to the
Fe/Si interfaces. Having achieved this goal, it can be com-
pared to the CEMS spectra of the other two Fe layers, for
which both Si/Fe and Fe/Si interfaces are measured simulta-
neously. We conclude that the paramagnetic contribution is
similar in both types of interfaces, Si/Fe and Fe/Si. This par-
amagnetic part contains 16% of the nominal Fe deposited in
the Fe layer, per interface. It is assigned to the defective/
strained c-Fe; _,Si phase.

The spectrum of the bottom layer has revealed the pres-
ence of the a-Fe phase in contact with the crystalline Ag
buffer, and an Fe;_,Si, layer of inhomogeneous concentra-
tion. In contrast, no a-Fe is present in the middle and top Fe
layers. These spectra show the existence of an Fe,_,Si,
phase with a Si concentration x ~ 0.15, and an additional
contribution of Fe atoms at the interface between this phase
and the adjacent paramagnetic phase.

Moreover, it has been found that the composition of
nominal nanometric thin Fe layers (~2-3 nm) depends on its
position in the multilayer. The first Fe layer deposited on
crystalline Ag in this case allows for good epitaxial growth
and o-Fe remains, while in the upper layers, Fe is completely
alloyed to form Fe,_,Si, silicides.
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