Home > Publications database > X-ray structure of a CDP-alcohol phosphatidyltransferase membrane enzyme and insights into its catalytic mechanism > print |
001 | 186128 | ||
005 | 20210129214818.0 | ||
024 | 7 | _ | |a 10.1038/ncomms5169 |2 doi |
024 | 7 | _ | |a WOS:000338838500025 |2 WOS |
024 | 7 | _ | |a altmetric:3898626 |2 altmetric |
024 | 7 | _ | |a pmid:24942835 |2 pmid |
024 | 7 | _ | |a 2128/24468 |2 Handle |
037 | _ | _ | |a FZJ-2015-00216 |
041 | _ | _ | |a English |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Nogly, Przemyslaw |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a X-ray structure of a CDP-alcohol phosphatidyltransferase membrane enzyme and insights into its catalytic mechanism |
260 | _ | _ | |a London |c 2014 |b Nature Publishing Group |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1421053514_25619 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Phospholipids have major roles in the structure and function of all cell membranes. Most integral membrane proteins from the large CDP-alcohol phosphatidyltransferase family are involved in phospholipid biosynthesis across the three domains of life. They share a conserved sequence pattern and catalyse the displacement of CMP from a CDP-alcohol by a second alcohol. Here we report the crystal structure of a bifunctional enzyme comprising a cytoplasmic nucleotidyltransferase domain (IPCT) fused with a membrane CDP-alcohol phosphotransferase domain (DIPPS) at 2.65Å resolution. The bifunctional protein dimerizes through the DIPPS domains, each comprising six transmembrane a-helices. The active site cavity is hydrophilic and widely open to the cytoplasm with a magnesium ion surrounded by four highly conserved aspartate residues from helices TM2 and TM3. We show that magnesium is essential for the enzymatic activity and is involved in catalysis. Substrates docking is validated by mutagenesis studies, and a structure-based catalytic mechanism is proposed. |
536 | _ | _ | |a 452 - Structural Biology (POF2-452) |0 G:(DE-HGF)POF2-452 |c POF2-452 |f POF II |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, juser.fz-juelich.de |
700 | 1 | _ | |a Gushchin, Ivan |0 P:(DE-Juel1)165798 |b 1 |
700 | 1 | _ | |a Remeeva, Alina |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Esteves, Ana M. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Borges, Nuno |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Ma, Pikyee |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Ishchenko, Andrii |0 P:(DE-Juel1)131968 |b 6 |
700 | 1 | _ | |a Grudinin, Sergei |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Round, Ekaterina |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Moraes, Isabel |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Borshchevskiy, Valentin |0 P:(DE-Juel1)144613 |b 10 |
700 | 1 | _ | |a Santos, Helena |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Gordeliy, Valentin |0 P:(DE-Juel1)131964 |b 12 |e Corresponding Author |
700 | 1 | _ | |a Archer, Margarida |0 P:(DE-HGF)0 |b 13 |
773 | _ | _ | |a 10.1038/ncomms5169 |g Vol. 5 |0 PERI:(DE-600)2553671-0 |p 1-10 |t Nature Communications |v 5 |y 2014 |x 2041-1723 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/186128/files/FZJ-2015-00216.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:186128 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)165798 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)131964 |
913 | 2 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-551 |2 G:(DE-HGF)POF3-500 |v Functional Macromolecules and Complexes |x 0 |
913 | 1 | _ | |a DE-HGF |b Schlüsseltechnologien |1 G:(DE-HGF)POF2-450 |0 G:(DE-HGF)POF2-452 |2 G:(DE-HGF)POF2-400 |v Structural Biology |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |l BioSoft |
914 | 1 | _ | |y 2014 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-6-20110106 |k ICS-6 |l Strukturbiochemie |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ICS-6-20110106 |
981 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|