000186130 001__ 186130
000186130 005__ 20240711085659.0
000186130 037__ $$aFZJ-2015-00218
000186130 041__ $$aEnglish
000186130 1001_ $$0P:(DE-Juel1)161444$$aLobe, Sandra$$b0$$eCorresponding Author$$ufzj
000186130 1112_ $$aBunsen Kolloquium "Solid State Batteries - from Fundamentals to Application"$$cFrankfurt/Main$$d2014-11-27 - 2014-11-28$$wGermany
000186130 245__ $$aAll-solid-state batteries with $Li_7La_3Zr_2O_{12}$ electrolyte
000186130 260__ $$c2014
000186130 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1421149148_25612
000186130 3367_ $$033$$2EndNote$$aConference Paper
000186130 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000186130 3367_ $$2ORCID$$aOTHER
000186130 3367_ $$2DRIVER$$aconferenceObject
000186130 3367_ $$2BibTeX$$aINPROCEEDINGS
000186130 520__ $$aTo avoid problems connected to organic liquid electrolytes used in conventional Li-ion batteries, solid electrolytes like lithium conducting sulfides [1], oxides [2] and phosphates [3] can be used in all-solid-state Li-ion batteries. One promising oxide material is the garnet-structured Li7La3Zr2O12 (LLZ) with a reasonable Li-ion conductivity of about 10-4 S/cm, a high thermal (up to 1250°C), chemical (e.g. against metallic lithium) and electrochemical stability (up to 8V vs. Li/Li+). Partially substitution of Li by Al or Zr by Ta lowers the cubic phase crystallization temperature resulting in an increased Li-ion conductivity. In order to compensate the lower Li-ion conductivity compared to liquid electrolytes, the overall internal resistance of the cell can be reduced by applying a thin electrolyte layer. Different approaches have been used to deposit garnet-structured Li7La3Zr2O12 thin films [4, 5] but were not successful yet due to problems with the crystallization of LLZ precursors into garnet structure on non-single-crystal substrate. Deposition of cubic phase Li7La3Zr2O12 layer by r.f. magnetron sputtering was carried out directly on a cathode material coated titanium substrate. Gracing incidence x-ray diffraction reveals the cubic garnet structured phase, LLZ was formed as a thin film electrolyte for a thin film battery.  SIMS analysis for internal elemental diffusions between deposited layers, SEM for microstructures, electrochemical tests of the formed LLZ layer and battery are presented as well.
000186130 536__ $$0G:(DE-HGF)POF2-123$$a123 - Fuel Cells (POF2-123)$$cPOF2-123$$fPOF II$$x0
000186130 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000186130 7001_ $$0P:(DE-Juel1)145805$$aBünting, Aiko$$b1$$ufzj
000186130 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b2$$ufzj
000186130 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b3
000186130 7001_ $$0P:(DE-Juel1)158085$$aDellen, Christian$$b4$$ufzj
000186130 7001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b5$$ufzj
000186130 7001_ $$0P:(DE-Juel1)156292$$aHammer, Eva-Maria$$b6$$ufzj
000186130 7001_ $$0P:(DE-Juel1)159367$$aReppert, Thorsten$$b7$$ufzj
000186130 7001_ $$0P:(DE-Juel1)162280$$aGehrke, Hans-Gregor$$b8$$ufzj
000186130 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b9$$ufzj
000186130 773__ $$y2014
000186130 8564_ $$uhttps://juser.fz-juelich.de/record/186130/files/FZJ-2015-00218.doc$$yRestricted
000186130 909CO $$ooai:juser.fz-juelich.de:186130$$pVDB
000186130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161444$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000186130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145805$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000186130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000186130 9101_ $$0I:(DE-Juel1)VS-II-20090406$$6P:(DE-Juel1)145623$$aWissenschaftlicher Geschäftsbereich II$$b3$$kVS-II
000186130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158085$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000186130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000186130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156292$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000186130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159367$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000186130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162280$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000186130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000186130 9132_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000186130 9131_ $$0G:(DE-HGF)POF2-123$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vFuel Cells$$x0
000186130 9141_ $$y2014
000186130 920__ $$lyes
000186130 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000186130 980__ $$aabstract
000186130 980__ $$aVDB
000186130 980__ $$aI:(DE-Juel1)IEK-1-20101013
000186130 980__ $$aUNRESTRICTED
000186130 981__ $$aI:(DE-Juel1)IMD-2-20101013