001     186130
005     20240711085659.0
037 _ _ |a FZJ-2015-00218
041 _ _ |a English
100 1 _ |0 P:(DE-Juel1)161444
|a Lobe, Sandra
|b 0
|e Corresponding Author
|u fzj
111 2 _ |a Bunsen Kolloquium "Solid State Batteries - from Fundamentals to Application"
|c Frankfurt/Main
|d 2014-11-27 - 2014-11-28
|w Germany
245 _ _ |a All-solid-state batteries with $Li_7La_3Zr_2O_{12}$ electrolyte
260 _ _ |c 2014
336 7 _ |0 PUB:(DE-HGF)1
|2 PUB:(DE-HGF)
|a Abstract
|b abstract
|m abstract
|s 1421149148_25612
336 7 _ |0 33
|2 EndNote
|a Conference Paper
336 7 _ |2 DataCite
|a Output Types/Conference Abstract
336 7 _ |2 ORCID
|a OTHER
336 7 _ |2 DRIVER
|a conferenceObject
336 7 _ |2 BibTeX
|a INPROCEEDINGS
520 _ _ |a To avoid problems connected to organic liquid electrolytes used in conventional Li-ion batteries, solid electrolytes like lithium conducting sulfides [1], oxides [2] and phosphates [3] can be used in all-solid-state Li-ion batteries. One promising oxide material is the garnet-structured Li7La3Zr2O12 (LLZ) with a reasonable Li-ion conductivity of about 10-4 S/cm, a high thermal (up to 1250°C), chemical (e.g. against metallic lithium) and electrochemical stability (up to 8V vs. Li/Li+). Partially substitution of Li by Al or Zr by Ta lowers the cubic phase crystallization temperature resulting in an increased Li-ion conductivity. In order to compensate the lower Li-ion conductivity compared to liquid electrolytes, the overall internal resistance of the cell can be reduced by applying a thin electrolyte layer. Different approaches have been used to deposit garnet-structured Li7La3Zr2O12 thin films [4, 5] but were not successful yet due to problems with the crystallization of LLZ precursors into garnet structure on non-single-crystal substrate. Deposition of cubic phase Li7La3Zr2O12 layer by r.f. magnetron sputtering was carried out directly on a cathode material coated titanium substrate. Gracing incidence x-ray diffraction reveals the cubic garnet structured phase, LLZ was formed as a thin film electrolyte for a thin film battery. SIMS analysis for internal elemental diffusions between deposited layers, SEM for microstructures, electrochemical tests of the formed LLZ layer and battery are presented as well.
536 _ _ |0 G:(DE-HGF)POF2-123
|a 123 - Fuel Cells (POF2-123)
|c POF2-123
|f POF II
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
700 1 _ |0 P:(DE-Juel1)145805
|a Bünting, Aiko
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)156244
|a Tsai, Chih-Long
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)145623
|a Finsterbusch, Martin
|b 3
700 1 _ |0 P:(DE-Juel1)158085
|a Dellen, Christian
|b 4
|u fzj
700 1 _ |0 P:(DE-Juel1)129580
|a Uhlenbruck, Sven
|b 5
|u fzj
700 1 _ |0 P:(DE-Juel1)156292
|a Hammer, Eva-Maria
|b 6
|u fzj
700 1 _ |0 P:(DE-Juel1)159367
|a Reppert, Thorsten
|b 7
|u fzj
700 1 _ |0 P:(DE-Juel1)162280
|a Gehrke, Hans-Gregor
|b 8
|u fzj
700 1 _ |0 P:(DE-Juel1)161591
|a Guillon, Olivier
|b 9
|u fzj
773 _ _ |y 2014
856 4 _ |u https://juser.fz-juelich.de/record/186130/files/FZJ-2015-00218.doc
|y Restricted
909 C O |o oai:juser.fz-juelich.de:186130
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)161444
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145805
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)156244
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-Juel1)VS-II-20090406
|6 P:(DE-Juel1)145623
|a Wissenschaftlicher Geschäftsbereich II
|b 3
|k VS-II
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)158085
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129580
|a Forschungszentrum Jülich GmbH
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)156292
|a Forschungszentrum Jülich GmbH
|b 6
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)159367
|a Forschungszentrum Jülich GmbH
|b 7
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)162280
|a Forschungszentrum Jülich GmbH
|b 8
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)161591
|a Forschungszentrum Jülich GmbH
|b 9
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-131
|1 G:(DE-HGF)POF3-130
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|b Forschungsbereich Energie
|l Speicher und vernetzte Infrastrukturen
|v Electrochemical Storage
|x 0
913 1 _ |0 G:(DE-HGF)POF2-123
|1 G:(DE-HGF)POF2-120
|2 G:(DE-HGF)POF2-100
|a DE-HGF
|b Energie
|l Rationelle Energieumwandlung und -nutzung
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21