| Home > Publications database > All-solid-state batteries with $Li_7La_3Zr_2O_{12}$ electrolyte > print |
| 001 | 186130 | ||
| 005 | 20240711085659.0 | ||
| 037 | _ | _ | |a FZJ-2015-00218 |
| 041 | _ | _ | |a English |
| 100 | 1 | _ | |0 P:(DE-Juel1)161444 |a Lobe, Sandra |b 0 |e Corresponding Author |u fzj |
| 111 | 2 | _ | |a Bunsen Kolloquium "Solid State Batteries - from Fundamentals to Application" |c Frankfurt/Main |d 2014-11-27 - 2014-11-28 |w Germany |
| 245 | _ | _ | |a All-solid-state batteries with $Li_7La_3Zr_2O_{12}$ electrolyte |
| 260 | _ | _ | |c 2014 |
| 336 | 7 | _ | |0 PUB:(DE-HGF)1 |2 PUB:(DE-HGF) |a Abstract |b abstract |m abstract |s 1421149148_25612 |
| 336 | 7 | _ | |0 33 |2 EndNote |a Conference Paper |
| 336 | 7 | _ | |2 DataCite |a Output Types/Conference Abstract |
| 336 | 7 | _ | |2 ORCID |a OTHER |
| 336 | 7 | _ | |2 DRIVER |a conferenceObject |
| 336 | 7 | _ | |2 BibTeX |a INPROCEEDINGS |
| 520 | _ | _ | |a To avoid problems connected to organic liquid electrolytes used in conventional Li-ion batteries, solid electrolytes like lithium conducting sulfides [1], oxides [2] and phosphates [3] can be used in all-solid-state Li-ion batteries. One promising oxide material is the garnet-structured Li7La3Zr2O12 (LLZ) with a reasonable Li-ion conductivity of about 10-4 S/cm, a high thermal (up to 1250°C), chemical (e.g. against metallic lithium) and electrochemical stability (up to 8V vs. Li/Li+). Partially substitution of Li by Al or Zr by Ta lowers the cubic phase crystallization temperature resulting in an increased Li-ion conductivity. In order to compensate the lower Li-ion conductivity compared to liquid electrolytes, the overall internal resistance of the cell can be reduced by applying a thin electrolyte layer. Different approaches have been used to deposit garnet-structured Li7La3Zr2O12 thin films [4, 5] but were not successful yet due to problems with the crystallization of LLZ precursors into garnet structure on non-single-crystal substrate. Deposition of cubic phase Li7La3Zr2O12 layer by r.f. magnetron sputtering was carried out directly on a cathode material coated titanium substrate. Gracing incidence x-ray diffraction reveals the cubic garnet structured phase, LLZ was formed as a thin film electrolyte for a thin film battery. SIMS analysis for internal elemental diffusions between deposited layers, SEM for microstructures, electrochemical tests of the formed LLZ layer and battery are presented as well. |
| 536 | _ | _ | |0 G:(DE-HGF)POF2-123 |a 123 - Fuel Cells (POF2-123) |c POF2-123 |f POF II |x 0 |
| 536 | _ | _ | |0 G:(DE-Juel1)HITEC-20170406 |x 1 |c HITEC-20170406 |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) |
| 700 | 1 | _ | |0 P:(DE-Juel1)145805 |a Bünting, Aiko |b 1 |u fzj |
| 700 | 1 | _ | |0 P:(DE-Juel1)156244 |a Tsai, Chih-Long |b 2 |u fzj |
| 700 | 1 | _ | |0 P:(DE-Juel1)145623 |a Finsterbusch, Martin |b 3 |
| 700 | 1 | _ | |0 P:(DE-Juel1)158085 |a Dellen, Christian |b 4 |u fzj |
| 700 | 1 | _ | |0 P:(DE-Juel1)129580 |a Uhlenbruck, Sven |b 5 |u fzj |
| 700 | 1 | _ | |0 P:(DE-Juel1)156292 |a Hammer, Eva-Maria |b 6 |u fzj |
| 700 | 1 | _ | |0 P:(DE-Juel1)159367 |a Reppert, Thorsten |b 7 |u fzj |
| 700 | 1 | _ | |0 P:(DE-Juel1)162280 |a Gehrke, Hans-Gregor |b 8 |u fzj |
| 700 | 1 | _ | |0 P:(DE-Juel1)161591 |a Guillon, Olivier |b 9 |u fzj |
| 773 | _ | _ | |y 2014 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/186130/files/FZJ-2015-00218.doc |y Restricted |
| 909 | C | O | |o oai:juser.fz-juelich.de:186130 |p VDB |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)161444 |a Forschungszentrum Jülich GmbH |b 0 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)145805 |a Forschungszentrum Jülich GmbH |b 1 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)156244 |a Forschungszentrum Jülich GmbH |b 2 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-Juel1)VS-II-20090406 |6 P:(DE-Juel1)145623 |a Wissenschaftlicher Geschäftsbereich II |b 3 |k VS-II |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)158085 |a Forschungszentrum Jülich GmbH |b 4 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)129580 |a Forschungszentrum Jülich GmbH |b 5 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)156292 |a Forschungszentrum Jülich GmbH |b 6 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)159367 |a Forschungszentrum Jülich GmbH |b 7 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)162280 |a Forschungszentrum Jülich GmbH |b 8 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)161591 |a Forschungszentrum Jülich GmbH |b 9 |k FZJ |
| 913 | 2 | _ | |0 G:(DE-HGF)POF3-131 |1 G:(DE-HGF)POF3-130 |2 G:(DE-HGF)POF3-100 |a DE-HGF |b Forschungsbereich Energie |l Speicher und vernetzte Infrastrukturen |v Electrochemical Storage |x 0 |
| 913 | 1 | _ | |0 G:(DE-HGF)POF2-123 |1 G:(DE-HGF)POF2-120 |2 G:(DE-HGF)POF2-100 |a DE-HGF |b Energie |l Rationelle Energieumwandlung und -nutzung |v Fuel Cells |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |
| 914 | 1 | _ | |y 2014 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
| 980 | _ | _ | |a abstract |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|