000186196 001__ 186196 000186196 005__ 20220930130037.0 000186196 0247_ $$2doi$$a10.3389/fnagi.2014.00178 000186196 0247_ $$2Handle$$a2128/8247 000186196 0247_ $$2WOS$$aWOS:000340898200002 000186196 0247_ $$2altmetric$$aaltmetric:2603585 000186196 0247_ $$2pmid$$apmid:25100995 000186196 037__ $$aFZJ-2015-00280 000186196 082__ $$a610 000186196 1001_ $$0P:(DE-HGF)0$$aMathys, Christian$$b0$$eCorresponding Author 000186196 245__ $$aAn age-related shift of resting-state functional connectivity of the subthalamic nucleus: a potential mechanism for compensating motor performance decline in older adults 000186196 260__ $$aLausanne$$bFrontiers Research Foundation$$c2014 000186196 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1421064463_25609 000186196 3367_ $$2DataCite$$aOutput Types/Journal article 000186196 3367_ $$00$$2EndNote$$aJournal Article 000186196 3367_ $$2BibTeX$$aARTICLE 000186196 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000186196 3367_ $$2DRIVER$$aarticle 000186196 520__ $$aHealthy aging is associated with decline in basic motor functioning and higher motor control. Here, we investigated age-related differences in the brain-wide functional connectivity (FC) pattern of the subthalamic nucleus (STN), which plays an important role in motor response control. As earlier studies revealed functional coupling between STN and basal ganglia, which both are known to influence the conservativeness of motor responses on a superordinate level, we tested the hypothesis that STN FC with the striatum becomes dysbalanced with age. To this end, we performed a seed-based resting-state analysis of fMRI data from 361 healthy adults (mean age: 41.8, age range: 18–85) using bilateral STN as the seed region of interest. Age was included as a covariate to identify regions showing age-related changes of FC with the STN seed. The analysis revealed positive FC of the STN with several previously described subcortical and cortical regions like the anterior cingulate and sensorimotor cortex, as well as not-yet reported regions including central and posterior insula. With increasing age, we observed reduced positive FC with caudate nucleus, thalamus, and insula as well as increased positive FC with sensorimotor cortex and putamen. Furthermore, an age-related reduction of negative FC was found with precuneus and posterior cingulate cortex. We suggest that this reduced de-coupling of brain areas involved in self-relevant but motor-unrelated cognitive processing (i.e. precuneus and posterior cingulate cortex) from the STN motor network may represent a potential mechanism behind the age-dependent decline in motor performance. At the same time, older adults appear to compensate for this decline by releasing superordinate motor control areas, in particular caudate nucleus and insula, from STN interference while increasing STN-mediated response control over lower level motor areas like sensorimotor cortex and putamen. 000186196 536__ $$0G:(DE-HGF)POF2-333$$a333 - Pathophysiological Mechanisms of Neurological and Psychiatric Diseases (POF2-333)$$cPOF2-333$$fPOF II$$x0 000186196 536__ $$0G:(DE-HGF)POF2-89572$$a89572 - (Dys-)function and Plasticity (POF2-89572)$$cPOF2-89572$$fPOF II T$$x1 000186196 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000186196 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b1$$ufzj 000186196 7001_ $$0P:(DE-Juel1)144344$$aCaspers, Julian$$b2$$ufzj 000186196 7001_ $$0P:(DE-Juel1)131675$$aCaspers, Svenja$$b3$$ufzj 000186196 7001_ $$0P:(DE-HGF)0$$aSüdmeyer, Martin$$b4 000186196 7001_ $$0P:(DE-Juel1)161406$$aGrefkes, Christian$$b5$$ufzj 000186196 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b6$$ufzj 000186196 7001_ $$0P:(DE-Juel1)131693$$aLangner, Robert$$b7$$ufzj 000186196 773__ $$0PERI:(DE-600)2558898-9$$a10.3389/fnagi.2014.00178$$gVol. 6$$p178$$tFrontiers in aging neuroscience$$v6$$x1663-4365$$y2014 000186196 8564_ $$uhttps://juser.fz-juelich.de/record/186196/files/FZJ-2015-00280.pdf$$yOpenAccess 000186196 8564_ $$uhttps://juser.fz-juelich.de/record/186196/files/FZJ-2015-00280.jpg?subformat=icon-144$$xicon-144$$yOpenAccess 000186196 8564_ $$uhttps://juser.fz-juelich.de/record/186196/files/FZJ-2015-00280.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000186196 8564_ $$uhttps://juser.fz-juelich.de/record/186196/files/FZJ-2015-00280.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000186196 8767_ $$92014-07-04$$d2014-07-09$$eAPC$$jZahlung erfolgt 000186196 909CO $$ooai:juser.fz-juelich.de:186196$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery 000186196 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000186196 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144344$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000186196 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131675$$aForschungszentrum Jülich GmbH$$b3$$kFZJ 000186196 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161406$$aForschungszentrum Jülich GmbH$$b5$$kFZJ 000186196 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich GmbH$$b6$$kFZJ 000186196 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131693$$aForschungszentrum Jülich GmbH$$b7$$kFZJ 000186196 9132_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0 000186196 9131_ $$0G:(DE-HGF)POF2-333$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vPathophysiological Mechanisms of Neurological and Psychiatric Diseases$$x0 000186196 9131_ $$0G:(DE-HGF)POF2-89572$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$v(Dys-)function and Plasticity$$x1 000186196 9141_ $$y2014 000186196 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0 000186196 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000186196 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000186196 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000186196 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000186196 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000186196 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000186196 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000186196 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000186196 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000186196 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000186196 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0 000186196 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x1 000186196 9801_ $$aFullTexts 000186196 980__ $$ajournal 000186196 980__ $$aVDB 000186196 980__ $$aUNRESTRICTED 000186196 980__ $$aFullTexts 000186196 980__ $$aI:(DE-Juel1)INM-3-20090406 000186196 980__ $$aI:(DE-Juel1)INM-1-20090406 000186196 980__ $$aAPC 000186196 981__ $$aI:(DE-Juel1)INM-1-20090406