001     186273
005     20240619092035.0
024 7 _ |2 doi
|a 10.1021/jp509732q
024 7 _ |2 ISSN
|a 1089-5647
024 7 _ |2 ISSN
|a 1520-5207
024 7 _ |2 ISSN
|a 1520-6106
024 7 _ |2 WOS
|a WOS:000347753900009
037 _ _ |a FZJ-2015-00357
041 _ _ |a English
082 _ _ |a 530
100 1 _ |0 P:(DE-Juel1)140278
|a Stadler, Andreas
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Determination of Conformational Entropy of Fully and Partially Folded Conformations of Holo- and Apomyoglobin
260 _ _ |a Washington, DC
|b Soc.
|c 2015
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1429515338_28977
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a Holo- and apomyoglobin can be stabilized in native folded, partially folded molten globules (MGs) and denatured states depending on the solvent composition. Although the protein has been studied as a model system in the field of protein folding, little is known about the internal dynamics of the different structural conformations on the picosecond time scale. In a comparative experimental study we investigated the correlation between protein folding and dynamics on the picosecond time scale using incoherent quasielastic neutron scattering (QENS). The measured mean square displacements (MSDs) of conformational motions depend significantly on the secondary structure content of the protein, whereas the correlation times of the observed internal dynamics were found to be similar irrespective of the degree of folding. The conformational entropy difference ΔSconf between the folded conformations and the acid denatured state could be determined from the measured MSDs and was compared to the entropy difference ΔS obtained from thermodynamic parameters reported in the literature. The observed difference between ΔS and ΔSconf was attributed to the entropy difference ΔShydr of dynamically disordered water molecules of the hydration shell. The entropy content of the hydration water is significantly larger in the native folded proteins than in the partially folded MGs. We demonstrate the potential of incoherent neutron scattering for the investigation of the role of conformational dynamics in protein folding.
536 _ _ |0 G:(DE-HGF)POF3-551
|a 551 - Functional Macromolecules and Complexes (POF3-551)
|c POF3-551
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-6G4
|a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|c POF3-623
|f POF III
|x 1
536 _ _ |0 G:(DE-HGF)POF3-6215
|a 6215 - Soft Matter, Health and Life Sciences (POF3-621)
|c POF3-621
|f POF III
|x 2
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
650 2 7 |0 V:(DE-MLZ)SciArea-160
|2 V:(DE-HGF)
|a Biology
|x 0
650 1 7 |a Health and Life
|0 V:(DE-MLZ)GC-130-2016
|2 V:(DE-HGF)
|x 2
650 1 7 |a Health and Life
|0 V:(DE-MLZ)GC-130-1
|2 V:(DE-HGF)
|x 1
650 1 7 |a Life Science and Health
|0 V:(DE-MLZ)GC-130
|2 V:(DE-HGF)
|x 0
693 _ _ |0 EXP:(DE-MLZ)External-20140101
|5 EXP:(DE-MLZ)External-20140101
|e External Measurement
|x 0
700 1 _ |0 P:(DE-HGF)0
|a Koza, Michael Marek
|b 1
700 1 _ |0 P:(DE-Juel1)131961
|a Fitter, Jörg
|b 2
773 _ _ |0 PERI:(DE-600)2006039-7
|a 10.1021/jp509732q
|g Vol. 119, no. 1, p. 72 - 82
|n 1
|p 72 - 82
|t The @journal of physical chemistry / B
|v 119
|x 1520-5207
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/186273/files/FZJ-2015-00357.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:186273
|p VDB:MLZ
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131961
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131961
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
913 0 _ |0 G:(DE-HGF)POF2-452
|1 G:(DE-HGF)POF2-450
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|l BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|v Structural Biology
|x 0
913 0 _ |0 G:(DE-HGF)POF2-451
|1 G:(DE-HGF)POF2-450
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|l BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|v Soft Matter Composites
|x 1
913 0 _ |0 G:(DE-HGF)POF2-54G24
|1 G:(DE-HGF)POF2-540
|2 G:(DE-HGF)POF2-500
|a DE-HGF
|b Struktur der Materie
|l Forschung mit Photonen, Neutronen und Ionen (PNI)
|v JCNS
|x 2
913 1 _ |0 G:(DE-HGF)POF3-551
|1 G:(DE-HGF)POF3-550
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |0 G:(DE-HGF)POF3-623
|1 G:(DE-HGF)POF3-620
|2 G:(DE-HGF)POF3-600
|9 G:(DE-HGF)POF3-6G4
|a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|v Facility topic: Neutrons for Research on Condensed Matter
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |0 G:(DE-HGF)POF3-621
|1 G:(DE-HGF)POF3-620
|2 G:(DE-HGF)POF3-600
|9 G:(DE-HGF)POF3-6215
|a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|v In-house research on the structure, dynamics and function of matter
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-5-20110106
|k ICS-5
|l Molekulare Biophysik
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k Neutronenstreuung ; JCNS-1
|l Neutronenstreuung
|x 1
920 1 _ |0 I:(DE-Juel1)ICS-1-20110106
|k ICS-1
|l Neutronenstreuung
|x 2
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II
|l JCNS-FRM-II
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-5-20110106
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a I:(DE-Juel1)ICS-1-20110106
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-6-20200312
981 _ _ |a I:(DE-Juel1)ER-C-3-20170113
981 _ _ |a I:(DE-Juel1)IBI-8-20200312
981 _ _ |a I:(DE-Juel1)JCNS-1-20110106
981 _ _ |a I:(DE-Juel1)ICS-1-20110106
981 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21